УДК 539.63

ЭЛЕКТРОДИНАМИЧЕСКИЕ ЭФФЕКТЫ, СОПРОВОЖДАЮЩИЕ РАСПРОСТРАНЕНИЕ ТОКОНЕСУЩИХ УДАРНЫХ ВОЛН В ПОПЕРЕЧНОМ МАГНИТНОМ ПОЛЕ

Е. И. Биченков

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Рассмотрена ударно-волновая компрессия магнитного поля волнами, способными захватывать и переносить внутри своего фронта некоторый ток. Показано, что наличие такого тока экранирует поток электромагнитного излучения с фронта ударной волны и снижает эффективность магнитной компрессии. Предложена аналитическая модель, позволяющая найти величину и пространственное распределение генерируемого волной тока как для проводящих материалов, так и для материалов с переходом при ударном сжатии из непроводящего состояние в проводящее. Показано, что величина тока в проводниках определяется в основном сжимаемостью материала, а доля захватываемого тока — структурой ударной волны и зависит в первую очередь от проводимости материала, толщины фронта волны и положения точки фазового перехода внутри фронта волны. В материалах с переходом диэлектрик — проводник весь ток сосредоточен внутри ударного фронта, а величина его определена исключительно структурой ударного фронта. Показано, что генерирование тока ударной волной сопровождается появлением равного ему по величине и противоположного по направлению противотока, растекающегося по примыкающей к ударной волне поверхности проводящего материала, что приводит к ряду новых электродинамических эффектов. Рассмотрен распад токонесущей волны на границе раздела материалов, сопровождающий классический распад ударно-волнового разрыва. Проведен анализ магнитных моментов, создаваемых ударной волной токов, и показано, что при обжатии однородного магнитного поля излучение электромагнитной энергии из хорошо проводящих материалов невелико. Однако разрушение проводника в должным образом организованной волне разрежения с потерей проводимости может привести к излучению значительного запаса магнитной энергии, накопившейся в проводящем материале в процессе ударно-волновой кумуляции магнитного поля.

ВВЕДЕНИЕ

Ударно-волновая компрессия магнитного поля, предложенная независимо нами [1, 2] и К. Нагаямой [3], позволила получить мегагауссные поля с помощью небольших и довольно простых генераторов. Преимущества и перспективы использования таких генераторов описаны в [4]. При анализе возможностей ударно-волновой компрессии предполагалось, что внутрь волны ток не захватывается и магнитное поле за фронтом волны равно полю перед скачком. В работе [5] показано, что такое предположение верно для идеального разрыва нулевой толщины. Волна с фронтом конечной толщины может захватить в себя ток, что приведет к появлению ряда новых эффектов.

1. КОМПРЕССИЯ МАГНИТНОГО ПОЛЯ ВОЛНОЙ С ТОКОМ

Рассмотрим обжатие однородного магнитного поля в непроводящем материале ударной

волной, переводящей материал в проводящее состояние. Пусть в некоторый момент времени поперечное сечение области, занятой полем и материалом в исходном непроводящем состоянии, равно S(t). Эта область ограничена замкнутой ударной волной, периметр которой p(t). Закон Ома для движущегося проводника [6] имеет вид

$$-\frac{1}{c}\frac{d\Phi}{dt} = \oint\limits_{p(t)} \frac{\mathbf{j}}{\sigma} d\mathbf{l}, \qquad (1)$$

где c — электродинамическая постоянная, j — плотность тока, σ — электропроводность, Φ — магнитный поток.

В это уравнение входит изменение магнитного потока через движущийся с материалом контур, в качестве которого выбран периметр ударной волны. Рассмотрим изменение потока более подробно. Оно происходит, прежде всего, из-за изменения потока в непроводящем материале $\delta\Phi_1 = \delta(B(t)S(t))$, где B — магнит-

