УДК 539.534.539.194

Изучение поляризуемости молекулы H₂O на основе данных по сдвигу линий молекулы давлением буферных газов

В.И. Стариков*

Томский государственный университет систем управления и радиоэлектроники 634050, г. Томск, пр. Ленина, 40

Поступила в редакцию 26.09.2019 г.

Изучается зависимость изотропной поляризуемости α молекулы H₂O от переменной θ , описывающей изгибное колебание большой амплитуды в молекуле. Функция $\alpha(\theta)$ выбрана в виде степенного ряда. Коэффициенты ряда подбирались из условия, чтобы матричные элементы $\langle \psi_n | \alpha(\theta) | \psi_n \rangle$ в базисе ангармонических волновых функций $\psi_n(\theta)$ совпадали со значениями поляризуемости $\alpha(n)$, найденными при анализе сдвигов линий поглощения молекулы в колебательных полосах $n \cdot v_2$ (n = 1-6) давлением азота, кислорода, воздуха и аргона. Для численного расчета волновых функций $\psi_n(\theta)$ использовалась потенциальная функция с низким барьером к линейной конфигурации молекулы. Проведен численный расчет вращательных вкладов в эффективную поляризуемость молекулы и дано сравнение полученного представления $\alpha(\theta)$ с *ab initio* расчетами.

Ключевые слова: молекула H_2O , поляризуемость, уширение и сдвиг спектральных линий; water molecule, polarisability, broadening and shift of spectral lines.

Введение

Изгибное колебание v2 в молекуле H2O (изменение угла θ = HOH) существенно отличается от валентных колебаний v₁ и v₃, которые описывают изменение длин связей ОН. Отличие определяется тем, что сечение потенциала молекулы вдоль координаты в имеет низкий барьер к линейной конфигурации *H* ~ 10000 см⁻¹. Частота нормальных колебаний для изгибной моды ω₂ = 1648,5 см⁻¹ [1], так что до барьера Н укладывается 7 или 8 (в зависимости от используемого в расчета потенциала) колебательных уровней энергий. С увеличением колебательного квантового числа $n = v_2$ резко изменяется вращательная структура уровней энергий в колебательных состояниях $E(v_2)$, что проявляется в сильной зависимости от v₂ ряда вращательных и центробежных постоянных из эффективного центробежного гамильтониана молекулы [2].

Знание колебательной зависимости поляризуемости α молекулы H₂O важно для расчета коэффициентов уширения γ и сдвига δ линий молекулы давлением буферных газов. Наряду с дипольным моментом μ поляризуемость α определяет колебательную зависимость дальнодействующей части эффективного индукционного и поляризационного потенциала взаимодействия [3]. Зависимость дипольного момента μ от колебательных квантовых чисел $\nu = (\nu_1, \nu_2, \nu_3)$ молекулы H₂O определена в [4, 5]. В [4] использовалась модель полужесткой молекулы, в которой все колебания H_2O рассматривались как малые. В [5] использовалась модель нежесткой молекулы, в которой изгибное колебание рассматривалось как колебание большой амплитуды. Значения μ , вычисленные в [4, 5] для колебательных состояний $E(v_2)$, близких к линейной конфигурации молекулы, различаются.

Колебательную зависимость поляризуемости $\alpha,\ \text{Å}^3,$ молекулы H_2O обычно определяют из формулы

$$\alpha(\nu) = 1,4613 + 0,040\nu_1 + + 0,0044\nu_2 + 0,042\nu_3,$$
(1)

которая моделирует результаты *ab initio* расчетов из [6]. Для колебательных полос, связанных с небольшим возбуждением v_1 , v_2 и v_3 , значения μ , определенные в [4, 5], и значения α , полученные из (1), приводят к расчетным значениям γ и δ , которые удовлетворительно согласуются с экспериментальными данными. В [7, 8] был проведен расчет коэффициентов уширения γ и сдвига δ для 30 колебательных полос H₂O в случае их уширения азотом, воздухом и аргоном. Для согласования вычисленных коэффициентов сдвига δ (cal) с экспериментальными коэффициентами δ (exp) в [7, 8] использовались значения α (v), которые отличаются от значений, определяемых формулой (1). Была получена функция

$$\alpha(\mathbf{v}) = 1,4613 + (0,039 \pm 0,002)\mathbf{v}_1 + + (0,022 \pm 0,002)\mathbf{v}_2 + (0,041 \pm 0,003)\mathbf{v}_3,$$
(2)

© Стариков В.И., 2020

^{*} Виталий Иванович Стариков (vstarikov@yandex.ru).

которую можно считать оптимальной для описания экспериментальных сдвигов рассмотренных 30 полос. Сравнение (1) и (2) показывает, что зависимости $\alpha(\nu)$ от ν_1 и ν_3 практически одинаковые, но зависимость $\alpha(\nu)$ от ν_2 иная.

Цели настоящей работы заключаются: 1) в том, чтобы найти такую зависимость поляризуемости молекулы H_2O от внутренней координаты θ , описывающей изгибное колебание в молекуле, которая приводила бы к зависимости α от v_2 , согласующейся с выражением (2); 2) в расчете и анализе вращательных поправок в эффективную поляризуемость молекулы, которая и используется в расчетах коэффициентов уширения и сдвига линий.

Метод расчета

В модели полужесткой молекулы все колебания рассматриваются как колебания малой амплитуды, которые в нулевом приближении могут быть описаны гамильтонианом гармонических колебаний $H_0^{\rm vib}$.

