2015

УДК 546.65+ 620.22-419

ИССЛЕДОВАНИЕ ДИНАМИКИ ГИДРОУДАРНЫХ ОБЪЕМНЫХ СИСТЕМ ОБРАТНОГО ДЕЙСТВИЯ

Л. В. Городилов

Институт горного дела им. Н. А. Чинакала СО РАН, E-mail: gor@misd.nsc.ru, Красный проспект, 54, 630091, г. Новосибирск, Россия

Представлена математическая модель гидроударной системы одностороннего обратного действия объемного типа. Определены основные динамические критерии подобия: приведенное отношение площадей камеры обратного хода и газовой камеры; величина, пропорциональная отношению потенциальной энергии аккумулятора к кинетической энергии бойка; безразмерные длины фазы обратного хода и газовой пружины. В широком диапазоне входных параметров (критериев подобия) проведены численные расчеты, по результатам которых построены номограммы изолиний интегральных выходных характеристик и осциллограммы динамических характеристик, что позволило выявить основные закономерности поведения системы при одноударных предельных циклах. В практически важной части области входных параметров получена аналитическая оценка безразмерной предударной скорости, которая не должна превышать 8 – 10 единиц.

Ударная система, автоколебания, предельный цикл, критерии подобия, характеристики

Среди гидроударных систем широкое распространение получила схема, принадлежащая к классу систем одностороннего обратного действия [1-6]. Ее особенность заключается в том, что движение бойка производится жидкостью только в одну сторону (при холостом или обратном ходе), его торможение и рабочий (или прямой) ход осуществляются за счет привода прямого хода (газовой или механической пружины), жестко связанного с бойком. Это позволяет упростить систему распределения жидкости и дает возможность за счет снижения гидравлических потерь повысить КПД.

Некоторые результаты исследования динамики этого класса гидроударных систем приведены в [7, 8], однако использовавшаяся там модель включает аккумулятор энергии и привод прямого хода с линейными характеристиками. В большинстве известных схем таких устройств применяются газожидкостные аккумуляторы энергии и газовые пружины, поэтому результаты [7, 8] позволяет составить лишь качественную картину их работы. Чтобы получить количественные сведения об их поведении, необходимо проводить расчеты на модели с включением именно этих элементов.

В настоящей работе исследована динамика системы обратного действия, в состав элементов которой входят аккумулятор и газовая пружина с нелинейными характеристиками. На основе модели автономной системы с источником постоянного расхода [8, 9] разработана математическая модель и выбраны критерии подобия, позволяющие корректно анализировать результаты расчетов и сопоставлять их с соответствующими результатами для других классов систем.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, КРИТЕРИИ ПОДОБИЯ, ВЫХОДНЫЕ ХАРАКТЕРИСТИКИ

Принципиальная схема системы одностороннего обратного действия представлена на рис. 1. Камера *А* ударного устройства попеременно соединена то с напорной, то со сливной линиями. Газ в камере *G* постоянно действует на заднюю торцевую поверхность бойка с силой, величина которой зависит от его положения.

Рис. 1. Принципиальная схема гидроударной системы одностороннего обратного действия: H — насос; Ак — аккумулятор; Р — распределитель; УУ — ударное устройство; О — ограничитель; A — камера обратного хода УУ; С — управляющая линия распределителя Р; $r_0 = p_n/q_0(1-\eta_0)$ — гидравлическое сопротивление, определяющее утечки в системе, q_0 и p_n — идеальный расход и номинальное давление насоса, η_0 — его КПД; G — газовая камера

Система работает следующим образом. В начальный момент боек находится на ограничителе, распределитель — в позиции I, управляющая линия распределителя C и камера A соединены с напорной линией. Начинается 1-я фаза, в течение которой боек под действием жидкости в камере A и давления газа в камере G движется влево, доходит до координаты $x_{[1]}$. Управляющая линия C через проточку в бойке соединяется со сливной линией, и распределитель переходит в позицию II. Начинается 2-я фаза, в которой камера A соединяется со сливной линией, боек под действием давления газа в G тормозится и совершает прямой ход до взаимодействия с ограничителем. В этот момент управляющая линия C соединяется с напорной линией и цикл повторяется.

