О. В. Шульц

РФЯЦ, ВНИИ технической физики им. акад. Е. И. Забабахина, 456770 Снежинск, O.V.Shults@VNIITF.ru

Проведен численный анализ самовоспламенения смеси водород — воздух — водяной пар при различных начальных давлениях. По результатам анализа составлен сокращенный список реакций, вносящих максимальный вклад в скорость процесса в период индукции. Предложено упрощенное аналитическое описание состояния системы перед самовоспламенением, позволяющее рассчитать тепловую мощность и скорость адиабатического разогрева системы. Представлен способ оценки пределов самовоспламенения по скорости адиабатического разогрева смеси.

Ключевые слова: самовоспламенение, пределы воспламенения, водород, кинетический механизм, радикалы, математическая модель.

DOI 10.15372/FGV20180401

ВВЕДЕНИЕ

При создании математических моделей горения, описывающих газодинамику и химическую кинетику, одной из важных проблем, ограничивающих скорость расчетов на подробных сетках, является проблема упрощения описания химических реакций. Наряду с сокращением списка реакций, описывающих химические превращения в системе, для этой цели возможно также создание упрощенного аналитического описания состояния системы. Разработке такого описания, характеризующего концентрации активных частиц в системе перед воспламенением и производимую системой тепловую мощность, посвящена настоящая работа.

АНАЛИЗ ПРОЦЕССА САМОВОСПЛАМЕНЕНИЯ

Для анализа кинетических особенностей процесса самовоспламенения водородовоздушных смесей были проведены серии расчетов в нульмерной постановке. Использовалась специально разработанная модель, описывающая многостадийную кинетику процесса. В рамках модели скорости отдельных химических реакций описываются законом действующих масс [1], константы скорости рассчитываются по уравнению Аррениуса, тепловые эффекты реакций и теплоемкости компонентов — по справочным данным [2]. Набор реакций с соответствующими кинетическими параметрами взят из статьи [3]. Реакции радикалов со стенками сосуда не рассматривались. Список реакций с кинетическими константами приведен в таблице. Так как особенности процесса рассматривались только на качественном уровне, детальный анализ влияния выбора кинетического механизма не выполнялся.

В качестве модельного состава была выбрана стехиометрическая смесь водорода с воздухом, содержащая 20 % (об.) водяного пара. Расчеты по модели выполнялись для начальной температуры $T_0 = 800$ К и начальных давлений $p_0 = 101.3$, 506 и 1 кПа.

На рис. 1 приведен результат расчета процесса самовоспламенения при $p_0 = 101.3$ кПа. Как видно из рисунка, расчетное значение периода индукции при заданных условиях порядка 2.8 с. В течение этого времени в системе происходит накопление химически активных частиц — радикалов (H, OH, O, HO₂) и пероксида водорода. Согласно приведенным результатам расчета, концентрации радикалов на начальном этапе экспоненциально растут со временем. Скорость разветвления цепей превышает скорость обрыва. Но начиная с момента времени $\approx 10^{-5}$ с концентрации радикалов Н, О и ОН перестают увеличиваться и приходят к квазистационарному значению. К моменту времени $t \approx 5 \cdot 10^{-2}$ с прекращают расти также и концентрации радикалов HO₂ и пероксида водорода. Такое квазиравновесие объясняется тем, что с увеличением концентрации активных частиц повышаются также и скоро-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 17-01-00873).

