2009. Том 50, № 6

Ноябрь – декабрь

C. 1196 – 1202

УДК 54-386:661.856:541.6:546.42:546.43:548.736

КРИСТАЛЛИЧЕСКИЕ И МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ ДВУЯДЕРНЫХ КОМПЛЕКСОВ {Cu—M} (M = Cu, Sr, Ba) НА ОСНОВЕ САЛИЦИЛОВОЙ КИСЛОТЫ

© 2009 В.В. Горинчой¹, Ю.А. Симонов², С.Г. Шова², В.Н. Шофрански¹, К.И. Туртэ¹*

¹Институт химии Академии наук Молдовы, Кишинев ²Институт прикладной физики Академии наук Молдовы, Кишинев

Статья поступила 5 августа 2008 г.

С доработки — 9 сентября 2008 г.

При взаимодействии салицилатов *s*-элементов с нитратом меди синтезированы гетерометаллические комплексы [CuSr(SalH)₄(DMAA)₄(H₂O)] (II) и [CuBa(SalH)₄(DMAA)₄× ×(H₂O)] (III), а из смеси III и сульфата ванадила выделены кристаллы гомоядерного комплекса [CuCu(SalH)₄(H₂O)₂]·2DMAA (I). Исследование монокристаллов выделенных соединений методом рентгеноструктурного анализа показало, что все они имеют форму "фонарик" и относятся к двум пространственным группам симметрии: I к триклинной группе симметрии P-1 с параметрами ячейки a = 9,9083(2), b = 10,5077(3), c == 10,9512(3) Å, α = 112,736(2), β = 114,0800(10), γ = 93,131°; II и III — к тетрагональной группе P4/n с параметрами a = b = 16,3180(3), c = 8,7838(2) Å для II и a = b = 16,362(3),c = 8,920(1) Å для III. Атом меди находится в квадратно-пирамидальной координации. Координационное число Sr и Ba равно 8, а их координационные полиэдры можно представить как томсоновский куб. Карбоксильные группы координируют по син-синмостиковому типу. Атом кислорода гидроксильной группы салициловой кислоты не участвует в координации, но участвует в образовании внутрисферных водородных связей с карбоксильными группами. В упаковке молекул в кристалле главную роль играют водородные связи молекул воды и сольватных молекул DMAA, а также п-п-взаимодействие между ароматическими частями димеров.

Ключевые слова: синтез, гомо- и гетеродвуядерные салицилаты, медь, рентгеноструктурный анализ.

введение

В обзоре [1] приведены данные по синтезу и исследованию координационных соединений *s*-, *p*-, *d*- и *f*-элементов с салициловой кислотой, в которых указывается, что сама кислота и ее анионы (SalH₂, SalH⁻, Sal²⁻) могут быть моно-, би-, три- и более дентатными лигандами. Особенность салициловой кислоты состоит в том, что в координации к комплексообразователю могут участвовать одна или обе функциональные группы лиганда: —СООН и —OH [1—3]. В результате образуются гомо- и гетероядерные салицилаты металлов, при этом ион Bi^{III} наиболее предрасположен к образованию гетероядерных салицилатов. Партнерами этого металла обычно являются титан, ниобий, тантал, медь и др. В состав таких комплексов иногда входят и другие лиганды, такие как основания Шиффа, ацетилацетон, вода, алкокси-анион и др.

Следует отметить, что комплексы салициловой кислоты с различными металлами нашли и некоторое практическое применение: они используются в качестве прекурсоров синтеза новых соединений, в повышении антикоррозионной защиты моторов внутреннего сгорания [4—6], а также в поиске новых активных биологических средств [7].

^{*} E-mail: turtac@yahoo.com

Широко известно, что карбоксильная группа выступает как полидентатный лиганд, имея дентатность от 1 до 4 [8]. При широкой гамме осевого лиганда L (H₂O, пиридин, хинолин, α -и β -пиколин, мочевина, и т.д.) в кристалле реализуются двуядерные соединения типа [LCu(R—COO)₄CuL]. По данным Кэмбриджского банка структур данного типа насчитываются более ста. Замена L на насыщенный амин приводит к радикальным структурным перестройкам, и при тех же соотношениях металл—кислотный остаток образуются полимерные (L = *n*-толуидин, анилин) или мономерые (L = NH₃) соединения [9].