Как и в [8], параметры элементов системы считаем сосредоточенными, жидкость — несжимаемой, утечки определяются линейным гидравлическим сопротивлением r_0 , механические и гидравлические потери отсутствуют, распределитель переключается мгновенно и без потерь, коэффициент восстановления скорости бойка при взаимодействии с ограничителем равен нулю.

Динамика системы описывается дифференциальными уравнениями:

$$\frac{dx}{dt} = v, \quad m\frac{dv}{dt} = -S_{(j)}p + S_G p_G, \quad \frac{p_n^{1/\gamma}V_n}{\gamma p^{1+1/\gamma}}\frac{dp}{dt} = q_0 - \frac{p}{r_0} + S_{(j)}v, \tag{1}$$

начальными условиями:

$$t = 0: \quad x = x_0, \quad v = v_0, \quad p = p_0$$
 (2)

и условиями сопряжений решения дифференциальных уравнений в точках припасовки:

$$x \le x_{[1]} - I \rightarrow II, \quad x = 0 - II \rightarrow I, \quad x = 0, \quad v_{+} = 0,$$
 (3)

где x и v — координата и скорость бойка; p — давление в аккумуляторе (x_0 , v_0 , p_0 — их начальные значения); t — время; m и S_A — масса бойка и его площадь со стороны камеры A, $S_{(j)} = S_A$ — в 1-й фазе цикла; $S_{(j)} = 0$ — во 2-й; S_G и $p_G = p_{G0}(V_{G0}/V_G)^{\gamma}$ — соответственно площадь торцевой поверхности бойка и давление газа в газовой пружине; p_{G0} и V_{G0} — давление и объем газовой камеры при координате бойка x = 0; V_G — текущий объем газовой камеры; γ — показатель политропы газа; V_n — объем аккумулятора при номинальном давлении p_n ; \rightarrow — указывает направление смены позиции распределителя; v_+ — скорость бойка после удара.

Если давление p_G представить в виде

$$p_G = p_{G0} [x_{G0} / (x_{G0} - x)]^{\gamma} = p_{G0} (1 - x / x_{G0})^{-\gamma}, \qquad (4)$$

где x_{G0} — начальная длина газовой пружины, ввести безразмерные переменные по формулам [10]:

$$t = \frac{(1 - \eta_0)^{1/\gamma} V_n}{\gamma q_0} \cdot \overline{t} , \quad x = \frac{(1 - \eta_0)^{1/\gamma} V_n}{\gamma S_*} \cdot \overline{x} , \quad v = \frac{q_0}{S_*} \cdot \overline{v} , \quad p = \frac{p_n}{(1 - \eta_0)} \cdot \overline{p} ,$$

 $S_* = S_A$, и подставить эти величины в (1)-(3), то получим:

t

$$\frac{d\bar{x}}{d\bar{t}} = \bar{v}, \quad \frac{d\bar{v}}{d\bar{t}} = \sigma_1 \left[-\bar{S}_{(j)}\bar{p} + (1+\sigma_0)^{-1}(1-\bar{x}/\bar{x}_{G0})^{-\gamma} \right], \quad \frac{d\bar{p}}{d\bar{t}} = \bar{p}^{1+1/\gamma}(1-\bar{p}+\bar{S}_{(j)}\bar{v}), \tag{5}$$

$$=0: \quad \overline{x} = \overline{x}_0, \quad \overline{v} = \overline{v}_0, \quad \overline{p} = \overline{p}_0, \quad (6)$$

$$\overline{x} \leq \overline{x}_{[1]} - I \rightarrow II, \quad \overline{x} \geq \overline{x}_{[2]} - II \rightarrow I, \quad \overline{x} = 0, \quad \overline{v} > 0 - \overline{v}_{+} = 0,$$

$$(7)$$

где $\ddot{\sigma}_0 = (S_A - \overline{p}_{G0}S_G)/\overline{p}_{G0}S_G^{-1}; \ \sigma_1 = \frac{(1 - \eta_0)^{-1 + 1/\gamma}}{\gamma} \frac{p_n V_n}{m_1 (q_0 / S_*)^2}; \ \overline{x}_{G0}$ — приведенная начальная длина газовой пружины; $\overline{S}_{(i)} = 1$ — в 1-й фазе; $\overline{S}_{(i)} = 0$ — во 2-й.