Номер реакции		Реакция	Прямая реакция			Обратная реакция		
			A	n	E	A	n	E
1	31	$H_2 + O_2 \leftrightarrow 2OH$	$2.81\cdot 10^{10}$	0	162991	$6.24\cdot 10^8$	0	85392.2
2	32	$\rm H_2 + OH \leftrightarrow \rm H_2O + \rm H$	$8.65\cdot 10^{10}$	0	22626	$3.21\cdot 10^{11}$	0	87235.8
3	33	$O_2 + H \leftrightarrow O + OH$	$4.42\cdot 10^{11}$	0	73744	$2.20\cdot 10^{10}$	0	4106.2
4	34	$H_2 + O \leftrightarrow H + OH$	$7.07\cdot 10^7$	1	37500.5	$3.15\cdot 10^8$	1	29539.5
5	35	$H_2O + O \leftrightarrow 2OH$	$8.00\cdot 10^{10}$	0	78772	$9.63 \cdot 10^9$	0	6159.3
6	36	$2H + M \leftrightarrow H_2 + M$	$2.00 \cdot 10^8$	0	0	$2.20\cdot 10^{16}$	-1	432659.4
7	37	$2\mathrm{O} + \mathrm{M} \leftrightarrow \mathrm{O}_2 + \mathrm{M}$	$4.53\cdot 10^8$	0	2220.7	$4.37\cdot 10^{17}$	-1	496515
8	38	$\rm H + OH + M \leftrightarrow \rm H_2O + M$	$1.27\cdot 10^{16}$	-2	0	$1.81\cdot 10^{16}$	0	495258
9	39	$2OH + M \leftrightarrow H_2O_2 + M$	$9.10\cdot 10^8$	0	0	$9.53\cdot 10^{15}$	0	213941.4
10	40	$O + OH + M \leftrightarrow HO_2 + M$	$8.50\cdot 10^{10}$	0	28031.1	$1.11\cdot 10^{17}$	0	307965
11	41	$O_2 + H + M \leftrightarrow HO_2 + M$	$3.78\cdot 10^9$	0	-7919.1	$2.48\cdot 10^{14}$	0	202377
12	42	$\rm H_2 + \rm HO_2 \leftrightarrow \rm H + \rm H_2O_2$	$9.50 \cdot 10^8$	0	91 342	$3.38\cdot 10^9$	0	17388.5
13	43	$\mathrm{H}_{2} + \mathrm{HO}_{2} \leftrightarrow \mathrm{H}_{2}\mathrm{O} + \mathrm{OH}$	$1.50\cdot 10^8$	0	103 912	$9.71 \cdot 10^5$	0.5	326 568.6
14	44	$\rm H_2O + \rm HO_2 \leftrightarrow \rm OH + \rm H_2O_2$	$4.00\cdot 10^{10}$	0	142460	$3.83\cdot 10^{10}$	0	17095.2
15	45	$2HO_2 \leftrightarrow O_2 + H_2O_2$	$4.00\cdot 10^9$	0	0	$1.11 \cdot 10^9$	0.5	174723
16	46	$\mathrm{H} + \mathrm{HO}_2 \leftrightarrow 2\mathrm{OH}$	$8.90\cdot 10^9$	0	10810.2	$4.28 \cdot 10^8$	0	155574.7
17	47	$\rm H + \rm HO_2 \leftrightarrow \rm H_2O + \rm O$	$2.00\cdot 10^{10}$	0	15000.2	$7.99\cdot 10^9$	0	245617.8
18	48	$\mathrm{H} + \mathrm{HO}_2 \leftrightarrow \mathrm{H}_2 + \mathrm{O}_2$	$5.00\cdot 10^9$	0	5028	$1.08\cdot 10^{10}$	0	227 391.3
19	49	$\mathrm{O} + \mathrm{HO}_2 \leftrightarrow \mathrm{O}_2 + \mathrm{OH}$	$6.00\cdot10^{10}$	0	0	$5.86\cdot10^{10}$	0	214 402.3
20	50	$\mathrm{H} + \mathrm{H}_2\mathrm{O}_2 \leftrightarrow \mathrm{H}_2\mathrm{O} + \mathrm{OH}$	$1.30\cdot 10^{12}$	0	49 861	$6.52\cdot 10^{11}$	0	333230.7
21	51	$\rm O + H_2O_2 \leftrightarrow OH + HO_2$	$4.00\cdot 10^{10}$	0	5447	$5.02\cdot 10^{10}$	0	58199.1
22	52	$\mathrm{H}_2 + \mathrm{O}_2 \leftrightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}$	$8.00\cdot 10^{10}$	0	241 427.8	$4.00\cdot 10^{10}$	0	256763.2
23	53	$\mathrm{H}_2 + \mathrm{O}_2 + \mathrm{M} \leftrightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{M}$	$5.00 \cdot 10^6$	0	91761	$1.16\cdot 10^{12}$	0	228 103.6
24	54	$OH + M \leftrightarrow H + O + M$	$4.00\cdot 10^{13}$	0	441 207	$6.31 \cdot 10^8$	0	16508.6
25	55	$OH + HO_2 \leftrightarrow O_2 + H_2O$	$3.00\cdot 10^{10}$	0	2514	$8.75\cdot 10^9$	0.5	293 174.3
26	56	$H_2 + O + M \leftrightarrow H_2O + M$	$5.00 \cdot 10^8$	0	0	$1.17\cdot 10^{14}$	0	489 308.2
27	57	$\mathrm{H_2O} + \mathrm{O} + \mathrm{M} \leftrightarrow \mathrm{H_2O_2} + \mathrm{M}$	$9.00\cdot 10^7$	0	54470	$1.13\cdot 10^{14}$	0	195798.7
28	58	$\mathrm{O} + \mathrm{H}_2\mathrm{O}_2 \leftrightarrow \mathrm{O}_2 + \mathrm{H}_2\mathrm{O}$	$2.00 \cdot 10^8$	0	121510	$2.01 \cdot 10^8$	0	474475.6
29	59	$\rm H_2 + H_2O_2 \leftrightarrow 2H_2O$	$2.00\cdot 10^{10}$	0	92180	$3.72 \cdot 10^9$	0	440 201.4
30	60	$\mathrm{H} + \mathrm{HO}_2 + \mathrm{M} \leftrightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{M}$	$3.00 \cdot 10^8$	0	6285	$1.51\cdot 10^{14}$	0	364 990.9

