УДК 532.517.4, 517.957

АВТОМОДЕЛЬНОЕ РЕШЕНИЕ ЗАДАЧИ О ТУРБУЛЕНТНОМ ТЕЧЕНИИ КРУГЛОЙ ЗАТОПЛЕННОЙ СТРУИ

А. В. Шмидт

Институт вычислительного моделирования СО РАН, 660036 Красноярск, Россия E-mail: schmidt@icm.krasn.ru

Рассмотрена математическая модель течения в круглой затопленной турбулентной струе, включающая дифференциальные уравнения переноса нормальных компонент тензора рейнольдсовых напряжений и алгебраические аппроксимации Роди для касательных напряжений. Выполнен теоретико-групповой анализ исследуемой модели, получена редуцированная автомодельная система обыкновенных дифференциальных уравнений, которая решена численно. Показано, что результаты расчетов согласуются с имеющимися экспериментальными данными.

Ключевые слова: круглая затопленная турбулентная струя, $(k-\varepsilon)$ -модель, теоретикогрупповой анализ, асимптотическое разложение, метод стрельбы.

Введение. Исследование течения в круглой турбулентной струе, имеющее прикладное значение, является одной из классических задач гидродинамики. Об этом свидетельствует большое количество публикаций, посвященных численному моделированию, а также теоретическому и экспериментальному исследованию данного класса свободных турбулентных течений (см., например, работы [1–10] и библиографию к ним).

В [11–14] с применением теоретико-группового анализа построены решения ряда полуэмпирических моделей дальнего турбулентного следа, согласующиеся с экспериментальными данными. В настоящей работе с использованием данного подхода рассмотрена математическая модель, предложенная в [15, 16] для описания течения в круглой затопленной турбулентной струе. Модель включает дифференциальные уравнения переноса нормальных компонент тензора рейнольдсовых напряжений и алгебраические аппроксимации Роди [5, 6] для касательных напряжений.

Как известно, имеется некоторое несоответствие результатов численного моделирования дальней области круглой турбулентной струи на основе стандартной $(k-\varepsilon)$ -модели [4] и экспериментальных данных (см., например, [7]). Для устранения данного несоответствия предложен ряд модификаций эмпирических постоянных $C_{\varepsilon 1}$, $C_{\varepsilon 2}$ в уравнении для скорости диссипации кинетической энергии турбулентности стандартной $(k-\varepsilon)$ -модели (см., например, [9]). Однако согласно работе [10] для получения наиболее близких к экспериментальным данным результатов численных расчетов достаточно положить $C_{\varepsilon 1} = 1,6$ (модифицированная $(k-\varepsilon)$ -модель), что сделано в настоящей работе.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 13-01-00246) и Совета по грантам Президента РФ по государственной поддержке ведущих научных школ РФ (грант № НШ-4382.2014.1).

Рассматриваемая математическая модель на основе теоретико-группового анализа редуцируется к системе обыкновенных дифференциальных уравнений. Краевая задача для этой системы решается численно с использованием модифицированного метода стрельбы и асимптотического разложения решения в окрестности особой точки. Проводится сравнение полученного автомодельного решения с имеющимися экспериментальными данными [2, 3] для дальней области ($x/D \ge 30$, D — диаметр среза сопла) круглой затопленной турбулентной струи.

1. Постановка задачи. Для расчета характеристик течения в круглой турбулентной струе в работах [15, 16] предложена модель, включающая систему осредненных уравнений (приближение пограничного слоя)

$$U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial r} = -\frac{1}{r}\frac{\partial}{\partial r}r\langle u'v'\rangle;$$
(1)

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial r} + \frac{V}{r} = 0.$$
⁽²⁾