Е. И. Биченков

ное поле. Далее, при распространении ударной волны со скоростью D за время Δt возникает проводящий материал, движущийся с массовой скоростью u в области сечением $p(t)(D-u)\Delta t$ с полем в нем $B_f(t)$, из-за чего поток изменяется на $\delta\Phi_2=B_f(t)p(t)(D-u)\Delta t$ (везде далее индексом f обозначены параметры за ударной волной). В итоге уравнение (1) может быть переписано в виде

$$\frac{d(BS)}{dt} + B_f(D - u)p(t) = -\frac{c}{\sigma}j_f p(t). \tag{2}$$

В проведенном рассуждении предполагалось, что поле за ударной волной B_f не равно полю перед волной B, т. е. в отличие от предыдущих работ [2, 4, 7] считается, что волна способна захватить внутрь своего фронта и переносить с собой некоторый ток. Будем описывать волну с током параметром $\beta = B_f/B$. Предположим, что проводимость образующегося в результате ударного сжатия материала достаточно высока. Это позволит считать поле позади волны квазистационарным и исключить из (2) плотность тока позади волны с помощью уравнения Ампера. Для дальнейшего удобно перейти к сечению S(t) как новой переменной, исключив из задачи время с помощью соотношения dS = -Dp(t) dt. В результате приходим к уравнению

$$d(BS) = dS \left(\frac{D - u}{D} \beta B - \frac{c^2}{4\pi\sigma D} \frac{dB}{dh} \Big|_f \right), \quad (3)$$

последнее слагаемое в правой части которого содержит производную магнитного поля за ударной волной по направленной в глубь проводника нормали к фронту волны. С этим слагаемым связана диффузия магнитного поля позади фронта волны. Как и в предыдущих работах, для первого приближения пренебрежем диффузией. В результате приходим к предельно простой задаче об ударно-волновой компрессии магнитного поля проводящим материалом, возникающим за фронтом токонесущей ударной волны

$$d\varphi = ds \, \frac{\beta \varphi}{ns}.\tag{4}$$

Все величины в этом уравнении безразмерные и в качестве масштаба выбраны их начальные значения, $s=S(t)/S_0,\, \varphi$ — магнитный поток в непроводящем материале (в области компрессии поля). Параметр $n=\rho_f/\rho_0=D/(D-u)$ —

сжимаемость материала. Считая n и β постоянными, нетрудно получить соотношения для магнитного потока, поля и магнитной энергии в области сжатия:

$$\Phi = \Phi_0 s^{\beta/n}, \quad B = B_0 s^{\beta/n-1},$$

$$U_m = U_{m0} s^{2\beta/n-1}.$$
(5)

Если волна не захватывает ток, то $\beta = 1$ и

$$\Phi = \Phi_0 s^{1/n}, \quad B = B_0 s^{1/n-1},$$

$$U_m = U_{m0} s^{2/n-1}.$$
(6)

т. е. при смыкании области сжатия $(s \to 0)$ поток всегда падает до нуля, магнитное поле неограниченно растет, а энергия в области сжатия может оказаться ограниченной при умеренной сжимаемости материала n < 2.

Волна захватывает максимально возможный ток, если $\beta=n.$ При этом

$$\Phi = \Phi_0 s, \quad B = B_0, \quad U_m = U_{m0} s.$$
 (7)

т. е. захваченный внутри фронта волны ток полностью экранирует поток электромагнитной энергии, генерируемый движением проводящего материала, и локализует его за фронтом волны. Перед волной поток энергии отсутствует, поле остается равным начальному и компрессии нет. Приведенный пример показывает, что захватываемый ударной волной ток имеет важнейшее значение для ударноволновой компрессии поля.

2. СТРУКТУРА ФРОНТА ВОЛНЫ И ВЕЛИЧИНА ЗАХВАТЫВАЕМОГО ТОКА В РАЗЛИЧНЫХ МАТЕРИАЛАХ

В [5] детально исследован процесс установления равновесия между электронами и ионами при ударном сжатии конденсированных веществ и показано, что для хороших проводников ударный переход можно рассматривать в предположении диффузионного равновесия плотности электронов с плотностью ионов, что позволило записать уравнение для магнитного поля в материале с ударной волной в виде

$$\frac{db}{d\xi} = \sigma(r) \left[\frac{b(\xi)}{r(\xi)} - \frac{\beta}{n} \right]. \tag{8}$$

Здесь $\xi = z - Dt$, магнитное поле отнесено к полю перед волной, т. е. $b = B/B_0$, $r(\xi) =$

 $\rho(\xi)/\rho_0$ — сжатие материала в волне, $\sigma(r)$ — безразмерная функция, задающая ход проводимости материала при ударном сжатии в зависимости от плотности.