Таким образом, динамика системы одностороннего обратного действия зависит от четырех безразмерных параметров — динамических критериев подобия:

$$\bar{\sigma}_0, \sigma_1, \bar{x}_{[1]}, \bar{x}_{G0}. \tag{8}$$

В пространстве критериев (8) численно исследуется динамика и выходные характеристики предельных циклов системы [10]: предударная скорость $\bar{v}_{_{I}}^{*2}$ и максимальный размах колебаний бойка \overline{X}^*_{\max} , время цикла \overline{T}^*_C , среднее давление за цикл \overline{p}^*_m , мощность \overline{N}^* и КПД η^* системы.

Необходимыми условиями начала работы системы (боек начинает движение из исходного положения) является выполнение неравенства

$$-\overline{S}_{(j)}\overline{p}_{\max} + (1+\sigma_0)^{-1} < 0$$
 или $\overline{p}_{\max} > (1+\sigma_0)^{-1}$, (9)

 \overline{p}_{\max} — максимально возможное давление в системе, например давление открытия переливного клапана.

Интегрирование уравнений (5)-(7) проводили численно с применением метода припасовывания [8, 9]. Расчет вели до входа системы в предельный автоколебательный цикл, что определяли по выполнению условия

$$|\bar{p}_{(2)+}^{(i)} - \bar{p}_{(2)+}^{(i-1)}| < 100 \cdot \varepsilon$$

где $\overline{p}_{(2)+}^{(i)}$, $\overline{p}_{(2)+}^{(i-1)}$ — давление в конце 2-й фазы соответственно *i*-го и *i* – 1-го циклов; ε — локальная точность решения дифференциальных уравнений.

Расчеты выполнены в диапазоне критериев подобия (8): $\bar{\sigma}_0 = 0 - 10^3$, $\sigma_1 = 1 - 10^5$, $\overline{x}_{[1]} = 0.1 - 10$, $\overline{x}_{G0} = (1.01 - 10) \cdot \overline{x}_{[1]}$.

 $^{^{1)}}$ Критерий $ar{\sigma}_0$ аналогичен по физическому смыслу σ_0 [10] и отражает отношение площадей бойка, на которые действует давление в 1-й и 2-й фазах цикла.

²⁾ Надстрочный индекс * означает принадлежность характеристики к предельному циклу.

При анализе результатов использовали номограммы изолиний предельных циклов, построенные в сечениях $\tilde{\sigma}_0 \sigma_1$ пространства критериев в ОД-области — области, ограниченной по среднему давлению и по размаху колебаний соответственно диапазонами $\bar{p}_m^* = 0.05 - 0.5$ и $\bar{X}_{\max}^* = 1.01 \bar{x}_{[1]} - (\bar{x}_{G0} - 0.1 \bar{x}_{[1]})$, а также теоретические осциллограммы предельных циклов.