Здесь (x, r, φ) — цилиндрическая система координат с началом на срезе сопла; U, V, u', v' — компоненты скорости осредненного и пульсационного движения; $\langle u'v' \rangle$ — касательное рейнольдсово напряжение (угловые скобки означают осреднение). В силу того что рассматриваемое течение является осесимметричным, искомые функции не зависят от угла φ и справедливо тождественное равенство нормальных компонент тензора рейнольдсовых напряжений $\langle v'^2 \rangle \equiv \langle w'^2 \rangle$. В [15, 16] для определения касательного турбулентного напряжения использовалось алгебраическое соотношение Роди [5, 6]

$$\langle u'v'\rangle = \frac{(C_2 - 1)(\langle u'^2 \rangle/2 + \langle v'^2 \rangle)\langle v'^2 \rangle}{(C_1 - 1)\varepsilon + P} \frac{\partial U}{\partial r},\tag{3}$$

где ε — скорость диссипации кинетической энергии турбулентности. Выражение для величины P производства энергии турбулентности имеет вид

$$P = -\langle u'v' \rangle \,\frac{\partial U}{\partial r}.$$

В [15, 16] для определения нормальных компонент тензора рейнольдсовых напряжений $\langle u'^2 \rangle$, $\langle v'^2 \rangle$ и скорости диссипации кинетической энергии турбулентности ε использовались следующие уравнения переноса:

$$U \frac{\partial \langle u'^2 \rangle}{\partial x} + V \frac{\partial \langle u'^2 \rangle}{\partial r} = \frac{C_s}{r} \frac{\partial}{\partial r} \left(\frac{re \langle v'^2 \rangle}{\varepsilon} \frac{\partial \langle u'^2 \rangle}{\partial r} \right) + 2(\alpha - 1) \langle u'v' \rangle \frac{\partial U}{\partial r} - C_1 \frac{\varepsilon}{e} \left(\langle u'^2 \rangle - \frac{2}{3}e \right) + \frac{2}{3} (\alpha P - \varepsilon); \quad (4)$$

$$U\frac{\partial\langle v'^2\rangle}{\partial x} + V\frac{\partial\langle v'^2\rangle}{\partial r} = \frac{C_s}{r}\frac{\partial}{\partial r}\left(\frac{re\langle v'^2\rangle}{\varepsilon}\frac{\partial\langle v'^2\rangle}{\partial r}\right) - C_1\frac{\varepsilon}{e}\left(\langle v'^2\rangle - \frac{2}{3}e\right) + \frac{2}{3}\left(\alpha P - \varepsilon\right);\tag{5}$$

$$U\frac{\partial\varepsilon}{\partial x} + V\frac{\partial\varepsilon}{\partial r} = \frac{C_{\varepsilon}}{r}\frac{\partial}{\partial r}\left(\frac{re\langle v'^2\rangle}{\varepsilon}\frac{\partial\varepsilon}{\partial r}\right) + \left(C_{\varepsilon 1}\frac{P}{\varepsilon} - C_{\varepsilon 2}\right)\frac{\varepsilon^2}{e}.$$
(6)

Кинетическая энергия турбулентности е и нормальные компоненты тензора рейнольдсовых напряжений связаны соотношением

$$e = \langle u'^2 \rangle / 2 + \langle v'^2 \rangle. \tag{7}$$

В дальнейших расчетах используются следующие значения эмпирических постоянных модели [4, 6, 10]: $C_s = 0.22$, $C_{\varepsilon} = 0.17$, $\alpha = 0.6$, $C_1 = 2$, $C_2 = 0.6$, $C_{\varepsilon 1} = 1.6$, $C_{\varepsilon 2} = 1.92$.