Если волна распространяется по проводящему материалу, поле позади нее β определяется условием стационарности, которое, как показано в [5], совпадает с условием вмороженности, т. е. β оказывается просто равным сжимаемости материала п. При этом волна выступает как генератор тока с линейной плотностью $(c/4\pi)(n-1)B_0$. Если разрыв идеальный, весь этот ток сосредоточен перед фронтом волны в диффузионной зоне толщиной $l_d = (c/4\pi\sigma)(c/D)$ — тока в самой волне нет. В случае волны с определенной структурой часть генерируемого ею тока захватывается внутрь фронта волны. Величина захваченного тока, естественно, должна зависеть от толщины фронта ударной волны, положения внутри фронта возможного скачка электропроводности, величины этого скачка и сжимаемости материала.

Вопрос о величине тока и структуре токовой волны для перехода диэлектрик — проводник оказывается намного сложнее. Изложим, как можно получить решение этой задачи. Приняв (8) в качестве исходного уравнения, следует перейти от пространственной переменной ξ к безразмерной плотности r. При этом (8) преобразуется к виду

$$\frac{db}{dr} = \sigma(r) \left(\frac{b}{r} - \frac{\beta}{n}\right) \frac{1}{dr/d\xi}.$$
 (9)

Для получения явных аналитических и численных оценок и введения в задачу структурных характеристик ударной волны оказалось удобным аппроксимировать ход плотности в волне известным в газовой динамике решением задачи о толщине ударного перехода [8]

$$r(\xi) = \frac{n+1}{2} + \frac{n-1}{2} \operatorname{th} \frac{\xi}{l},$$

после чего задача определения поля в волне свелась к решению уравнения

$$\frac{db}{dr} = \sigma(r) \left(\frac{b}{r} - \frac{\beta}{n}\right) \frac{(n-1)l}{2(n-r)(r-1)}.$$
 (10)

Далее удобно вместо плотности r и поля b перейти к новым переменным x и y, представляющим собой относительное приращение плотности материала и магнитного поля в ударной

волне. Эти переменные связаны с плотностью и полем соотношениями

$$r = 1 + (n-1)x$$
, $b = 1 + (n-1)y$. (11)

В результате (10) сводится к уравнению

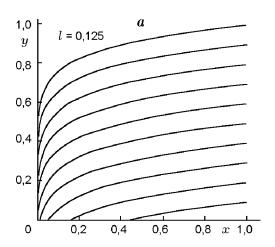
$$\frac{dy}{dx} = \frac{l\sigma}{2} \frac{1}{1 + (n-1)x} \frac{y-x}{x(1-x)} +$$

$$+\frac{l\sigma}{2n}\frac{1-y_f}{x(1-x)}$$
. (12)

Заметим, что параметр y_f определяется из соотношения $\beta=1+(n-1)y_f$ и пропорционален величине тока, захваченного внутрь волнового фронта.

На рис. 1 приведены результаты численных расчетов для $\sigma=1$ и набора значений захватываемого волной тока $y_f=\{0,1;0,2;\dots;1\}$ для l=0,125 и l=1. В этих расчетах уравнение (12) интегрировалось из соответствующей концу сжатия точки $\{x=1,y=y_f\}$ до момента $0< x_\sigma<1$, когда $y(x_\sigma)=0$. Учитывая, что в этот момент магнитное поле равно начальному, мы интерпретировали x_σ как положение внутри волны точки фазового перехода из непроводящего в проводящее состояние.

Приняв, что в конце сжатия r=n и магнитное поле $b=\beta$, а в точке $r=r_s$ перехода из непроводящей фазы в проводящую b=1, нетрудно получить из (10) для проводящего материала с постоянной проводимостью $(\sigma=1)$ уравнение


$$r_s = n + \frac{2}{l(n-1)} \int_{\beta}^{1} \frac{(n-r)(r-1)}{b/r - \beta/n} db,$$

связывающее захватываемый волной ток β с положением точки фазового перехода r_s внутри волны. Заменой переменной $b=\beta x$ это соотношение преобразуется к виду

$$r_s = n + \frac{2}{l(n-1)} \int_{1}^{1/\beta} \frac{(n-r)(r-1)}{x/r - 1/n} dx,$$
 (13)