АНАЛИЗ ХАРАКТЕРИСТИК СИСТЕМЫ В ПРОСТРАНСТВЕ ОСНОВНЫХ КРИТЕРИЕВ ПОДОБИЯ

Номограммы представляют собой наклоненные к оси $\bar{\sigma}_0$ полосы (рис. 2), ограниченные слева и справа линиями размаха колебаний \overline{X}_{max}^* и сверху и снизу изолиниями средних давлений \overline{p}_m^* . Для сечения $\bar{x}_1 = 1$ при увеличении \bar{x}_{G0} от 0.1 до 10 протяженность ОД-области изменялась по $\bar{\sigma}_0$ и σ_1 соответственно от $9-10^{2.5}$ до $1-10^3$ и от $3-10^{2.1}$ до $10^1-10^{3.1}$. Увеличение \bar{x}_{G0} от 1.1 (рис. 2*a*) до 2, 5 (рис. 2*б*, *в*) и до 10 ведет к росту предударной скорости \overline{V}_l^* и мощности системы соответственно от 2-3 до 5-21 и от 1-5 до 10-210. Увеличение критерия \bar{x}_{G0} приводит к росту размаха колебаний \overline{X}_{max}^* . В данном случае КПД η^* — это объемный КПД системы, который определяется средним давлением \overline{p}_m^* в ней за цикл. Время цикла \overline{T}_C^* также зависит от \overline{p}_m^* и при его снижении приближается к величине $\bar{x}_{[1]}$, что связано со способом введения безразмерных переменных [10].

Рис. 2. Номограммы изолиний выходных характеристик в сечениях пространства $\bar{\sigma}_0 \sigma_1 \bar{x}_1 \bar{x}_{G0}$ плоскостями $\bar{x}_1 = 1$, $\bar{x}_{G0} = 1.1$, 2, 5: скорость \overline{V}_I^* ; ---- мощность \overline{N}^* ; время цикла \overline{T}_C^* ---- размах колебаний \overline{X}_{\max}^* ; среднее давление за цикл \overline{p}_m^*

Рассмотрение номограмм при постоянной относительной величине $\bar{x}_{G0} = 2\bar{x}_{[1]}$ и изменении $\bar{x}_{[1]}$ от 0.1 (рис. 3*a*) до 1 (рис. 2*б*) и 10 (рис. 3*б*) показывает, что при этом происходит смещение ОД-области по оси σ_1 пропорционально $1/\bar{x}_{[1]}$, при росте $\bar{x}_{[1]}$ снижаются предударная скорость \bar{v}_I^* и мощность \bar{N}^* , пропорционально $\bar{x}_{[1]}$ увеличивается время цикла \bar{T}_C^* .

На рис. 4 представлены теоретические осциллограммы динамических характеристик предельных циклов $\bar{\sigma}_0 \sigma_1$ рис. 36. Можно видеть, что увеличение σ_0 (рис. 4*a*, 6) ведет к росту размаха колебаний \bar{X}^*_{max} , ограниченному для данного сечения величиной $\bar{x}_{G0} = 2$. Скорость 94 при минимальном значении σ_0 (рис. 4*a*) при достижении координатой бойка значения $\bar{x} = \bar{x}_{[1]}$ приближается к нулю. Увеличение критерия σ_1 (рис. 4*в*, *г*) вызывает снижение уровня безразмерного давления в системе и рост предударной скорости \bar{v}_i^* .

Рис. 3. Номограммы изолиний выходных характеристик в сечениях пространства $\bar{\sigma}_0 \sigma_1 \bar{x}_1 \bar{x}_{G0}$ плоскостями $\bar{x}_{G0} = 2\bar{x}_{[1]}$, $\bar{x}_1 = 0.1, 10$

Рис. 4. Теоретические осциллограммы координаты $\bar{x}-\bar{t}$ скорости $\bar{v}-\bar{t}$, давления $\bar{p}-\bar{t}$ предельных циклов при $\bar{x}_1 = 1$, $\bar{x}_{G0} = 2$

Особенностью динамики систем обратного действия, как видно их полученных осциллограмм, является снижение роста скорости в конце цикла, перед взаимодействием бойка с ограничителем. Исключение составляет зона вблизи левой границы ОД-области $\overline{X}_{\max}^* = \overline{x}_{[1]}$ (рис. 4*a*), где этот эффект выражен наиболее слабо. Это связано с тем, что для входа системы в предельный цикл газовая пружина должна быть достаточно "мягкой", чтобы давление в системе в 1-й фазе цикла могло снижаться. Поэтому в конце 2-й фазы цикла, как и в начале 1-й, давление в газовой пружине мало и не позволяет поддерживать его высокое ускорение.