Список реакций [3] с кинетическими константами

Примечания. A — предэкспоненциальный множитель в уравнении Аррениуса, м³·моль⁻¹·c⁻¹ для бимолекулярных реакций и м⁶·моль⁻²·c⁻¹ для тримолекулярных; n — показатель степени температуры; E — энергия активации, Дж/моль; номера 1–30 соответствуют прямым реакциям, 31–60 — обратным; М — любая из молекул H₂, O₂, H₂O, N₂.

Рис. 1. Зависимость концентраций компонентов от времени при $p_0 = 101.3 \text{ кПа}, T_0 = 800 \text{ K}$: штрихпунктирная линия — момент времени, соответствующий 10 % периода индукции

сти реакций, в которых эти компоненты расходуются. В результате описанных процессов в исходной смеси формируется примесь активных частиц, участвующих в цепных реакциях, а так как скорость обрыва цепей на данном этапе становится близка к скорости разветвления, можно сказать, что процесс переходит в квазиравновесную стадию.

УСЛОВИЯ САМОВОСПЛАМЕНЕНИЯ

На основе результатов анализа процесса самовоспламенения предложена модель, в рамках которой рассматривается квазиравновесное состояние системы, в котором существует некоторая примесь активных частиц. Активные частицы участвуют в цепных реакциях, в которых макрокомпоненты (водород и кислород) медленно расходуются с образованием водяного пара и тепла. Расход макрокомпонентов на рассматриваемой стадии в рамках модели принимается пренебрежимо малым по сравнению с их начальной концентрацией. Выделяемое системой тепло тратится на разогрев и теплоотвод из реакционной области. Возможность самовоспламенения в таком случае определяется отношением удельной тепловой мощности $(Q, BT/M^3)$, производимой в системе за счет цепных реакций, к теплоемкости системы $(c_v, Дж/(м^3 \cdot K)):$