откуда дифференцированием по β нетрудно получить дифференциальное уравнение, дающее зависимость величины поля в конце сжатия от положения точки фазового перехода в проводящее состояние:

Е. И. Биченков

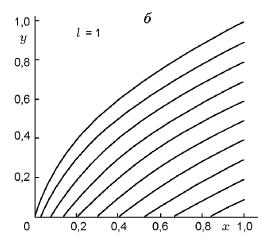


Рис. 1. Зависимость захваченного в волну тока от положения точки фазового перехода из непроводящего состояния в проводящее

$$\frac{dr_s}{d\beta} = -\frac{2}{l(n-1)} \frac{1}{\beta} \frac{(n-r_s)(r_s-1)}{1/r_s - \beta/n}.$$
 (14)

Перейдя в (14) от плотности материала в точке фазового перехода и поля в конце сжатия к их относительным приращениям, определяемым в соответствии с (11), получаем окончательно уравнение

$$\frac{dy_f}{dx_\sigma} = -\frac{l}{2n} \frac{1 + (n-1)y_f}{1 + (n-1)x_\sigma} \times \left(\frac{1 - y_f}{x_\sigma} - \frac{ny_f}{1 - x_\sigma}\right), (15)$$

решение которого с достаточно прозрачным физическим условием, что при переходе в проводящее состояние в самом конце сжатия волна не захватывает ток, т. е. что $y_f=1$ при $x_\sigma=1$, дает искомую зависимость тока в волне y_f от толщины фронта волны l, положения внутри нее точки фазового перехода x_σ и сжимаемости материала n. Эту зависимость можно найти в виде асимптотического ряда, отрезок которого имеет вид

$$y_f = \frac{l}{n} \frac{1 - x_\sigma}{l + 2n} + \frac{l(1 - x_\sigma)^2}{l + 4n} \left(\frac{n - 1}{n^2} + \frac{2l(n - 1)}{n(l + 2n)^2} + \frac{2}{l + 2n}\right).$$
(16)

При $l \to \infty$ этот ряд упрощается до

$$y_f = \frac{1}{n} (1 - x_\sigma) \left(1 + \left(1 - \frac{1}{n} \right) (1 - x_\sigma) \right) - \frac{2}{l} (1 - x_\sigma) \left(1 - \frac{1}{n} (1 - x_\sigma) \right), (17)$$

при
$$l \to 0$$
 — до
$$y_f = l \left(\frac{1 - x_\sigma}{2n} + \frac{1}{2n^2} \left(1 - \frac{1}{2n} \right) (1 - x_\sigma)^2 \right). \tag{18}$$

Из этих оценок видно, что тонкая волна захватывает небольшой ток, пропорциональный своей толщине и расстоянию точки фазового перехода от конца волны. С ростом сжимаемости материала этот ток уменьшается. При увеличении толщины волны генерируемый ею ток выходит на предельное значение (17), определяемое исключительно положением точки фазового перехода в проводящее состояние и обратно пропорциональное плотности сжатого материала.

3. НЕКОТОРЫЕ НОВЫЕ ЗАДАЧИ ФИЗИКИ УДАРНЫХ ВОЛН

Распространение ударной волны в проводящих материалах и в материалах с переходом диэлектрик — проводник приводит к тому, что в магнитном поле волна генерирует и переносит с собой определенный ток. Известно, что всякий ток должен быть замкнутым. Это приводит к появлению и растеканию по проводящей поверхности образцов системы токов, величина которых равна току в волне, а направление противоположно друг другу. Назовем эту пару токов системой ток — противоток. Распределение противотока определяется положением ударной волны, формой примыкающих к ней проводников и их проводимостью. Тем самым приходим к постановке нового класса задач физики ударных волн, в которых решение гидродинамических проблем сопровождается рассмотрением соответствующих задач электродинамики квазистационарных токов. Проиллюстрируем сказанное двумя простейшими задачами и приведем некоторые результаты.