Кроме вышеуказанных комплексов, в настоящее временя известно 19 соединений (КБСД), где содержится двухъядерный фрагмент {Cu—M²⁺}, в котором ионы металлов связаны четырьмя карбоксильными *син—син*-мостиками. Среди них есть и содержащие щелочно-земельные элементы, как то [1,2,2,2,2,-пента-аква-тетракис(µ₂-(2-хлоропентокси)-этанолато-O,O')-медь(II)-кальций(II)] [10], [бис((µ₃-N,N,N-триэтилглицинато-O,O/)-трис(µ₂-N,N,N-триэтилглицинато-O,O')-(нитрато-O)-кальций-медь(II))тетранитрат пентагидрат] [11] или редкие земли [декакис(µ₂-хлороацетато-O)-окта-аква-тримедь(II)-бис-диспрозий дигидрат] [12], [декакис(µ₂-хлороацетато-O,O')-бис(хлороацетато-O)-окта-аква-тримедь(II)-бис-диспрозий дигидрат] [12], [декакис(µ₂-хлороацетато-O,O')-бис(хлороацетато-O)-окта-аква-тримедь(II)-бис-диспрозий дигидрат] [12], [декакис(µ₂-хлороацетато-O,O')-бис(хлороацетато-O)-окта-аква-тримедь(II)-бис-диспрозий дигидрат] [13] и др.

Что касается комплексов меди(II) с салициловой кислотой, в литературе известно строение только двух димеров состава $[H_2OCu(C_6H_4(OH)COO)_4CuH_2O] \cdot C_4H_8O_2$ [14] и $[H_2OCu(C_6H_4(OH) \times COO)_4CuEtOH]$ [15]. Другие димерные комплексы меди с салициловой кислотой не описаны.

Предметом исследования данной работы является комплексообразование меди и щелочноземельных металлов с салициловой кислотой в среде диметилацетамида с целью получения гетероядерных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные соли Sr(SalH)₂· $3H_2O$ и Ba(SalH)₂· H_2O синтезированы при взаимодействии карбоната стронция или гидроксида бария с салициловой кислотой. Остальные реактивы (CH₃OH, диметилацетамид = DMAA, THF) были покупными и дополнительно не очищали.

Синтез [CuCu(SalH)₄(H₂O)₂]·2DMAA (I). К раствору 0,3 г (0,26 ммоль) [CuBa(SalH)₄× \times (DMAA)₄(H₂O)] (методика синтеза приведена ниже) в 15 мл метанола добавляли при постоянном перемешивании 0,057 г (0,26 ммоль) VOSO₄·3H₂O, растворенные в 10 мл воды. Через 40 мин перемешивания зеленый раствор отфильтровывали. Из фильтрата в течение 10 дней выпали темно-зеленные кристаллы в виде прямоугольных призм. Выход — 0,16 г (72 %). Результаты элементного анализа: найдено, %: С 48,52, Н 4,63, N 3,26. Для C₃₆H₄₂Cu₂N₂O₁₆ вычислено, %: С 48,81, Н 4,77, N 3,16.

Синтез [CuSr(SalH)₄(DMAA)₄(H₂O)] (II). К раствору 6,29 г (15,12 ммоль) Sr(SalH)₂·3H₂O в 25 мл метанола добавляли при постоянном перемешивании 1,00 г (4,13 ммоль) Cu(NO₃)₂· \cdot 3H₂O. Через 30 мин раствор отфильтровывали и высушивали на водяной бане. К сухой массе добавляли смесь растворителей: 18 мл THF и 7 мл DMAA. После 20-минутного перемешивания при комнатной температуре полученный темно-зеленый раствор отфильтровывали и оставляли на воздухе при комнатной температуре. В течение 4 недель выпали темно-синие кристаллы в виде прямоугольных призм. Выход — 3,98 г (90 %). Результаты элементного анализа: найдено, %: C 49,60, H 5,49, N 5,25, Cu 6,20, Sr 8,40. Для C₄₄H₅₈SrCuN₄O₁₇ вычислено, %: C 49,57, H 5,48, N 5,25, Cu 5,95, Sr 8,21.