 $\omega = Q/c_v.$

Это соотношение характеризует скорость разогрева системы в адиабатических условиях. В случае, когда скорость адиабатического разогрева мала, в реальных условиях тепло успеет рассеяться из системы и самовоспламенение не произойдет. Если же скорость адиабатического разогрева достигнет некоторого критического значения, температура реальной системы будет расти. С ростом температуры ускорятся все реакции и, соответственно, лавинообразно начнет расти тепловая мощность, производимая системой, что приведет к тепловому взрыву.

Для демонстрации возможности существования системы в квазиравновесном состоянии при достаточном теплоотводе и малом выгорании исходных реагентов был выполнен расчет в условиях, аналогичных предыдущим ($p_0 =$ 101.3 кПа, $T_0 = 800$ K), с искусственно заданными нулевыми скоростями изменения концентраций водорода, кислорода и водяного пара, а также с нулевой скоростью разогрева. Результат расчета приведен на рис. 2. Как видно из рисунка, ход кривых до момента времени, соответствующего ≈10 % периода индукции, практически точно совпадает. После этого момента на рис. 1 виден плавный рост концентраций радикалов, за которым следует взрыв. В расчете с нулевыми скоростями расхода макрокомпонен-

Рис. 2. Зависимость концентраций компонентов от времени при нулевых скоростях изменения температуры и концентраций макрокомпонентов ($p_0 = 101.3 \text{ кПа}, T_0 = 800 \text{ K}$):

штрихпунктирная линия — момент времени, соответствующий 10 % периода индукции для расчета без ограничений тов и изменения температуры такого роста не наблюдается — система остается квазиравновесной.

Для сравнения был выполнен аналогичный расчет, в котором принудительно установлена нулевой только скорость изменения температуры. Результат практически точно совпал с расчетом при нулевых скоростях изменения концентраций макрокомпонентов. Это указывает на решающую роль разогрева системы перед самовоспламенением за счет цепных реакций. Изменяя условия теплоотвода, в таком случае можно изменять и скорость разогрева системы и, соответственно, время индукции вплоть до времен, при которых смесь может потерять реакционную способность за счет медленного выгорания реагентов.

САМОВОСПЛАМЕНЕНИЕ ПРИ ПОВЫШЕННОМ И ПОНИЖЕННОМ ДАВЛЕНИЯХ

Расчеты, аналогичные приведенным выше, были выполнены для различных начальных давлений и температур. Анализ результатов показал, что при повышенных давлениях (порядка 500 кПа) наблюдаются процессы, схожие с процессами при атмосферном давлении (рис. 3). К различиям можно отнести меньшее время индукции при большем начальном давлении.

Рис. 3. Зависимость концентраций компонентов от времени при $p_0 = 506$ кПа, $T_0 = 800$ К: штрихпунктирная линия — момент времени, соответствующий 10 % периода индукции

Рис. 4. Зависимость концентраций компонентов от времени при $p_0 = 1$ кПа, $T_0 = 800$ К

Расчеты, выполненные при $p_0 = 1$ кПа, показали, что при низких давлениях квазиравновесное состояние перед тепловым взрывом не достигается (рис. 4).

При пониженном давлении скорость разветвления цепей превышает скорость обрыва и концентрации активных частиц лавинообразно растут практически до полного выгорания макрокомпонентов. Для анализа возможности применения приближения квазистационарных концентраций к описанию самовоспламенения водородовоздушных смесей при пониженном давлении был выполнен расчет, в котором скорости изменения концентраций макрокомпонентов и скорость изменения температуры были искусственно заданы нулевыми. На рис. 5 приведен результат такого расчета.