3.1. Появление пары токов при прохождении ударной волной границы образца

Рассмотрим вход плоской ударной волны в проводящее полупространство. Аналитическое решение этой задачи опубликовано в [9]. Оказалось, точное решение задачи сводится к рассмотрению границы проводника как поверхности, на которой всегда находятся вложенные друг в друга ток и противоток, величина которых определяется материалом, магнитным полем и ударной волной. Приходящая на границу ударная волна отрывает и уносит с собой ток. Оставшийся на границе противоток диффундирует в область за волной, занятую проводящим материалом. Если исходное состояние материала проводящее, часть тока с фронта волны диффундирует в невозмущенный волной материал, формируя в нем диффузионную токовую зону. В случае, если исходное состояние материала непроводящее, весь ток остается внутри фронта волны, но величина его может оказаться ничтожной при $l \to 0$. Наличие электрического поля на фронте фазового перехода приведет к излучению потока электромагнитной энергии с фронта волны вперед, из-за чего станет возможной ударно-волновая компрессия магнитного поля замкнутой системой ударных волн.

Для иллюстрации изложенного на рис. 2 приведены результаты расчетов эволюции во времени пространственного распределения поля, из которых видно, что диффузионная токовая зона формируется в проводнике при прохождении волной расстояния $4l_d$ в материале. В течение этого времени существует нестационарная компонента потока электромагнитной энергии. Результаты численных расчетов эволюции во времени этой составляющей потока электромагнитной энергии приведены на рис. 3.

3.2. Распад токовых волн на границе раздела материалов

В физике ударных волн известна классическая задача о распаде разрыва на границе раздела сред с разными ударно-волновыми свойствами. Нетрудно видеть, что эти распады в проводящих материалах или материалах с переходом из непроводящего в проводящее состояние будут сопровождаться соответствующим распадом токовых волн с рождением пары ток — противоток на каждой проводящей поверхности, т. е. с появлением четырех токов.

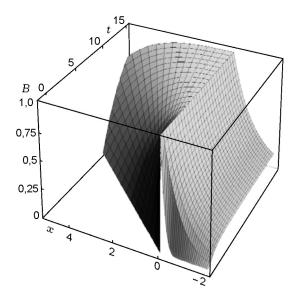


Рис. 2. Эволюция во времени пространственного распределения магнитного поля при входе ударной волны в проводящее полупространство

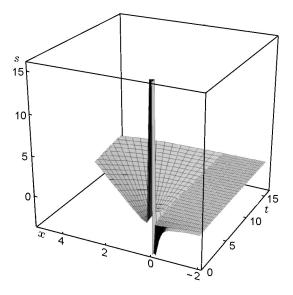


Рис. 3. Эволюция во времени нестационарной компоненты потока энергии, излучаемой при входе ударной волны в проводящее полупространство

Е. И. Биченков

3.3. Магнитные моменты, создаваемые распределением тока в проводнике за ударной волной и парами ток — противоток. Возможность появления электромагнитного излучения

Система ток — противоток циркулирует в ударной волне и по поверхности проводника, создавая при этом магнитный момент

$$m(t) = \frac{I(t)S(t)}{c}. (19)$$

Наличие переменных во времени магнитных моментов приводит к возникновению потока электромагнитного излучения, мощность которого

$$\frac{dU}{dt} = \frac{2}{3c^3} \left(\frac{d^2m(t)}{dt^2}\right)^2. \tag{20}$$

Следует отметить, что расчет магнитных моментов при ударно-волновой компрессии магнитного потока далеко не тривиален, так как в этом случае надо рассматривать не только пару ток — противоток, но и дополняющее ее распределение тока в проводящем материале за фронтом ударной волны, возникающее в процессе усиления поля при выжимании части магнитного потока в заполненную непроводящим материалом область перед фронтом волны. Качественно эта ситуация представлена на рис. 4 для цилиндрической геометрии и n=1,2, $\beta=1,05.$

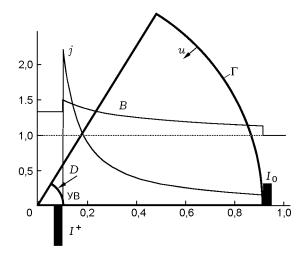


Рис. 4. Распределение плотности тока и магнитного поля при сжатии цилиндра:

прямоугольники I^+, I_0 — ток в ударной волне (УВ) и противоток на внешней поверхности образца Γ