Колебательная зависимость $\alpha(v)$ может быть определена по теории возмущений (ТВ). Исходным для применения ТВ является разложение α в ряд по внутренним координатам, например по безразмерным нормальным координатам q_i (i = 1, 2, 3):

$$\alpha(q) = \alpha_0 + \sum_i \alpha_i q_i + \frac{1}{2} \sum_{i,j} \alpha_{ij} q_i q_j + \dots \qquad (3)$$

Далее при помощи ТВ с использованием функций гармонического осциллятора рассчитываются колебательные поправки $\Delta \alpha_i$ к α_0 так, что [9]:

$$\alpha(\mathbf{v}) = \alpha_0 + \sum_i \Delta \alpha_i \left(\mathbf{v}_i + \frac{1}{2} \right) =$$
$$= \alpha_0 + \frac{1}{2} \sum_i \left(\mathbf{v}_i + \frac{1}{2} \right) \left(\alpha_{ii} - \sum_m \frac{\alpha_i f_{iim}}{\omega_m} \right).$$
(4)

Здесь ω_m , f_{iim} — гармонические частоты и ангармонические силовые постоянные молекулы [1, 10].

Таким образом, для расчета $\alpha(v)$ в этой модели необходимо знать первые α_i и вторые α_{ii} производные от поляризуемости по безразмерным нормальным координатам и силовое поле молекулы. Значения ω_m , f_{iim} для H₂O известны [1, 10]; первые производные α_i оценены из спектров комбинационного рассеяния в [11, 12]. Оценка вторых производных α_{ii} из этих спектров не проводилась.

В [6, 13–17] в *ab initio* расчетах неоднократно определялись поверхности поляризуемости молекулы H₂O. Использовались валентные координаты симметрии $S_1 = (\Delta r_1 + \Delta r_2)/\sqrt{2}$, $S_3 = (\Delta r_1 - \Delta r_2)/\sqrt{2}$, связанные с изменением длин связей OH в молекуле, и координата $S_2 = Å(\theta - \theta_e)$, $\theta_e = 104, 4^\circ$, связанная с изменением угла HOH. Зависимость $\alpha(S_i)$ от S_i (i = 1, 2, 3) представлялась степенным рядом

$$\alpha = \sum_{i,j,k} \alpha_{ijk} S_1^i S_2^j S_3^k.$$
(5)

Коэффициенты ряда α_{ijk}, которые находились из подгонки (5) к вычисленной поверхности $\alpha(S_i)$, определяют первые $\partial \alpha / \partial S_i$, вторые $\partial^2 \alpha / \partial S_i \partial S_j$ и т.д. производные от $\alpha(S_i)$ по S_i . Их анализ показывает, что производные из [13-17], связанные с валентными колебаниями v1 и v3, хорошо коррелируют между собой, а вторые производные $\partial^2 \alpha / \partial S_2^2$, полученные в [15–17], различаются. Производные $\partial \alpha / \partial S_i$ и $\partial^2 \alpha / \partial S_i \partial S_i$ из [15–17] были пересчитаны в производные α_i и α_{ii} для ряда (3), и с ними по формуле (4) был проведен расчет колебательной зависимости поляризуемости. Использовалось силовое поле молекулы из [10]. Результаты расчета для $\alpha(v_2)$ показаны на рис. 1. Кривые по-разному определяют зависимость $\alpha(v_2)$, и это существенно влияет на вычисляемые коэффициенты сдвига.

Рис. 1. Вычисленная зависимость изотропной поляризуемости α молекулы H₂O от колебательного квантового числа $n = v_2$; кривые 1, 2 и 3 получены с применением (4) и результатов *ab initio* расчетов из [15], [16] и [17] соответственно; кривая $4 - \alpha(n) = \langle \psi_n | \alpha(\theta) | \psi_n \rangle$, $\alpha(\theta)$ задана функцией (14), ψ_n получены из (11)

В настоящей работе для H_2O предлагается использовать модель нежесткой молекулы [18], в которой изгибное колебание рассматривается как колебание большой амплитуды и не строятся ряды теории возмущений по соответствующей координате. Вместо ряда (3) используется ряд

$$\alpha(\theta, q) = \alpha(\theta) + \sum_{i} \alpha_{i}(\theta)q_{i} + \frac{1}{2}\sum_{i,j} \alpha_{ij}(\theta)q_{i}q_{j} + \dots =$$

Изучение поляризуемости молекулы H₂O на основе данных по сдвигу линий молекулы...

$$= \alpha(\theta) + \alpha_{1}(\theta)q_{1} + 1/2(\alpha_{11}(\theta)q_{1}^{2}) + \alpha_{12}(\theta)q_{1}q_{2} + 1/2(\alpha_{33}(\theta)q_{3}^{2}) + \dots$$
(6)

только по координатам q_i (i = 1, 3) для колебаний малой амплитуды. Здесь θ — координата колебания большой амплитуды в H₂O (θ — угол HOH в опорной конфигурации молекулы [18]); $\alpha(\theta)$, $\alpha_1(\theta)$, $\alpha_{11}(\theta)$, $\alpha_{12}(\theta)$ и $\alpha_{33}(\theta)$ — поляризуемость молекулы и ее производные по q_i . В нулевом приближении колебания в молекуле описываются гамильтонианом

$$H_0 = H_0^{\text{bend}} + H_0^{\text{vib}},$$
 (7)