Как видно из рис. 5, в условиях искусственного равновесия в системе при пониженном давлении общая концентрация радикалов в несколько раз превышает начальные концентрации водорода и кислорода. При такой концентрации радикалов нельзя пренебрегать скоростью выгорания макрокомпонентов, а тепловая мощность системы на порядки выше, чем в рассмотренном случае с атмосферным давлением. Полученный результат указывает на невозможность применения приближения квазистационарных концентраций для количественных оценок состава системы и ее тепловой мощности в период индукции при таких начальных условиях. С другой стороны, получение квазиравновесной концентрации радика-

Рис. 5. Результаты расчета процесса самовоспламенения при нулевых скоростях изменения температуры и концентраций макрокомпонентов ($p_0 = 1 \text{ к}\Pi a, T_0 = 800 \text{ K}$)

лов, превышающей концентрации исходных водорода и кислорода, явно указывает на то, что в заданных условиях скорость разветвления цепей ограничена только выгоранием исходных реагентов, а тепловая мощность, производимая системой, лавинообразно нарастает независимо от условий теплосъема.

ОПИСАНИЕ КВАЗИРАВНОВЕСНОГО СОСТОЯНИЯ

Равновесный состав системы может быть получен как решение системы уравнений вида

$$\frac{dC_i}{dt} = 0, (1)$$

где C_i — концентрация каждого компонента системы. В случае квазиравновесия C_i соответствует только концентрациям активных частиц (H, O, OH, HO₂ — радикалов и пероксида водорода).

С другой стороны, скорости изменения концентраций всех частиц описываются уравнением

$$\frac{dC_i}{dt} = \sum_{j=1}^{n_r} \nu_{ij} w_j, \qquad (2)$$

где n_r — количество рассматриваемых реакций; ν_{ij} — стехиометрический коэффициент при *i*-м компоненте в *j*-й реакции (положительный для продуктов реакции, отрицательный для реагентов, нулевой для не участвующих в реакции компонентов); w_j — скорость *j*-й реакции, моль · м⁻³ · c⁻¹.

Скорости реакций w_j рассчитываются по закону действующих масс:

$$w_j = k_j \prod_i C_i^{\nu_{ij}^*},\tag{3}$$

где k_j — константа скорости *j*-й реакции; ν_{ij}^* — стехиометрический коэффициент при *i*-м реагенте в *j*-й реакции (учитываются только реагенты, для продуктов и не участвующих в реакции компонентов $\nu_{ij}^* = 0$). Подставив выражение (3) в (2), а затем в (1), получаем систему уравнений, описывающую равновесное или квазиравновесное состояние системы.

ВЫБОР РЕАКЦИЙ ДЛЯ ОПИСАНИЯ КВАЗИРАВНОВЕСИЯ

Для приближенного описания квазиравновесного состояния можно ограничиться рассмотрением только реакций с максимальной скоростью по активным частицам. В основе такого метода выбора реакций лежит предположение о том, что равновесные концентрации компонентов в системе определяются соотношением скоростей производства и расходования соответствующих компонентов. Более быстрые реакции имеют больший вклад в такие соотношения.

Последовательно расширяя сокращенный список добавлением более медленных реакций, можно уточнять описание квазиравновесия, однако большее число условий усложняет аналитическое решение.

На рис. 6, 7 приведены скорости процесса по активным частицам десяти наиболее быстрых реакций в системе в момент времени, соответствующий 10 % периода индукции (обозначен штрихпунктирной линией на рис. 1), при $p_0 = 101.3$ и 506 кПа. Этот момент выбран в силу того, что приблизительно равноудален в логарифмическом масштабе от момента достижения квазиравновесия и момента его нарушения (см. рис. 1 и 3).