Для части ОД-области, близкой к изолинии $\overline{X}_{max}^* = \overline{x}_{[1]}$, можно оценить величину предударной скорости, используя теорему об изменении кинетической энергии и приравнивая работу, совершаемую газовой пружиной при расширении от положения, определяемого координатой $x = x_{[1]}$ до координаты x = 0, кинетической энергии бойка перед ударом:

$$\frac{m(v_I)^2}{2} = \int_{x_{[1]}}^0 S_G p_G dx,$$

где *p_G* определяется выражением (4). После интегрирования и перехода к безразмерным переменным получим формулу для предударной скорости бойка

$$\overline{v}_{I}^{*} = \sqrt{\frac{2\sigma_{1}\overline{x}_{G0}}{(\gamma-1)(1+\overline{\sigma}_{0})}} \left| 1 - \left(1 - \frac{\overline{x}_{[1]}}{\overline{x}_{G0}}\right)^{-\gamma+1} \right|,$$

расчеты по которой показывают хорошее совпадение с результатами, полученными численно.

выводы

Разработана математическая модель гидроударной системы одностороннего обратного действия с нелинейными характеристиками привода прямого хода и сетевого аккумулятора. Проведен ее размерный анализ и выбраны критерии подобия.

Исследование динамики системы в широком диапазоне изменения критериев подобия позволило выявить области ее эффективной работы и определить закономерности изменения выходных характеристик в пределах этих областей. В частности, установлено, что безразмерная предударная скорость \overline{v}_{l}^{*} в практически важной части этой области, которую по аналогии с коэффициентом динамичности вынужденных гармонических колебаний можно считать показателем динамичности автоколебательных гидроударных систем, не превышает 8–10 единиц.

СПИСОК ЛИТЕРАТУРЫ

- 1. Белан Н. А. О применении гидравлических ударных механизмов в бурильных машинах // Гидравлические ударные механизмы для бурильных машин: сб. тр. / М-во угольной пром-ти, Техн. упр., Кузнецкий науч.-исслед. угольный ин-т (КузНИУИ). — Прокопьевск: КузНИУИ, 1972.
- **2.** Янцен И. А. Ешуткин Д. Н., Бородин В. В. Основы теории и конструирования гидропневмоударников. — Кемерово: Кемер. кн. изд-во, 1977.
- 3. Алимов О. Д., Басов С. А. Гидравлические виброударные системы. М.: Наука, 1990.
- **4.** Архипенко А. П., Федулов А. И. Гидравлические ударные машины. Новосибирск: ИГД СО АН СССР, 1991.
- 5. Дмитревич Ю. В. Устройство и принципы работы гидромолотов. http://exkavator.ru/articles/gidromolot/~id=8292.
- 6. Городилов Л. В., Фадеев П. Я. Анализ и классификация эффективных конструктивных схем автоколебательных гидравлических ударных систем // Фундаментальные проблемы формирования техногенной геосреды: тр. конф. с участием иностр. ученых (10–13 октября 2006 г., Новосибирск). Т. 2. — Новосибирск: ИГД СО РАН, 2007.
- Городилов Л. В. Особенности функционирования некоторых классов автоколебательных гидравлических ударных систем // Современные проблемы теоретической и прикладной механики: сб. докл. Всерос. семинара по теор. и прикл. механике (Новосибирск, 10–12 апреля 2007 г.) / под ред. проф. В. Я. Рудяка. — Новосибирск: НГАСУ, 2007.
- **8.** Городилов Л. В. Разработка основ теории гидроударных систем объемного типа для исполнительных органов горных и строительных машин: автореф. дис. ... д-ра техн. наук. Новосибирск, 2010.
- **9.** Городилов Л. В. Модель гидравлической ударной системы с источником постоянного расхода // Ударно-вибрационные системы, машины и технологии: материалы III междунар. науч. симп. (17–19 октября 2006 г., Орел). Орел: ОрелГТУ, 2006.
- **10.** Городилов Л. В. Исследование динамики гидроударных объемных систем двухстороннего действия. Ч. І. Основные свойства // ФТПРПИ. 2012. № 3.