в котором H_0^{vib} — гамильтониан для гармонических валентных колебаний;

$$H_0^{\text{bend}} = -B(\theta) \frac{\partial^2}{\partial \theta^2} - \frac{\partial B(\theta)}{\partial \theta} \frac{\partial}{\partial \theta} + V_0(\theta)$$
(8)

описывает колебание большой амплитуды [18], $V_0(\theta)$ — сечение потенциала молекулы вдоль координаты θ . Применение ТВ только по координатам q_i (i = 1, 3) позволяет определить колебательную зависимость поляризуемости в виде

$$\alpha(\mathbf{v}) = \{\alpha(n) - 0.5f_1(n) \cdot \alpha_1(n) / \omega_1\} + \Delta\alpha_1(n)(\nu_1 + 1/2) + \Delta\alpha_3(n)(\nu_3 + 1/2),$$
(9)

где

$$\Delta \alpha_i(n) = \frac{1}{2} \left(\alpha_{ii}(n) - \sum_{m \neq 2} \frac{\alpha_i(n) f_{imm}(n)}{\omega_m} \right); \quad (10)$$

 $n \equiv v_2$; $f(n) = \langle \psi_n | f(\theta) | \psi_n \rangle$ — матричные элементы от функций $f(\theta) \equiv \{\alpha(\theta), \alpha_1(\theta), \alpha_{ii}(\theta), f_1(\theta), f_{imm}(\theta)\}$ в базисе ангармонических волновых функций $\psi_n(\theta)$, получаемых численным интегрированием уравнения Шредингера

$$H_0^{\text{bend}} \psi_n(\theta) = E_n \psi_n(\theta) \tag{11}$$

с гамильтонианом H_0^{bend} (8). Для получения численных значений в (9) и (10) необходимо провести моделирование функций $f(\theta)$.

Функция $\alpha(\theta)$ моделировалась соотношением

$$\alpha(\theta) = \alpha_0 + \alpha_{\theta}(\theta - \theta_e) + \alpha_{\theta\theta}(\theta - \theta_e)^2, \quad (12)$$

где α_0 , α_{θ} и $\alpha_{\theta\theta}$ — параметры, которые подбирались так, чтобы наилучшим образом (в смысле метода наименьших квадратов) была описана найденная в [8] и представленная формулой (2) зависимость $\alpha(n = v_2)$. Формально (12) совпадает со степенным рядом (5) по координате S_2 . Отличие от модели полужесткой молекулы связано с тем, что расчет колебательной зависимости $\alpha(v_2 = n) = \langle \psi_n | \alpha(\theta) | \psi_n \rangle$ проводится в базисе ангармонических волновых функций $\psi_n(\theta)$, полученных численным интегрированием уравнения Шредингера (11). В расчетах потенциал $V_0(\theta)$ был выбран в виде

$$V_0(\theta) = f_{22}(\theta - \theta_e)^2 + f_{222}(\theta - \theta_e)^3 + f_{2222}(\theta - \theta_e)^4$$
(13)

с параметрами $f_{22} = 1,6855 \cdot 10^4 \text{ см}^{-1}$, $f_{222} = -7522,0 \text{ см}^{-1}$, $f_{2222} = -273,8 \text{ см}^{-1}$. Для этого потенциала барьер к линейной конфигурации $H = 11235,5 \text{ см}^{-1}$, до барьера укладывается 8 колебательных уровней энергий E_n . Вид функции $V_0(\theta)$ и вычисленные с ней уровни энергий E_n можно найти в [19].

В 1-й строчке табл. 1 представлены значения $\alpha(v_2)$, определенные из анализа экспериментальных сдвигов линий (формула (2)), а во 2-й строчке — вычисленные значения матричных элементов $\langle \psi_n | \alpha(\theta) | \psi_n \rangle$, полученные с оптимальным набором параметров $\alpha_0 = 1,454$, $\alpha_0 = 0,0081$ и $\alpha_{\theta\theta} = 0,318$ Å³. Оптимальный набор, найденный из подгонки матричных элементов $\langle \psi_n | \alpha(\theta) | \psi_n \rangle$ к значениям $\alpha(v_2)$ из 1-й строчки, позволяет представить эту функцию в виде

$$\alpha(\theta) = 1,454 + 0,008(\theta - \theta_e) + 0,318(\theta - \theta_e)^2.$$
(14)

Таблица 1

Вычисленная зависимость изотропной поляризуемости α , $Å^3$, молекулы H₂O от колебательного квантового числа $n = v_2$ и значения вращательных параметров, $Å^3$, определяющих вращательные вклады в эффективную поляризуемость молекулы

Поромотр	n									
параметр	0	1	2	3	4	5	6			
α^1	1,461	1,483	1,505	1,527	1,549	1,571	1,593			
α^2	1,462	1,479	1,498	1,519	1,543	1,574	1,611			
$\alpha^{(J)}$	6,9E-5	7,3E-5	7,9E-5	8,9E-5	9,9E-5	1,2E-4	1,3E-4			
$\alpha^{(xy)}$	6,7E-6	8,7E-6	1,1E-5	1,6E-5	2,0E-5	3,0E-5	3,4E-5			
$\alpha^{(K)}$	6,0E-5	-3,6E-5	-2,3E-4	-7,6E-4	-2,5E-3	-1,1E-2	-4,1E-2			
α_2^3	7,9E-5	3,8E-5	-1,2E-5	-1,1E-4	-2,4E-4	-4,7E-4	-7,8E-2			
α_2^4	7,9E-5	3,8E-5	-1,2E-5	-1,1E-4	-3,2E-3	-7,2E-3	-1,6E-2			
α_4^4	0,0	0,0	0,0	0,0	5,4E-4	1,4E-3	4,3E-3			

П р и м е ч а н и е. Верхние индексы 1 – вычисления по формуле (2); 2 – матричные элементы $\langle \psi_n | \alpha(\theta) | \psi_n \rangle$, вычисленные для $\alpha(\theta)$ (14); символ Е-3 означает 10⁻³; 3, 4 – для формул (28) и (29) соответственно.