Как видно из рис. 6 и 7, скорости наработки и расходования активных частиц по различным реакциям из выбранных списков практически уравновешивают друг друга. Максимальный вклад в скорость процесса при $p_0 =$ 101.3 кПа вносят реакции 11, 2, 29, 15 и 1. При

Рис. 6. Скорости процесса по активным частицам десяти наиболее быстрых реакций в момент времени 0.2819 с при $p_0 = 101.3$ кПа: реакции приведены в порядке убывания скорости (снизу вверх)

0

0.005

-0.005

 $\Box H$

0

I OH

 $\overline{\Box}$ HO₂

 H_2O_2

0.010

w, моль/(м³ · c)

0.015

Рис. 7. Скорости процесса по активным частицам десяти наиболее быстрых реакций в момент времени 55.2 мс при $p_0 = 506$ кПа: реакции приведены в порядке убывания скорости (снизу вверх)

 $p_0 = 506 \text{ к}\Pi \text{a} \text{ к}$ этому списку также добавляется реакция 23.

Аналогичный анализ, выполненный для искусственно полученного квазиравновесного состояния при $p_0 = 1$ кПа, показал, что такое состояние характеризуется другим распределением скоростей по реакциям. На рис. 8 приведены скорости по активным частицам десяти наиболее быстрых реакций в системе в состоянии искусственного квазиравновесия при низком начальном давлении. Как видно из рисунка, скорости наработки и расходования активных частиц в различных реакциях из вы-

Рис. 8. Скорости изменения концентраций активных частиц в десяти наиболее быстрых реакциях в состоянии искусственного квазиравновесия при $p_0 = 1$ кПа:

реакции приведены в порядке убывания скорости (снизу вверх)

бранного списка практически уравновешивают друг друга. С целью качественного описания границ режимов протекания реакции к списку реакций, полученному при $p_0 = 101.3$ и 506 кПа, необходимо добавить реакции 4, 34, 3, 33 (более медленные при таких условиях реакции 2 и 11 уже входят в этот список).

В результате анализа протекания процесса при $p_0 = 506$, 101.3 и 1 кПа был сформирован сокращенный список реакций, достаточных для описания квазиравновесия в системе:

- $11) O_2 + H + M \leftrightarrow HO_2 + M,$
- 2) $H_2 + OH \leftrightarrow H_2O + H$, 29) $H_2 + H_2O_2 \leftrightarrow 2H_2O$, 15) $2HO_2 \leftrightarrow O_2 + H_2O_2$, 1) $H_2 + O_2 \leftrightarrow 2OH$, 23) $H_2 + O_2 + M \leftrightarrow H_2O_2 + M$, 4) $H_2 + O \leftrightarrow H + OH$, 34) $H + OH \leftrightarrow H_2 + O$, 3) $O_2 + H \leftrightarrow O + OH$, 33) $O + OH \leftrightarrow O_2 + H$.

12

39

3

 $\frac{4}{23}$

 $1 \\ 15$

29

2

11

-0.015 -0.010

Номер реакции

РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ, ОПИСЫВАЮЩЕЙ КВАЗИРАВНОВЕСИЕ

При подстановке выражений для скоростей вышеприведенных реакций в (2) и затем в (1) получаем:

$$-k_{11}C_{O_2}C_{H}C_{M} + k_2C_{H_2}C_{OH} + k_4C_{H_2}C_{O} - k_3C_{O_2}C_{H} - k_34C_{OH}C_{H} + k_{33}C_{OH}C_{O} = 0, \quad (4)$$
$$-k_4C_{H_2}C_{O} + k_3C_{O_2}C_{H} + k_3C_$$

$$+k_{34}C_{\rm OH}C_{\rm H} - k_{33}C_{\rm OH}C_{\rm O} = 0, \quad (5)$$

$$-k_{2}C_{\mathrm{H}_{2}}C_{\mathrm{OH}} + 2k_{1}C_{\mathrm{H}_{2}}C_{\mathrm{O}_{2}} + k_{4}C_{\mathrm{H}_{2}}C_{\mathrm{O}} + k_{3}C_{\mathrm{O}_{2}}C_{\mathrm{H}} - k_{34}C_{\mathrm{OH}}C_{\mathrm{H}} - k_{33}C_{\mathrm{OH}}C_{\mathrm{O}} = 0, \quad (6)$$

$$k_{11}C_{\rm O_2}C_{\rm H}C_{\rm M} - 2k_{15}C_{\rm HO_2}^2 = 0, \qquad (7)$$

$$-k_{29}C_{\rm H_2O_2}C_{\rm H_2} + k_{15}C_{\rm HO_2}^2 + k_{23}C_{\rm H_2}C_{\rm O_2}C_{\rm m} = 0, \quad (8)$$