2. Теоретико-групповой анализ модели. С использованием стандартных методов [17] находим базис алгебры Ли системы уравнений (1)–(6):

$$X_{1} = \frac{\partial}{\partial x}, \qquad X_{2} = x \frac{\partial}{\partial x} + r \frac{\partial}{\partial r} - \varepsilon \frac{\partial}{\partial \varepsilon},$$
$$X_{3} = U \frac{\partial}{\partial U} + V \frac{\partial}{\partial V} + 2\langle u'v' \rangle \frac{\partial}{\partial \langle u'v' \rangle} + 2\langle u'^{2} \rangle \frac{\partial}{\partial \langle u'^{2} \rangle} + 2\langle v'^{2} \rangle \frac{\partial}{\partial \langle v'^{2} \rangle} + 3\varepsilon \frac{\partial}{\partial \varepsilon}.$$

Поскольку экспериментальные данные [2, 3] свидетельствуют о наличии автомодельных режимов в дальних областях круглой турбулентной струи, находим автомодельные решения системы уравнений (1)–(6). Рассмотрим следующую линейную комбинацию операторов X_2, X_3 :

$$\begin{split} Z &= x \frac{\partial}{\partial x} + r \frac{\partial}{\partial r} + \beta U \frac{\partial}{\partial U} + \beta V \frac{\partial}{\partial V} + 2\beta \langle u'v' \rangle \frac{\partial}{\partial \langle u'v' \rangle} + 2\beta \langle u'^2 \rangle \frac{\partial}{\partial \langle u'^2 \rangle} + \\ &+ 2\beta \langle v'^2 \rangle \frac{\partial}{\partial \langle v'^2 \rangle} + (3\beta - 1)\varepsilon \frac{\partial}{\partial \varepsilon}, \end{split}$$

где β — произвольная постоянная. Решение системы уравнений (1)–(6), инвариантное относительно преобразования, порожденного оператором Z, имеет вид

$$U = x^{-1}U_1(t), \quad V = x^{-1}V_1(t), \quad \langle u'v' \rangle = x^{-2}W(t),$$

$$\langle u'^2 \rangle = x^{-2}U_2(t), \quad \langle v'^2 \rangle = x^{-2}V_2(t), \quad \varepsilon = x^{-4}E(t), \quad t = r/x$$
(8)

(в силу уравнений модели справедливо $\beta = -1$). Степенные законы вырождения (8) для дальних областей круглой турбулентной струи подтверждаются многочисленными экспериментальными данными и результатами моделирования (см., например, работы [1–3, 8] и библиографию к ним). Подставляя представление (8) в уравнения (1)–(6), получаем редуцированную систему. Однако, используя первый интеграл полученной редуцированной системы

$$-t^2 U_1^2 + t U_1 V_1 + t W = b_1, \qquad b_1 \in R,$$
(9)

целесообразно исключить одну из искомых функций из уравнений этой системы. Кроме того, решения редуцированной системы должны удовлетворять следующим условиям:

$$t = 0;$$
 $U'_1 = V_1 = W = U'_2 = V'_2 = E' = 0;$ (10)

$$t = 0,26$$
: $U_1 = W = U_2 = V_2 = E = 0.$ (11)

В условиях (10) учитывается симметрия течения относительно оси Ox. Условия (11) следуют из требования, согласно которому искомые функции должны принимать нулевые значения вне области турбулентной струи. Значение t = 0,26 выбрано как соответствующее экспериментальным данным [3].

Используя условия (10), (11), нетрудно показать, что в интеграле (9) $b_1 = 0$. Следовательно,

$$V_1 = tU_1 - \frac{W}{U_1}.$$
 (12)