Стариков В.И.

Функция $\alpha(v_2)$ со значениями из 1-й строчки табл. 1 показана кривой 4 на рис. 1.

Сравнение с результатами *ab initio* расчетов

Полученную функцию $\alpha(\theta)$ (14) можно сравнить с аналогичными функциями, найденными в *ab initio* расчетах. Согласно [15], [16] и [17] (все данные приведены к Å³):

$$\alpha(S_2) = 1,448 + 0,083S_2 + 0,33S_2^2; \quad (15)$$

$$\alpha(S_2) = 1,408 + 0,075S_2 + 0,068S_2^2 - - 0,011S_2^3 - 0,018S_2^4;$$
(16)
$$\alpha(S_2) = 1,400 + 0,054S_2 + 0.047S_2^2 -$$

$$-0,024S_2^3 - 0,025S_2^4.$$
(17)

Для наглядности функции α(θ), определенные формулами (14)–(17), представлены на рис. 2.

Рис. 2. Зависимость поляризуемости α молекулы H₂O от угла θ; кривые 1, 2 и 3 определены формулами (15)–(17) соответственно, кривая 4 – формулой (14)

Полученная в наших расчетах функция $\alpha(\theta)$ (14) близка к функции $\alpha(\theta)$ (15) из [15], поэтому колебательные зависимости $\alpha(v_2)$, рассчитанные по формулам (14) и (15) и показанные кривыми 4 и 1 на рис. 1, близки.

Помимо диагональных матричных элементов, важным является недиагональный матричный элемент $\langle \psi_{n=0} | \alpha(\theta) | \psi_{n=1} \rangle$, определяющий интенсивности в спектре комбинационного рассеяния полосы v_2 молекулы H₂O. В проведенных расчетах $\langle \psi_{n=0} | \alpha(\theta) | \psi_{n=1} \rangle = 0,0042 \text{ Å}^3$, для представлений (15), (16), (17) в базисе функций $| v_2 \rangle$ гармонического осциллятора $\langle v_2 = 0 | \alpha(S_2) | v_2 = 1 > \approx 0,004, 0,004, 0,003 Å^3$ соответственно. В [11] на основе данных по интенсивности спектров комбинационного рассеяния в полосе v_2 даны оценки производных $\partial \alpha_{\beta\beta} / \partial q_2$ от молекулярно фиксированных компонент тензора поляризуемости $\alpha_{\beta\beta}$ ($\beta = x, y, z$), из которых следует, что $\alpha_2 = \partial \alpha / \partial q_2 = 0,0022$ Å³. Согласно этой оценке $\langle v_2 = 0 | \alpha_2 q_2 | v_2 = 1 > = 0,0015$ Å³.

Моделирование функций $\alpha_1(\theta)$, $\alpha_{ii}(\theta)$, $f_1(\theta)$ и $f_{imm}(\theta)$ в работе не проводилось. Для оценки параметров из формулы (9) использовалось приближение, в котором для любых $n \alpha_1(n)$ приравнивалось к первой производной $\alpha_1 = 0,146$ Å³ [8, 11, 12]; аналогично $\alpha_{11}(n) = 0,016$ Å³, $\alpha_{33}(n) = 0,0128$ Å³ [8, 15]. Для $f_{imm}(n)$ использовались значения кубических ангармонических постоянных f_{imm} из [10], а $f_1(n)$ приравнивались к нулю.

В этом приближении

)

$$\alpha(\nu) = 1,4613 + 0,042\nu_1 + + [\alpha(\nu_2) - \alpha(\nu_2 = 0)] + 0,040\nu_3 (Å^3).$$
(18)

Здесь значение $\alpha(v_1 = 0, v_2 = 0, v_3 = 0) = 1,4613 Å^3$ фиксировано к значению, найденному в [6], а функция $\alpha(v_2)$ определяется матричными элементами из 1-й строчки табл. 1.

Зависимости $\alpha(\nu)$ от ν_1 и ν_3 близки к найденным в *ab initio* расчетах [6] (формула (1)) и в [8] (формула (2)) из анализа экспериментальных сдвигов.