Синтез [CuBa(SalH)₄(DMAA)₄(H₂O)] (III). К раствору 7,11 г (16,55 ммоль) Ba(SalH)₂·H₂O в 25 мл метанола добавляли при постоянном перемешивании 1 г (4,13 ммоль) Cu(NO₃)₂·3H₂O. Через 30 мин раствор отфильтровывали и высушивали на водяной бане. К сухой массе добавляли смесь растворителей: 18 мл ТНГ и 7 мл DMAA. После 20-минутного перемешивания при комнатной температуре полученный темно-зеленый раствор отфильтровывали и оставляли на

Таблица 1

Характеристика	I	П	III	
Бругто-формула	$C_{36}H_{42}Cu_2N_2O_{16}$	C44H58SrCuN4O17	C44H58BaCuN4O17	
M	885.80	1066.10	1115.82	
Температура, К	100(2)	100(2)	100(2)	
Длина волны, Å	0,71073	0,71073	0,71073	
Пространственная группа	<i>P</i> -1	P4/n	P4/n	
<i>a</i> , <i>b</i> , <i>c</i> , Å	9,9083(2),	16,3180(3),	16,362(3),	
	10,5077(3), 10,9512(3)	16,3180(3), 8,7838(2)	16,362(3), 8,920(1)	
α, β, γ, град.	112,736(2),	90, 90, 90	90, 90, 90	
	114,0800(10), 93,131(2)			
<i>V</i> , Å ³	929,04(4)	2338,92(8)	2388,0(9)	
Ζ	1	2	2	
$ρ_{\rm выч}, \Gamma/cm^3$	1,583	1,514	1,552	
μ_{Mo} , $mm{Mm}^{-1}$	1,223	1,672	1,340	
Области по углам θ, град.	2,17—26,00	1,76—30,04	2,60—25,78	
Ограничения по индексам	$-12 \le h \le 12,$	$-22 \leq h \leq 22,$	$-19 \le h \le 19,$	
	$-12 \le k \le 12,$	$-22 \leq k \leq 22,$	$-19 \le k \le 19,$	
	$-13 \le l \le 13$	$-12 \leq l \leq 12$	$-10 \le l \le 10$	
Число отражений	25488	69437	78174	
Число независимых рефлексов,	3641	3432	2284	
$I > 2\sigma(I)$	[R(int) = 0,0371]	[R(int) = 0,0900]	[R(int) = 0.0358]	
Полнота сбора данных до $\theta_{\text{мах}}$, %	99,5	100	99,3	
Число уточняемых параметров	283	158	169	
GOOF по F^2	1,032	1,090	1,075	
Конечные <i>R</i> -факторы <i>I</i> > 2 σ(<i>I</i>)	$R_1 = 0,0258,$	$R_1 = 0,0344,$	$R_1 = 0,0181,$	
	$wR_2 = 0,0712$	$wR_2 = 0,0857$	$wR_2 = 0,0445$	
<i>R</i> -факторы (все данные)	$R_1 = 0,0297,$	$R_1 = 0,0488,$	$R_1 = 0,0173,$	
	$wR_2 = 0,0730$	$wR_2 = 0,0922$	$wR_2 = 0,0449$	
$\Delta ho_{ m max}$ и $\Delta ho_{ m min}$, $e \cdot Å^{-3}$	0,358 и -0,305	0,506 и –1,241	0,347 и -0,513	

Кристаллографические характеристики комплексов I—III

воздухе при комнатной температуре. В течение 7 дней выпали темно-голубые кристаллы в виде прямоугольных призм. Выход — 4,23 г (91 %). Результаты элементного анализа: найдено, %: С 47,22, Н 5,23, N 4,76. Для С₄₄ H₅₈ Ba Cu N₄O₁₇ вычислено, %: С 47,36, Н 5,23, N 5,02.