В соответствии с изложенным был проведен аккуратный подсчет магнитного момента, создаваемого распределением токов, возникающих при работе плоского и цилиндрического ударно-волновых МК-генераторов. Оказалось, что при однородности магнитного поля в области сжатия магнитный момент всех генерируемых при этом токов только постоянным размерным сомножителем отличается от полного магнитного потока, сосредоточенного как в области сжатия, так и переносимого вместе с проводником. При высокой проводимости используемых материалов это приводит к очень малому изменению магнитного момента во времени и к ничтожному излучению из МКгенераторов такого рода в окружающее пространство, связанному в основном с релаксацией потока на активном сопротивлении проводящего материала.

Однако, в некоторых случаях за ударной волной может следовать волна разгрузки, в которой происходит не только разгрузка материала с появлением новой пары токов, но может происходить (при разлете разгруженного материала) и разрыв противотока на внешней поверхности образца, а затем и распределенного в проводящем материале тока *j*. Именно с этим обстоятельством, скорее всего, может быть связана природа больших потоков электромагнитного излучения, отмеченная в работах, относящихся к ударно-волновой компрессии магнитного поля в цилиндрических образцах из CsJ [10]. Качественно эта ситуация показана на рис. 5.

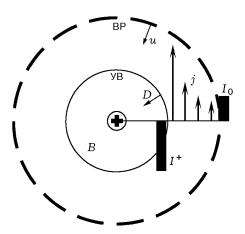


Рис. 5. Распространение ударной волны (УВ) с током I^+ и волны разрежения (ВР), в которой происходит разрыв противотока I_0 и распределенного тока j за волной

Автор благодарен А. М. Рябчуну за ценное обсуждение, приведшее к получению уравнения (14).

Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта 99-02-17049).

ЛИТЕРАТУРА

- 1. **А. с.** СССР \mathbb{N}° 762706 от 16.05.1980 (приоритет 30.11.1978) Магнитокумулятивный генератор // Биченков Е. И., Скоробогатых Н. Г., Трубачев А. М.
- 2. Биченков Е. И., Гилев С. Д., Трубачев А. М. МК-генераторы с использованием перехода полупроводникового материала в проводящее состояние // ПМТФ. 1980. № 5. С. 125–129.
- 3. Nagayama K. New method of magnetic flux compression by means of the propagation of shock induced metalic transition in semiconductor // Appl. Phys. Lett. 1981. V. 38, N 2. P. 109–116.
- 4. Биченков Е. И., Гилев С. Д., Рябчун А. М., Трубачев А. М. Ударно-волновая кумуляция магнитного поля. Предельные возможности метода // Метагауссная и метаамперная импульсная технология и применения / Под ред. В. К. Чернышева, В. Д. Селемира, Л. Н. Пляшкевича. Саров: ВНИИЭФ, 1997. Т. 1. С. 121–128.

- Биченков Е. И. Структура стационарной токовой волны, создаваемой ударной волной в проводящем материале с поперечным магнитным полем // Физика горения и взрыва. 1997. Т. 33, № 4. С. 113–127.
- 6. **Ландау Л. Д., Лифшиц Е. М.** Электродинамика сплошных сред. М.: ГИТТЛ, 1957.
- 7. Биченков Е. И., Гилев С. Д., Трубачев А. М. Ударно-волновые МК-генераторы // Сверхсильные магнитные поля. Физика. Техника. Применение: Тр. 3-й Междунар. конф. по генерации мегагауссных магнитных полей и родственным экспериментам, Новосибирск, 1983. М.: Наука, 1984. С. 88–93.
- 8. **Зельдович Я. Б., Райзер Ю. П.** Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
- 9. **Биченков Е. И.** Электромагнитное поле и токовые волны, генерируемые при входе ударной волны в проводящий образец с поперечным магнитным полем // ПМТФ. 1997. Т. 38, № 2. С. 19–25.
- 10. **Бармин А. А., Мельник О. А., Прищепен- ко А. Б. и др.** Потери электромагнитной энергии при сжатии магнитного поля скачком второго рода // Изв. АН СССР. МЖГ. 1988. № 6. С. 166–170.

Поступила в редакцию 25/XI 1999 г., в окончательном варианте — 14/III 2000 г.