Вращательная зависимость эффективной поляризуемости

В расчетах коэффициентов уширения и сдвига, как правило, применяются колебательно-вращательные волновые функции, полученные с использованием эффективных центробежных гамильтонианов молекулы [20]. Матричные элементы по этим функциям должны вычисляться с эффективными операторами физических величин. Построенный методами TB эффективный оператор поляризуемости имеет вид [9]:

$$\tilde{\alpha} = \alpha(v) + \alpha^{(J)} \mathbf{J}^2 + \alpha^{(K)} J_z^2 + \alpha^{(xy)} (J_+^2 - J_-^2), \quad (19)$$

в котором $J_{\pm} = J_x \mp i J_y; J_{\beta} (\beta = x, y, z)$ – компоненты оператора углового момента **J** относительно молекулярной системы осей; $\alpha^{(J)}, \alpha^{(K)}, \alpha^{(xy)}$ – постоянные, связанные с постоянными $\alpha^{\beta\beta}$ соотношениями

$$\alpha^{(J)} = (\alpha^{xx} + \alpha^{yy})/2,$$

$$\alpha^{(xy)} = (\alpha^{xx} - \alpha^{yy})/4,$$

$$\alpha^{(K)} = \alpha^{zz} - \alpha^{(J)}.$$
(20)

В модели полужесткой молекулы параметры $\alpha^{\beta\beta}$ рассчитываются по формуле [9]:

$$\alpha^{\beta\beta} = -\sum_{i} \frac{B_{i}^{\beta\beta} \alpha_{i}}{\omega_{i}} , \qquad (21)$$

где $B_i^{\beta\beta}$ — вращательные производные [1]. Вычисленные по формулам (20), (21) $\alpha^{(J)} = 0,65 \cdot 10^{-4}, \alpha^{(K)} =$ = 0,71 · 10⁻⁴ и $\alpha^{(xy)} = 0,75 \cdot 10^{-5}$ Å³ [9].

Изучение поляризуемости молекулы H₂O на основе данных по сдвигу линий молекулы...

91

В модели нежесткой молекулы формула (21) преобразуется к виду

$$\alpha^{\beta\beta} = -\sum_{i\neq 2} \frac{B_i^{\beta\beta}(n)\alpha_i(n)}{\omega_i} - 2\sum_m \frac{B_\beta(m,n)\alpha(m,n)}{E_m - E_n} . \quad (22)$$

В этой формуле $f(n, m) = \langle n | f(\theta) | m \rangle$ — матричные элементы от функций $f(\theta)$ по волновым функциям $\psi_n(\theta)$, $\psi_m(\theta)$ из (11), f(n) = f(n, n). В расчетах $\alpha(m, n)$ для функции $\alpha(\theta)$ использовалось представление (14), для $\alpha_1(n)$ — не зависящее от n значение $\alpha_1 = 0,145$ Å³ из [12], функции $B_{\beta}(\theta)$, $B_i^{\beta\beta}(\theta)$ известны [2]. Рассчитанные по формуле (22) параметры $\alpha^{(J)}$, $\alpha^{(K)}$, $\alpha^{(xy)}$ приведены в табл. 1. Для основного состояния с n = 0 расчеты по формулам (21) и (22) близки, с возбуждением квантового числа $n = v_2$ параметр $\alpha^{(K)}$ сильно меняет свое значение. Это связано с экспоненциально быстрым увеличением в формуле (22) матричных элементов $B_z(n, m)$ от функции

$$B_z(\theta) = \frac{\text{const}}{\cos^2(\theta/2)},$$
 (23)

определяющей обратный тензор инерции (вращательную «постоянную») для опорной конфигурации молекулы [2]. При стремлении молекулы к линейной конфигурации $\theta \to \pi$ и $B_z(\theta) \to \infty$. Например, $B_z(0, 1) = 6,53$, а $B_z(5, 6) = 116,8$ см⁻¹. В базисе вращательных волновых функций |J, K> симметричного волчка с точностью до последнего слагаемого в (19)

$$\alpha(v, J, K) = \langle J, K | \tilde{\alpha} | J, K \rangle =$$

= $\alpha(v) + \alpha^{(J)} J (J + 1) + \alpha^{(K)} K^2.$ (24)

Для колебательных состояний, в которых молекула близка к линейной конфигурации, ряд (24) является асимптотически расходящимся по вращательному квантовому числу K. Его применение к расчету вращательных поправок в эффективную поляризуемость $\tilde{\alpha}$ некорректно. Более правильным будет расчет $\alpha(v, J, K)$ по схеме, в которой зависимость гамильтониана молекулы от K учтена сразу в нулевом приближении. В [19] она применяется для расчета вращательных вкладов в эффективный дипольный момент молекулы. В настоящей работе вычисления проводились по формуле

$$\alpha(n, J, K) = \langle \psi_n(\theta; J, K) | \alpha(\theta) | \psi_n(\theta; J, K) \rangle + + \alpha_1^{(J)} J(J+1) + \alpha_1^{(K)} K^2,$$
(25)

где функции $\psi_n(\theta; J, K)$ определялись из численного интегрирования уравнения Шредингера

$$H_0^{\text{bend-rot}}\psi_n(\theta; J, K) = E_n(J, K)\psi_n(\theta; J, K) \quad (26)$$

с гамильтонианом

$$H_0^{\text{bend-rot}} = H_0^{\text{bend}} + \frac{B_x(\theta) + B_y(\theta)}{2} \times \left[J(J+1) - K^2 \right] + B_z(\theta) K^2, \quad (27)$$

в котором H_0^{bend} определен формулой (8), а функции $B_{\beta}(\theta)$ — в [2, 18]. Последние два слагаемых

в (25) определяют вклад от колебаний малой амплитуды (валентные колебания); параметры $\alpha_1^{(J)}$ и $\alpha_1^{(K)}$ заданы формулами (20) и (22), причем в (22) опущено второе слагаемое, связанное с колебанием большой амплитуды, а матричные элементы в первой сумме вычисляются с волновыми функциями $\psi_n(\Theta; J, K)$.