Элементный анализ (С, Н, N) веществ выполнили в группе элементного анализа Института химии Академии наук Молдовы; металлы определили в Центре метрологии и аналитических методов исследования Академии наук Молдовы на атомном абсорбционном спектрометре AAS-1N фирмы Карл Цейс.

Рентгеноструктурные исследования. Экспериментальный материал для соединений I— III получен при 100 К в дифрактометре Nonius Kappa CCD на Мо K_{α} -излучении (графитовый монохроматор) методом ω -2 θ -сканирования. Параметры элементарной ячейки уточнены по всему массиву экспериментальных данных. Интеграция интенсивностей и их шкалирование было проведено по программе DENZO и SKALEPACK [16].

Структуры I—III решены прямыми методами и уточнены методом наименьших квадратов в анизотропном полноматричном варианте для неводородных атомов по комплексу программ SHELX-97 [17].

Основные характеристики эксперимента, решения и уточнения структур приведены в табл. 1, основные межатомные расстояния и валентные углы структур приведены в табл. 2

Таблица 2

1199

Связь	d		Свя	ізь	d		Связь		d	Связь	d
Cu1 -01 Cu1 -02 Cu1 -03^{1} Cu1 -04^{1}	1,967 1,977 1,965 1,966	7(1) 7(1) 5(1) 5(1)	Cu1— C1—0 C2—0 C2—0	-01w C2 C3 C7	2,126(1) 1,479(3) 1,401(3) 1,409(3)		23—C4 25—C6 27—C6 25—C4	1,3 1,3 1,3 1,3	380(3) 372(4) 397(3) 384(4)	C8—C9 C9—C14 C9—C10 C10—C11	1,485(3) 1,396(3) 1,402(3) 1,385(3)
Угол ω		ω	Угол			ω		Угол		ω	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		86 89 168 168	5,90(6) 9,95(6) 3,13(5) 3,11(5)	O4 ¹ —Cu1—O2 O1—Cu1—O2 O3 ¹ —Cu1—O1		w	89,86(6) 90,90(6) 100,46(5)		$\begin{array}{c} O4^{1} \\ \hline \\ O1 \\ \hline \\ Cu1 \\ \hline \\ O1 \\ O1$		98,27(5) 93,55(5) 91,32(5)

Основные межатомные расстояния d (Å) и валентные углы (град.) в структуре комплекса I

Таблица 3

Основные межатомные расстояния d (Å) и валентные углы ω (град.) в структуре комплекса II и III

Связь	Соедин	нение			Соедин	нение		Соединение			
	d, \mathbf{II} $(\mathbf{M} = \mathbf{Sr})$	<i>d</i> , III (M = Ba)	Связь	ر (M	<i>d</i> , II [= Sr)	<i>d</i> , III (M = Ba)	Связь	(M	<i>l</i> , II = Sr)	d, III (M = Ba)	
Cu $-01w$ Cu -02 M -01 M -04 M $-01u^4$	2,334(4) 1,952(1) 2,617(1) 2,640(1) 2,832(4)	2,266(2) 1,962(1) 2,747(1) 2,790(1) 2,914(2)	C2—C1 C2—C3 C2—C7 C4—C3	C2—C1 1,4 C2—C3 1,4 C2—C7 1,3 C4—C3 1,4		1,498(2) 1,405(2) 1,397(2) 1,398(2)	C5—C4 C6—C5 C7—C6 C9—C8	1,3 1,3 1,3 1,5	82(3) 87(3) 89(3) 12(3)	1,384(3) 1,387(3) 1,387(2) 1,508(3)	
Угол	Соединение				Соединение			Соед		инение	
	$ \begin{array}{l} \omega, \mathbf{II} \\ (\mathbf{M} = \mathbf{Sr}) \end{array} $	ω, III (M = Ba)	Угол		(M = Sr)	(M = Ba)	Угол		ω , II (M = Sr)	ω , III (M = Ba)	
02 ¹ —Cu—O2	2 179,89(8)	179,40(7)	O2 ² —Cu—	-02	90,0	90,0	O2—Cu—	01 <i>w</i>	89,95(4)	90,30(3)	