где $C_{\rm m}$ — суммарная концентрация молекул H_2, O_2, H_2O и N_2 , моль/м³.

Решением системы уравнений (4)–(6) являются квазистационарные концентрации радикалов Н, О и ОН, выраженные через константы скорости и концентрации макрокомпонентов:

$$C_{\rm OH} = Z,$$

$$k_2 C_{\rm H_2} Z$$

$$C_{\rm H} = \frac{\kappa_2 C_{\rm H_2} Z}{k_{11} C_{\rm O_2} C_{\rm m}},\tag{9}$$

$$C_{\rm O} = \frac{k_2 C_{\rm H_2} Z (k_3 C_{\rm O_2} + k_{34} Z)}{k_{11} C_{\rm O_2} C_{\rm m} (k_4 C_{\rm H_2} + k_{33} Z)},$$

где Z — корень уравнения

$$aZ^3 + bZ^2 + cZ + d = 0 (10)$$

с коэффициентами

$$a = 2k_{34}k_2k_{33}, \quad b = k_2k_{33}k_{11}C_{O_2}C_{m},$$
$$c = k_2k_4k_{11}C_{H_2}C_{O_2}C_{m} - 2k_1k_{33}k_{11}C_{O_2}^2C_{m} -$$

$$-2k_2k_3k_4C_{\rm H_2}C_{\rm O_2},$$

$$d = -2k_1k_4k_{11}C_{\rm H_2}C_{\rm O_2}^2C_{\rm m}.$$

В этой системе не учитываются концентрации радикала HO_2 и пероксида водорода, так как они достигают квазиравновесия значительно позже. Для получения квазиравновесных концентраций радикалов HO_2 и пероксида водорода решалась система уравнений (7), (8):

$$C_{\rm HO_2} = \sqrt{\frac{k_{11}C_{\rm H}C_{\rm O_2}C_{\rm m}}{2k_{15}}},$$

$$C_{\rm H_2O_2} = \frac{(k_{11}C_{\rm H} + 2k_{23}C_{\rm H_2})C_{\rm O_2}C_{\rm m}}{2k_{29}C_{\rm H_2}}.$$
(11)

РАСЧЕТ КВАЗИСТАЦИОНАРНЫХ КОНЦЕНТРАЦИЙ

С помощью выражений (9) и (11) для рассмотренной выше постановки при $p_0 = 101.3$ кПа были рассчитаны концентрации радикалов и пероксида водорода; соответствующие результаты приведены на рис. 9. Результаты расчета концентраций активных частиц

Рис. 9. Концентрации активных частиц, рассчитанные с помощью приближения квазистационарных концентраций (отмечены кружками), и результаты численного интегрирования полной системы кинетических уравнений:

 $p_0 = 101.3 \text{ кПа}, T_0 = 800 \text{ K};$ штрихпунктирная линия — момент времени, соответствующий 10 % периода индукции

в приближении квазистационарных концентраций хорошо согласуются с результатами численного интегрирования полной системы кинетических уравнений.

РАСЧЕТ ПРЕДЕЛОВ САМОВОСПЛАМЕНЕНИЯ

Для определения возможности самовоспламенения при заданных начальных значениях давления, температуры и концентраций макрокомпонентов с помощью описанного подхода вычисляются концентрации активных частиц в системе в состоянии квазиравновесия. Согласно кинетическому механизму и термодинамическим данным рассчитываются скорости процесса по каждому компоненту и тепловая мощность, производимая системой. Также по данным о концентрациях всех компонентов рассчитывается осредненная теплоемкость системы.