Для каждого n = 0, 1, ..., 6 были получены волновые функции: для J = 0, K = 0, 1, 3, 4, 5, 6, 8, 10; для K = 0, J = 4, 8, 9, 12, 15; для K = 10, J = 2, 4, 6, 8, 9, т.е. для каждого n получены 18 волновых функций с разными значениями J и K.

Вычисленные по формуле (25) значения $\alpha(n, J, K)$ использовались для определения методом наименьших квадратов параметров α_2 и α_4 в формулах

$$\alpha(n, J, K) = \alpha(n) + \alpha^{(J)}J(J+1) + \alpha_2 K^2, \quad (28)$$

$$\alpha(n, J, K) = \alpha(n) + \alpha^{(J)}J(J+1) + \alpha_2 K^2/(1-\alpha_2 K^2/\alpha_4) \quad (29)$$

(параметр $\alpha^{(J)}$ для каждого *n* фиксировался к значению из 3-й строчки табл. 1). Они приведены в последних строчках табл. 1. Для колебательных состояний с n = 0, 1, 2, 3 параметр α_4 в (29) статистически неопределяем и поэтому фиксировался к нулю.

Сравнение параметров $\alpha^{(K)}$ и α_2 из (24) показывает, что они значительно отличаются для $n \neq 0$, т.е. применение ТВ к вычислению вращательных вкладов в эффективную поляризуемость молекулы некорректно уже для $n \geq 1$.

Приложение к расчету коэффициентов уширения и сдвига линий поглощения H₂O

Коэффициенты уширения ү и сдвига б рассчитывались в полуклассической схеме Робера-Бонами [21]. Все детали расчета можно найти в [21-23]. Отметим только, что сдвиг б линий поглощения $(i) \equiv (v = 0)[J_i, K_{ai}, K_{ci}] \rightarrow (f) \equiv (v)[J_f, K_{af}, K_{cf}]$ $(J, K_a, K_c - вращательные квантовые числа молеку$ лы H₂O) определяется главным образом разностью $ilde{V}_{ ext{isot}}^{(v)}(R) - ilde{V}_{ ext{isot}}^{(0)}(R)$ эффективного изотропного межмолекулярного потенциала взаимодействия в верхнем (v) и нижнем (v = 0) колебательных состояниях. В настоящей работе рассмотрено уширение и сдвиг линий H₂O давлением азота, кислорода, воздуха и аргона. Для этих уширяющих газов можно, во-первых, провести сравнение с имеющимися в литературе экспериментальными данными для полос с $n \ge 1$. Во-вторых, для них колебательная зависимость изотропного потенциала определяется колебательной зависимостью эффективной дальнодействующей части индукционного и дисперсионного потенциала [3]:

$${}^{(\nu)}\tilde{V}_{\text{isot, long}}^{\text{ind-disp}}(R) = -\frac{\left[\tilde{\mu}(\nu)^2 + 3/2u \cdot \tilde{\alpha}(\nu)\right]\alpha_2}{R^6}, \quad (30)$$

Стариков В.И.

где R — расстояние между взаимодействующими молекулами; $\tilde{\mu}$, $\tilde{\alpha}$ — эффективный дипольный момент и поляризуемость молекулы H₂O; α_2 — поляризуемость буферной молекулы; $u = u_1u_2(u_1 + u_2)$, u_1 , u_2 энергии диссоциации молекул H₂O и молекул буферного газа соответственно. Для $\tilde{\mu}(\nu)$ из (26) использовались значения $\mu(\nu, J, K)$, полученные в [5, 19];

$$\tilde{\alpha}(v) = 0.039v_1 + \alpha(n, J, K) + 0.041v_3, \quad (31)$$

 $\alpha(n, J, K)$ вычислены по формуле (29).

Результаты расчета коэффициентов сдвига б приведены в табл. 2.

Увеличение α на 10% для состояний (0, 4, 0), (0, 5, 0) и (0, 6, 0) увеличивает коэффициенты сдвига δ давлением аргона в полосах $4v_2$, $5v_2$ и $6v_2$ в среднем в 4 раза, коэффициенты γ для этих линий увеличиваются в среднем в 1,5 раза.

Влияние вращательных вкладов в эффективную поляризуемость α на коэффициенты сдвига δ максимально для линии [651] ← [524] в случае аргона. Учет этих вкладов изменяет значение δ для этой линии на 10%. Это влияние меньше, чем влияние вращательных вкладов в эффективный дипольный момент [19].

Таблица 2

Экспериментальные [8, 24, 25] и вычисленные коэффициенты сдвига δ , см⁻¹/атм, линий молекулы H₂O давлением N₂, O₂, воздуха и аргона, T = 296 K