С использованием (12) получаем редуцированную систему в виде

$$\begin{split} ((1-C_2)\gamma V_2 - 2W^2)U_1' + 2(C_1 - 1)WE &= 0, \\ t((1-C_2)\gamma V_2 - 2W^2)U_1W' - 2U_1W^3 + 2t(U_1^3 + (C_1 - 1)E)W^2 + (1 - C_2)\gamma U_1V_2(W - tU_1^2) = 0, \\ C_s(\gamma U_2'' + U_2'^2)\frac{V_2}{E} + \left(2\frac{W}{U_1} + \frac{C_s}{tE}(t(\gamma + 2V_2)EV_2' - \gamma V_2(tE' - E))\right)U_2' + \\ &+ \frac{8}{3}\frac{C_1(V_2 - U_2)E}{\gamma} + \frac{4}{3}(2\alpha - 3)WU_1' + 4U_1U_2 - \frac{4}{3}E = 0, \\ C_s\gamma\frac{V_2V_2''}{E} + C_s\frac{(\gamma + V_2)V_2V_2'^2}{E} + \left(2\frac{W}{U_1} + C_s\frac{V_2}{tE^2}(U_2' + V_2' - \gamma(tE' - E))\right)V_2' + \\ &+ \frac{4}{3}\frac{C_1(U_2 - V_2)E}{\gamma} - \frac{4}{3}\alpha WU_1' + 4U_1U_2 - \frac{4}{3}E = 0, \\ C_s\gamma\frac{V_2}{E^2}(EE'' - E'^2) + \left(2\frac{W}{U_1} + \frac{C_s}{tE}(t(V_2U_2' + (\gamma + 2V_2)V_2') + \gamma V_2)\right)E' - \\ &- \frac{4E}{\gamma}(4C_{\varepsilon 1}WU_1' - 2\gamma U_1 + C_{\varepsilon 2}E) = 0, \\ \gamma = U_2 + 2V_2. \end{split}$$

Система обыкновенных дифференциальных уравнений (13), удовлетворяющая условиям (10), (11), решалась численно.

3. Результаты расчетов. Дополнительные трудности при решении системы уравнений (13) обусловлены тем, что коэффициенты системы имеют особенности. Для решения задачи использовались модифицированный метод стрельбы и асимптотическое разложение решения в окрестности особой точки вида

$$U_{1} = d_{1}(t-a)^{\alpha_{1}} + o(|t-a|^{\alpha_{1}}), \qquad W = d_{2}(t-a)^{\alpha_{2}} + o(|t-a|^{\alpha_{2}}),$$

$$U_{2} = d_{3}(t-a)^{\alpha_{3}} + o(|t-a|^{\alpha_{3}}), \qquad V_{2} = d_{4}(t-a)^{\alpha_{4}} + o(|t-a|^{\alpha_{4}}), \qquad (14)$$

$$E = d_{5}(t-a)^{\alpha_{5}} + o(|t-a|^{\alpha_{5}}).$$

Подставляя (14) в систему уравнений (13) и используя условие $U_1 = W = U_2 = V_2 = E = 0$ при $t \notin (-a, a)$, находим

$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \frac{C_{\varepsilon}}{2C_{\varepsilon} - C_s}, \qquad \alpha_5 = 2\alpha_1 - 1,$$

$$d_3 = \frac{2[d_4^2(C_s(1 - C_1) + 1 - C_2) - d_2^2]}{d_4(C_s(C_1 - 1) + C_2 - 1)}, \qquad d_5 = \frac{d_1\alpha_1[2d_2^2 + d_4(d_3 + 2d_4)(C_2 - 1)]}{2d_2(1 - C_1)}.$$

В процессе вычислений определяем значения функций U_1, U_2, V_2, E в точке t = 0:

$$U_1(0) = 1$$
, $U_2(0) = 0.0569$, $V_2(0) = 0.0412$, $E(0) = 0.1840$.

Рис. 1. Профили нормированных осредненной продольной компоненты скорости U (*a*), касательного рейнольдсова напряжения $\langle u'v' \rangle$ (*б*) и интенсивностей σ_u , σ_v турбулентных флуктуаций продольной (*b*) и поперечной (*c*) компонент скорости: 1, 2 — данные экспериментов [2, 3] (1 — x/D = 100, 2 - x/D = 160), 3, 4 — численное моделирование [15, 16] (3 — x/D = 100, 4 - x/D = 160), 5 — расчет, выполненный в настоящей работе

Профили продольной компоненты скорости осредненного движения $U(U_c - ee$ осевое значение; в расчетах полагалось $U_c = 1$), касательного рейнольдсова напряжения $\langle u'v' \rangle$ и интенсивностей турбулентных флуктуаций продольной ($\sigma_u = \sqrt{\langle u'^2 \rangle}$) и поперечной ($\sigma_v = \sqrt{\langle v'^2 \rangle}$) компонент скорости представлены на рис. 1.