и 3. Данные о структурах депонированы в Кембриджский банк структурных данных (КБСД), № 695771 (для I), № 695772 (для II) и № 695770 (для III).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристалл построен из центросимметрических димеров типа [H₂OCu(C₆H₄(OH)COO)₄× ×CuH₂O], ассоциированных посредством водородных связей обеих молекул H₂O с диметилацетамидом (рисунок, *a*). Параметры водородных связей: Ow—H...O = 2,726(3) и 2,744(3) Å; H...O7 = 1,85 и 1,95 Å; ∠OH...O равен 183 и 167°. Строение димерного комплекса, "фонарика" по [8, 14, 15], подобно моногидрату ацетата меди(II) [18]. Четыре карбоксильные группы носят мостиковый характер и связывают два атома меди на расстояние 2,638(1) Å. Оно близко к другим подобным расстояниям в моногидрате ацетата меди 2,608(3) [19, 18] и комплексах, содержащих замещенные ароматические карбоновые кислоты, 2,595—2,651 Å [10—12, 19— 38]. Тетрагонально-пирамидальная координация меди образована четырьмя атомами кислорода четырех карбоксильных групп, среднее расстояние Cu—O 1,967(1) Å, и атомом кислорода молекулы воды с расстоянием 2,126(1) Å. Последнее близко к цитируемым выше гидратным димерным комплексам [20—38] от 2,111—2,170 Å. Атом меди выходит из плоскости четырех карбоксильных атомов кислорода в сторону H₂O на 0,200 Å. Оба кристаллографически незави-

Молекулярная структура комплекса I — a, молекулярная структура комплексов II и III — b

симые остатки салициловой кислоты выступают как монодепротонированный по карбоксильной группе анион. Гидроксильные группы протонированы, и их атом Н ответственен за внутримолекулярные водородные связи с карбоксильными группами. При этом остатки кислоты расположены так, что гидроксильная группа находится статистически во 2-м и 6-м положениях ароматического кольца с вероятностью 1/2.

В упаковке молекул в кристалле главную роль играют водородные связи молекул воды и сольватных молекул DMAA и π — π -взаимодействие между ароматическими частями димеров.

Подчеркнем, что в I молекулы DMAA в координацию к металлу не входят, а выступают как сольватные, играя существенную роль в организации кристаллической структуры.

Соединения II и III изоструктурны и имеют собственную симметрию двухъядерного кластера $C_{4\nu}$ (см. рисунок, δ). В отличие от I в II и III молекулы DMAA не являются сольватными, а координируют щелочно-земельные элементы, входящие в димер. Рентгеноструктурные исследования показали, что проведенный в данных условиях синтез приводит к образованию соединений гетерометаллических димеров типа "фонарик", содержащих атомы Cu и Sr или Ba соответственно для II и III. Ранее нами было показано [39], что возможно внедрить щелочноземельные ионы в матрицу μ_3 -оксо-карбоксильных комплексов железа. По-видимому, представленные выше условия синтеза способствуют "сборке" димерной молекулы.

В II и III, как и в I, реализована структура типа "фонарик" с существенным различием двух координационных узлов в ней. Расстояние Cu—Sr и Cu—Ba в димерах равно 3,618 и 3,740 Å соответственно. Атом меди находится в квадратно-пирамидальной координации с расстояниям Cu—O 1,952(1) и Cu—O(w) 2,334 Å. При сохранении расстояний в базисе тетрагональной пирамиды в I и II—III, в последних существенно отличается расстояние Cu—H₂O (см. табл. 3). Выход меди из базиса в сторону молекулы H₂O равен для II и III 0,002 и 0,010 Å соответственно. Координация щелочноземельных элементов существенно отлична от меди. Координационные числа Sr и Ba равны 8, а координационный полиэдр можно представить как томсоновский куб. Он образован четырьмя атомами кислорода четырех карбоксильных групп (расстояния для II — 2,617(1) Å, III — 2,747(1) Å) и четырьмя атомами кислорода DMAA — 2,640(1) и 2,790(1) Å соответственно. Эти расстояния сопоставимы с найденными в соединении {[FeSr₂(SalH)₂(Sal)₂(NO₃)(DMAA)₄]}_n и {[FeBa₂(Sal)₂(SalH)₃(DMAA)₄(H₂O)]}_n [40], а также в трехъядерных системах {Fe₂SrO} и {Fe₂BaO} [39]. Можно констатировать, что увеличение координационной ёмкости ионов Sr и Ba, по сравнению с 3*d*-элементами, приводит к вовлечению в координацию молекул растворителя (DMAA).