Поремал	N_2		O ₂		Воздух		Поронол	Ar	
переход	δ(exp)	δ(exp)	δ(exp)	δ(cal)	δ(exp)	δ(cal)	переход	δ(exp)	δ(cal)
v_2							$4v_2$		
[1129] ← [1156]	-0,0125	-0,0086	-0,0084	-0,0038	-0,0127	-0,0076	$[651] \leftarrow [524]$	-0,0095	-0,0092
$[1138] \leftarrow [1249]$	-0,0119	-0,0055	-0,0061	-0,0022	-0,0110	-0,0048	$[945] \leftarrow [818]$	-0,0137	-0,0123
$[13212] \leftarrow [14113]$	-0,0037	-0,0008	-0,0039	-0,0016	-0,0039	-0,0009			
$2v_2 - v_2$						$5v_2$			
$[524] \leftarrow [633]$	-0,0017	-0,0028	-0,0036	-0,0030	-0,0018	-0,0021	$[505] \leftarrow [414]$	-0,0132	-0,0141
$[541] \leftarrow [652]$	0,0021	0,0010	-0,0022	-0,0020	0,0022	0,0012			
$[542] \leftarrow [651]$	0,00057	0,0006	-0,0029	-0,0019	0,0005	-0,0002			
$2v_2$							$6v_2$		
[321] ← [330]	-	-0,0032	-	-0,0023	-0,0021	-0,0030	$[616] \leftarrow [523]$	0,0152	-0,0116
$[624] \leftarrow [515]$	-	-0,0001	_	-0,0033	0,0012	-0,0007	$[616] \leftarrow [625]$	0,0133	-0,0142
$[524] \leftarrow [616]$	-	0,0021	_	-0,0015	0,0013	0,0014	$[616] \leftarrow [725]$	0,0132	-0,0129
$[835] \leftarrow [826]$	-	0,0035	-	-0,0005	0,0065	0,0027			
$3v_2$									
$[101] \leftarrow [110]$	-	-0,0089	-	-0,0049	-0,0071	-0,0081			
$[221] \leftarrow [110]$	-	0,0047	-	0,0008	0,0015	0,0039			
$[101] \leftarrow [212]$	-	-0,0073	-	-0,0068	-0,0061	-0,0072			
$[212] \leftarrow [303]$	-	0,0008	-	-0,0022	-0,0009	0,0002			
$[303] \leftarrow [414]$	-	-0,0085	-	-0,0076	-0,0081	-0,0083			
$[414] \leftarrow [505]$	-	-0,0027	-	-0,0046	-0,0033	-0,0031			
$[404] \leftarrow [515]$	-	-0,0085	-	-0,0080	-0,0092	-0,0084			
$[616] \leftarrow [707]$	-	-0,0048	-	-0,0067	-0,0054	-0,0052			
$[606] \leftarrow [717]$	-	-0,0070	-	-0,0080	-0,0082	-0,0072			
$[625] \leftarrow [716]$	-	-0,0006	-	-0,0036	-0,0006	-0,0012			
$[716] \leftarrow [827]$	-	-0,0074	-	-0,0065	-0,0145	-0,0072			
$[818] \leftarrow [909]$	-	-0,0056	-	-0,0076	-0,0065	-0,0060			
$[827] \leftarrow [918]$	-	-0,0022	-	-0,0043	-0,0020	-0,0027			

Из табл. 2 видно, что хорошее совпадение вычисленных и экспериментальных значений коэффициентов δ наблюдается в полосах nv_2 с $n \ge 3$, для которых разность $[\alpha(v_2) - \alpha(v_2 = 0)]$ определяет вклад, доминирующий в расчетах δ .

Влияние значений α на вычисляемые коэффициенты сдвига велико. Например, увеличение α на 10% для колебательного состояния (0, 3, 0) увеличивает вычисленные для 13 линий из полосы $3v_2$ коэффициенты сдвига δ в среднем в 3 раза в случае азота. Для отдельных линий это увеличение еще больше. Коэффициенты уширения γ при этом увеличились (тоже в среднем) в 1,1 раза.

Заключение

Основной результат работы заключается в табл. 1, где приведены значения поляризуемости α молекулы H₂O в различных колебательных состояниях (0, v₂, 0) и значения параметров, определяющих вращательные вклады в эффективную поляризуемость молекулы. Анализ рассчитанных коэффициентов уширения γ и сдвига δ давлением азота, кислорода, воздуха и аргона для ряда линий из полос nv_2 показывает следующее.

1. Сдвиги линий δ молекулы H_2O сильно зависят от значений α в колебательных состояниях

(0, v_2 , 0). Небольшие вариации в значениях $\alpha(v_2)$ приводят к сильным изменениям вычисляемых коэффициентов δ. Особенно это заметно в случае сдвига линий аргоном. Влияние $\alpha(v_2)$ на коэффициенты уширения γ давлением азота, кислорода и воздуха незначительно.

2. В системе H_2O —Ar коэффициенты уширения γ также зависят от поляризуемости $\alpha(v_2)$. 10%-е увеличение $\alpha(v_2)$ в колебательных состояниях (0, 4, 0), (0, 5, 0) и (0, 6, 0) приводит к увеличению коэффициента γ в 1,5 раза для линий из табл. 2 в полосах $4v_2$, $5v_2$ и $6v_2$. Следует ожидать, что зависимость коэффициентов γ и δ от поляризуемости $\alpha(v_2)$ молекулы H_2O будет проявляться еще сильней в системах H_2O —Kr и H_2O —Xe, так как роль потенциала (30) в них возрастает из-за увеличения поляризуемости α_2 атомов Kr и Xe.

3. В случае уширения линий одноатомными газами Ar, Kr или Xe в расчетах γ и δ необходимо учитывать вращательные поправки в эффективную поляризуемость молекулы H₂O для линий поглощения $[J_i, K_{ai}, K_{ci}] \rightarrow [J_f, K_{af}, K_{cf}]$, для которых $\Delta K_a = |K_{ai} - K_{af}| \ge 3$. Для рассмотренных в табл. 1 линий такой учет приводит к 10%-му изменению коэффициента δ .