На рис. 10 приведены результаты расчета величины ω , выполненные для ряда давлений в диапазоне $10^2 \div 10^6$ Па и температур в диапазоне $650 \div 900$ К. Для сравнения с данными [4] выбрана стехиометрическая смесь водорода с кислородом. Согласно выполненным расчетам, в каждой из рассмотренных точек существует только один действительный неотрицательный корень уравнения (10).

При $p_0 > 1$ кПа предельные точки [4] ле-

Рис. 10. Параметр $\lg(\omega)$ в зависимости от начальных давления и температуры:

жирные линии — уровни 2 и 2.25 Па, точки — пределы самовоспламенения стехиометрической смеси водорода с кислородом из работы [4]

жат между линиями, соответствующими значениям $\omega = 100 \div 178$ K/c $(10^2 \div 10^{2.25}$ K/c). При $p_0 < 1$ кПа предельные точки перестают коррелировать с уровнями скорости адиабатического разогрева, что указывает на неприменимость выполненных расчетов для описания первого предела самовоспламенения. Ниже линии, соответствующей второму пределу самовоспламенения, лежат точки, в которых согласно расчетам квазиравновесные концентрации радикалов Н превышают начальные концентрации молекулярных водорода и кислорода. Расчет скорости адиабатического разогрева системы в таких условиях не имеет смысла. В этой области самовоспламенение происходит за счет лавинообразного нарастания концентрации радикалов независимо от скорости разогрева и условий теплоотвода.

ЗАКЛЮЧЕНИЕ

В работе выполнен анализ процесса самовоспламенения водородовоздушной парогазовой смеси, по результатам которого предложена модель, описывающая состояние системы перед самовоспламенением и позволяющая рассчитывать тепловую мощность системы в состоянии квазиравновесия и скорость ее адиабатического разогрева. По величине скорости адиабатического разогрева предложено оценивать пределы самовоспламенения водородовоздушной парогазовой смеси. С помощью модели была рассчитана скорость адиабатического разогрева водородокислородной стехиометрической смеси в диапазонах температуры $650 \div 900$ К и давления $10^2 \div 10^6$ Па. Результаты расчета были сопоставлены с доступными экспериментальными данными по пределам самовоспламенения. Показано, что экспериментальные значения второго и третьего пределов самовоспламенения соответствуют скоростям адиабатического разогрева смеси $100 \div 178 \text{ K/c.}$

Предложенная модель может быть применена в составе кодов вычислительной гидродинамики для расчетов задач с большими временными масштабами и сложной геометрией, требующей построения детальных сеток. При решении таких задач рациональным представляется использование аналитических оценок и критериев, позволяющих описывать состояние системы до воспламенения без привлечения времяемких вычислений и с достаточной точностью определять момент, когда необходимо подключать детальные кинетические модели, позволяющие подробно описывать процессы, протекающие при существенном изменении параметров системы, но при этом требующие значительных вычислительных ресурсов.

ЛИТЕРАТУРА

1. Краснов К. С., Воробьев Н. К., Годнев И. Н. и др. Физическая химия. В 2 кн. Кн. 2: Электрохимия. Химическая кинетика и катализ:

учеб. для вузов. — 2-е изд., перераб. и доп. — М.: Высш. шк., 1995.

- 2. Программа для ЭВМ HSC Chemistry 7.0. Электронный ресурс www.outotec.com/hsc.
- Матвеев В. Г. Упрощение механизма горения водорода // Физика горения и взрыва. — 2001. — Т. 37, № 1. — С. 3–5.
- 4. Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах. — М.: Мир, 1968.

Поступила в редакцию 10/V 2017 г.