В цитируемых выше работах по комплексам Си—Са [10, 11] реализовано подобное II— III координирование Са.

Структурные функции и геометрия остатков салициловой кислоты в I—III одинаковы, они выступают как бидентатный лиганд, присоединенный к металлам по *син—син*-типу по карбоксильной группе. Гидроксильная группа протонирована, в координации участия не принимает. Отметим, что в II и III, так же как и в I, гидроксильная группа салицилатного остатка статистически распределена по двум позициям. Структурная роль ОН-группы состоит в стабилизации димера через внутримолекулярную водородную связь О—Н...О с координированными карбоксильными атомами кислорода (см. рисунок, *б*).

В формировании кристаллической структуры основную роль играют молекулы H₂O, которые через Ow—H…O (DMAA) организуют кластеры в цепи, направленные вдоль оси *с* кристалла. Между собой цепи взаимодействуют посредством взаимодействий С—H… π . Синтезированные соединения доказывают возможность формирования димеров типа моногидрата ацетата меди с включением в него одновременно *d*- и *s*-элементов.

Наши и литературные данные показывают, что в димерах данного типа возможна реализация гетероядерной структуры с существенно различными как по электронному строению, так и по геометрическим параметрам атомами металлов, что делает направление перспективным для поиска материалов с необычными магнитными свойствами [41].

СПИСОК ЛИТЕРАТУРЫ

- 1. Тельженская П.Н., Шварц Е.М. // Координац. химия. 1977. 3, № 9. С. 1279.
- 2. Jagner S., Hazell R.G., Larsen K.P. // Acta Crystallogr. 1976. B32. P. 548.
- 3. Aggett J., Crossley P., Hancock R. // J. Inorg. Nucl. Chem. 1969. 31, N 1. P. 3241.
- 4. Boons C.H.M., Spala E., Van Dam W. Unsulfurized additive composition comprising salicylates for lubricating oils. Patent EP1489159 (A1) 2004-12-22.
- 5. Amalraj A.J., Sundaravadivelu M.A., Regis P.P., Rajendran S. // J. Anti-Corrosion Meth. Mater. 2001. 48, N 6. P. 371.
- 6. *Masato T., Osamu K., Junji A. et al.* Lubricant composition and driving force transmitting system using same. Patent EP1816183 (A1) 2007-08-08.
- 7. Roth G.J., Calverley D.C. // Blood. 1994. 83, N 4. P. 85.
- 8. *Порай-Кошиц М.А.* // Итоги науки и техники. Кристаллохимия. М.: ВИНИТИ. 1981. 15, № 3. С. 129.
- 9. Симонов Ю.А., Яблоков Ю.В., Милкова Л.Н. Кристаллические структуры неорганических соединений. – Кишинев: Штиинца, 1974. – С. 61.
- 10. Smith G., O'Reilly E.J., Kennard L.C.H., White A.A. // J. Chem. Soc., Dalton Trans. 1985. P. 243.
- 11. Chen X.-Ming, Mark T.C. // Polyhedron. 1994. 13. P. 1087.
- 12. Voroncova V.K., Galeev R.T., Shova S. et al. // Appl. Magn. Reson. 2003. 25. P. 227.
- 13. Tong M.-Liang, Wu Yu-L., Chen X.-Ming et al. // Chem. ResChin. Univ. 1998. 14. P. 230.
- 14. Аблов А.В., Киоссе Г.А., Димитрова Г.И. и др. // Кристаллография. 1974. 19, № 1. С. 168.
- 15. Yoneda K., Uchiyama K., Boettcher B., Inouye Y. // Bull. Chem. Soc. Jpn. 1993. 66. P. 3815.
- Otwinowski Z., Minor W. // Proc. X-ray Diffraction Data Collected in Oscillation Mode, in Methods in Enzymology. Macromolecular Crystallography, Part A / ed. C.W. Carter and R.M. Sweet. – N.Y.: Academic Press, 1997. – 276. – P. 307.
- 17. Sheldrick G.M. SHELX-97, release 97-2. Germany, University of Göettingen, 1998.
- 18. Nickerk J., Schoening F.R.L. // Acta Crystallogr. 1953. 6, N 7. P. 609.
- 19. Karipides A., White C. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993. 49. P. 1920.
- 20. Stachova P., Valigura D., Koman M. et al. // Polyhedron. 2004. 23. P. 1303.
- 21. Usubaliev B.T., Musaev F.N., Shnulin A.N., Mamedov Kh.S. // Koord. Khim. (Russ.)(Coord. Chem). 1982. **8**. P. 1400.
- 22. Longguan Z., Kitagawa S., Chag H.-C., Miyasaka H. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 2000. 342. P. 97.
- 23. Kristiansson O., Tergenius L.-E. // J. Chem. Soc, Dalton Trans. 2001. P. 1415.
- 24. Brzyska W., Wolodkiewicz W., Rzaczynska Z., Glowiak T. // Monatsh. Chem. 1995. 126. S. 285.