- Быков А.Д., Синица Л.Н., Стариков В.И. Экспериментальные и теоретические методы в спектроскопии водяного пара. Новосибирск: Изд-во СО РАН, 1999. 376 с.
- 2. Стариков В.И., Тютерев Вл.Г. Внутримолекулярные взаимодействия и теоретические методы в спектроскопии нежестких молекул. Томск: Спектр, 1997. 231 с.
- Starikov V.I. Vibration-rotation interaction potential for H₂O–A system // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 155. P. 49–56.
- Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94. P. 5883–5890.
- 5. *Mengel M., Jensen P.* A theoretical study of the Stark effect in triatomic molecules: Application to H₂O // J. Mol. Spectrosc. 1995. V. 169. P. 73–91.
- Luo Y., Agren H., Vahtras O., Jorgensen P., Spirko V., Hettema H. Frequency-dependent polarizabilities and first hyperpolarizabilities of H₂O // J. Chem. Phys. 1993. V. 98. P. 7159–7164.
- Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Measurements and calculations of Ar-broadening and -shifting parameters of the water vapor transitions in the wide spectral region // Mol. Phys. 2017. V. 115. P. 1642–1656.
- Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A., Deichuli V.M. Study of the H₂O dipole moment and polarizability vibrational dependence by the analysis of rovibrational line shifts // Spectochimica Acta. A. 2019. V. 210. P. 275–280.

- 9. Starikov V.I., Protasevich A.E. Effective polarizability operator for X_2Y -type molecules. Application to line width and line shift calculations of H_2O // J. Mol. Structure. 2003. V. 646. P. 81–88.
- 10. Hoy A.R., Mills I.M., Strey G. Anharmonic force constant calculations // Mol. Phys. 1972. V. 24. P. 1265–1290.
- 11. Murphy W.F. The ro-vibrational Raman spectrum of water vapour v_2 and $2v_2//$ Mol. Phys. 1977. V. 33. P. 1701–1714.
- Murphy W.F. The ro-vibrational Raman spectrum of water vapour v₁ and v₃ // Mol. Phys. 1978. V. 36. P. 727–732.
- Avila G., Fernandez J.M., Mate B., Tejeda G., Montero S. Ro-vibrational Raman cross sections of water vapor in the OH stretching region // J. Mol. Spectrosc. 1999. V. 196. P. 77–92.
- 14. Avila G., Tejeda G., Fernandez J.M., Montero S. The Raman spectra and cross sections of the v_2 band of H_2O , D_2O , and HDO // J. Mol. Spectrosc. 2004. V. 223. P. 166–180.
- Avila G., Tejeda G., Fernandez J.M., Montero S. The rotational Raman spectra and cross sections of H₂O, D₂O, and HDO // J. Mol. Spectrosc. 2003. V. 220. P. 259–275.
- Avila G. Ab initio dipole polarizability surfaces of water molecule: Static and dynamic at 514.5 nm // J. Chem. Phys. 2005. V. 122. 144310.
- 17. Loboda O., Ingrosso F., Ruiz-Lopez M.F., Reis H., Millot C. Dipole and quadrupole polarizabilities of the water molecule as a function of geometry // J. Comput. Chem. 2016. V. 37. P. 2125–2132.
- Hougen J.T., Bunker P.R., Johns J.W.G. The vibration-rotation problem in triatimic molecules for a largeamplitude bending vibration // J. Mol. Spectrosc. 1970. V. 34. P. 136-172.
- 19. Стариков В.И. v₂-зависимость вращательных вкладов в эффективный дипольный момент молекулы H₂O и их влияние на коэффициенты уширения и сдвиг линий давлением буферных газов // Опт. и спектроскоп. 2019. Т. 127. С. 200–206.
- Макушкин Ю.С., Тютерев Вл.Г. Методы теории возмущений и эффективные гамильтонианы в молекулярной спектроскопии. Новосибирск: Наука, 1984. 240 с.
- Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943.
- 22. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73, N 11. P. 5432–5450.
- Стариков В.И., Лаврентьева Н.Н. Столкновительное уширение спектральных линий поглощения молекул атмосферных газов. Томск: Изд-во ИОА СО РАН, 2006. 303 с.
- 24. Schmucker N., Trojan Ch., Giesen T., Schielder R., Yamada K.M.T., Winnewisser G. Pressure broadening and shift of some H₂O lines in the v₂ band: Revisited. // J. Mol. Spectrosc. 1997. V. 184. P. 250-256.
- 25. Toth R.A. Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H_2O // J. Quant. Spectrosc. Radiat. Transfer. 2005. V 94. P. 1–50.

V.I. Starikov. Study of the H₂O polarisability vibrational dependence by the analysis of rovibrational line shifts.

The study of the vibrational dependence of H_2O polarisability α is based on the comparison of experimental and calculated line shifts induced by argon, nitrogen, and air pressure in different H_2O vibrational bands. The dependence of α on the bending vibration is expressed as a power series in the displacement $\Delta\theta$ of the coordinate θ of large amplitude bending motion. The coefficients of the power series were selected in the way which gives the best agreement of calculated matrix elements $\langle \psi_n | \alpha(\theta) | \psi_n \rangle$ with the values of the polarizabylity $\alpha(n)$ obtained in the analysis of experimental line shifts in $n \cdot v_2$ H₂O bands perturbed by nitrogen, oxygen, air, and argon pressure. The rotational contributions in the effective polarizability of H₂O is obtained and discussed. The comparison of obtained $\alpha(\theta)$ with *ab initio* calculations is carried out.