Профили кинетической энергии турбулентности e и поперечной компоненты скорости осредненного движения V, представленные на рис. 2, получены с использованием выражений (7), (12). Видно, что результаты расчетов удовлетворительно согласуются с экспериментальными данными [2, 3] и результатами численного моделирования [15, 16] на основе полных уравнений модели (1)–(6) (см. рис. 1).

Заключение. Рассмотрена модель, включающая дифференциальные уравнения переноса нормальных компонент тензора рейнольдсовых напряжений и используемая для описания динамики круглой турбулентной струи. Построенное автомодельное решение удовлетворительно согласуется с имеющимися экспериментальными данными.

Рис. 2. Профили нормированных скорости диссипации кинетической энергии турбулентности ε (*a*), кинетической энергии турбулентности *e* (*б*) и осредненной поперечной компоненты скорости *V* (*6*)

Автор выражает благодарность О. В. Капцову и Г. Г. Черных за предоставленные материалы и внимание к работе.

ЛИТЕРАТУРА

- 1. Абрамович Г. Н. Теория турбулентных струй. М.: Наука, 1960.
- Wygnanski I., Fiedler H. Some measurements in the self-preserving jet // J. Fluid Mech. 1969. V. 38. P. 577–612.
- Panchapakesan N. R., Lumley J. L. Turbulence measurements in axisymmetric jets of air and helium. Pt 1. Air jet // J. Fluid Mech. 1993. V. 246. P. 197–223.
- 4. Launder B. E., Morse A. P., Rodi W., Spalding D. B. The prediction of free shear flows a comparison of six turbulence models. Washington, 1972. (Rep. / NASA; N SP-311).
- 5. Rodi W. The prediction of free turbulent boundary layers by use of two-equation model of turbulence: Ph. D. thesis. L.: Univ. of London, 1972.
- Rodi W. Turbulence models and their application in hydraulics. Karlsruhe: Univ. of Karlsruhe, 1980.
- 7. Wilcox D. C. Turbulence modeling for CFD. La Canada: DCW Industr. Inc., 1994.
- 8. Piquet J. Turbulent flows: models and physics. Berlin; Heidelberg: Springer-Verlag, 1999.
- Pope S. B. An explanation of the round jet/plane jet anomaly // AIAA J. 1978. V. 16, N 3. P. 279–281.
- Dally B. B., Fletcher D. F., Masri A. R. Flow and mixing fields of turbulent bluff-body jets and flames // Combust. Theory Modelling. 1998. V. 2. P. 193–219.
- 11. Капцов О. В., Ефремов И. А., Шмидт А. В. Автомодельные решения модели второго порядка дальнего турбулентного следа // ПМТФ. 2008. Т. 49, № 2. С. 74–78.
- 12. Ефремов И. А., Капцов О. В., Черных Γ. Г. Автомодельные решения двух задач свободной турбулентности // Мат. моделирование. 2009. Т. 21, № 12. С. 137–144.
- Капцов О. В., Фомина А. В., Черных Г. Г., Шмидт А. В. Автомодельное вырождение турбулентного следа за буксируемым телом в пассивно стратифицированной среде // ПМТФ. 2012. Т. 53, № 5. С. 47–54.
- 14. Kaptsov O. V., Schmidt A. V. Application of the B-determining equations method to one problem of free turbulence // Symmetry, Integrability Geometry. 2012. V. 8. 073.
- 15. Деменков А. Г., Илюшин Б. Б., Черных Г. Г. Численное моделирование осесимметричных турбулентных струй // ПМТФ. 2008. Т. 49, № 5. С. 55–60.
- Demenkov A. G., Ilyushin B. B., Chernykh G. G. Numerical model of round turbulent jets // J. Engng Thermophys. 2009. V. 18, N 1. P. 49–56.
- 17. Овсянников Л. В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978.

Поступила в редакцию 13/I 2014 г., в окончательном варианте — 5/V 2014 г.