- 25. Moncol J., Kavalirova J., Lis T. et al. // Acta Crystallogr., Seact. E: Struct. Rep. Online. 2006. 62. P. M3217.
- 26. Wang W.-H., Liu W.-S., Wang Y.-W. et al. // J. Inorg. Biochem. 2007. 101. P. 297.
- 27. Kawata T., Ohba S., Tokii T. et al. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1992. 48. P. 1590.
- 28. Deka K., Barooah N., Sarma R.J., Barwah J.B. // J. Mol. Struct. 2007. 827. P. 44.
- 29. Xue D.-X., Lin Y.-Y., Cheng X.-N., Chen X.-M. // Cryst. Growth Des. 2007. 7. P. 1332.
- 30. Jaskova J., Miklos D., Korabik M. et al. // Inorg. Chim. Acta. 2007. 360. P. 2711.
- PenGong Chen, Shan GaO, Ng S.W. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2007. 63. – P. m2617.
- 32. Du M., Bu X.-H., Guo Y.-M., Ribas J. // Chem. Eur. J. 2004. 10. P. 1345.
- 33. Yang Y.-Y., Chen X.-M., Ng S.W. // Aust. J. Chem. 1999. 52. P. 983.
- 34. Xiang S.-C., Hu S.-M., Zang J.-J. et al. // Eur. J. Inorg. Chem. 2005. P. 2706.
- 35. Cui Y., Zeng F.-K., Yan D.-C. et al. // Jiegou Huaxue. Chin. J. Struct. Chem. 1998. 17. P. 5.
- 36. Gao F., Wang R.-Y., Jin T.-Z. et al. // Polyhedron. 1997. 16. P. 1357.
- 37. Wang L.-Y., Igarashi S., Yukawa Y. et al. // Dalton Trans. 2003. P. 2318.
- 38. Wang L.-Y., Igarashi S., Yukawa Y. et al. // Chem. Lett. 2003. 32. P. 202.
- 39. Prodius D., Turta C., Mereacre V. et al. // Polyhedron. 2006. 25. P. 2175.
- 40. *Горинчой В.В., Туртэ К.И., Симонов Ю.А. и др.* // Журн. координац. химии. 2009. **35**, № 4. С. 283 290.
- 41. Geru I.I. // Appl. Magn. Res. 2000. 19. P. 563.