УДК 532.2

ВЗАИМОДЕЙСТВИЕ КУМУЛЯТИВНОЙ СТРУИ С ПРЕГРАДОЙ, ИМЕЮЩЕЙ ОСЕВОЕ ОТВЕРСТИЕ

Е. В. Проскуряков, М. В. Сорокин, В. М. Фомин*

Новосибирское высшее военное командное училище (Военный институт), 630117 Новосибирск

* Институт теоретической и прикладной механики им. С. А. Христиановича, 630090 Новосибирск E-mail: saper67@mail.ru

Экспериментально исследовано взаимодействие кумулятивной струи с преградой, имеющей осевое отверстие. При диаметре отверстия, приближенно равном 0,2*D*, где *D* — диаметр (калибр) кумулятивного заряда, установлено значительное уменьшение глубины бронепробития кумулятивной струи, что обусловлено отклонением оси кумулятивной струи от оси кумулятивного заряда из-за несовершенства технологии его изготовления. Определен диаметр отверстия в преграде, обеспечивающий беспрепятственное прохождение кумулятивной струи.

Ключевые слова: кумулятивная струя, кумулятивный заряд, осевой канал, калибр заряда, диаметр осевого канала, глубина бронепробития.

Как известно, перед кумулятивным зарядом (K3) могут быть размещены устройства (приборы, агрегаты, взрыватель и т. д.) с осевым каналом [1], оказывающие влияние на глубину бронепробития K3. Взаимодействие кумулятивной струи (KC) с преградой, имеющей осевое отверстие, исследовалось при решении различных прикладных задач.

В идеальном случае КС должна беспрепятственно проходить сквозь преграду, если диаметр отверстия d больше диаметра КС. На практике ось КС отклоняется от оси симметрии КЗ вследствие несовершенства технологии его изготовления, элементы КС рассеиваются в некотором телесном угле вокруг ее оси. Кроме того, возможно взаимодействие КС со стенками канала в различных режимах (проникание, рикошет и т. д.).

Схема экспериментов по изучению взаимодействия КС с преградой представлена на рис. 1. Эксперименты проводились на модельных зарядах диаметром D = 56 мм, заряд взрывчатого вещества изготавливался из состава ТГ 40 : 60, использовалась медная облицовка с углом раствора, равным 50°. Сборка устанавливалась на пакете бронеплит средней твердости. Скорость переднего фронта КС составляла 7,5 км/с. Рентгенограммы КС, полученные в различные моменты времени, представлены на рис. 2. Диаметр КС не превышал 0,1*D*. Длина преграды с отверстием составляла 1,8*D*. Угол отклонения оси КЗ от оси отверстия в преграде из-за несоосности сборки не превышал 0,2°.

Результаты экспериментов приведены в таблице $(h - глубина пробития при наличии отверстия в мишени (см. рис. 1); <math>\langle h \rangle$ — среднее значение величины h; σ — среднеквадратичное отклонение значения h; f — расстояние от K3 до преграды с отверстием). Диаметр осевого канала d = 0; 0,1D; 0,2D; 0,3D; D. При d = 0 отверстие в преграде отсутствовало, при d = D отсутствовала мишень с отверстием. Расстояние от K3 до преграды f = 1,4D; 3D; 4,6D. Для каждого значения d и f проводилась серия экспериментов, включавшая 4–5 подрывов.

Рис. 1. Схема экспериментов

Рис. 2. Рентгенограммы КС, полученные в различные моменты времени: a-t=30 мкс; $\delta-t=45$ мкс

Номер эксперимента	f/D	d/D	h/D	$\langle h angle /D$	σ	Состояние канала после прохождения КС
1	1,4	0	4,05; 3,70; 4,07; 3,89; 3,86	3,91	0,15	Канал в мишени отсутствовал
2	1,4	0,1	3,57; 4,91; 5,50; 4,59; 3,69	4,46	0,82	Разбит
3	1,4	0,2	6,09; 5,86; 5,86; 5,89; 5,38	5,82	0,26	Частично разбит
4	1,4	0,3	6,16;5,89;6,77;6,30;6,30	6,29	0,32	Не разбит
5	1,4	1,0	6,59; 6,48; 6,29; 6,34; 6,34	6,41	0,12	Мишень с каналом отсутствовала
6	3,0	0	4,80; 4,69; 4,50; 4,55; 4,55	4,62	0,12	Канал в мишени отсутствовал
7	$_{3,0}$	0,1	3,96; 4,89; 3,57; 3,75; 4,89	4,21	$0,\!63$	Разбит
8	$_{3,0}$	0,2	6,34; 5,38; 5,85; 5,38; 4,38	5,47	0,73	Частично разбит
9	3,0	0,3	$6,02;\ 6,50;\ 6,82;\ 5,89$	6,31	0,43	Не разбит
10	3,0	1,0	6,34; 5,54; 6,34; 7,26; 6,34	6,36	0,61	Мишень с каналом отсутствовала
11	4,6	0	4,55; 3,75; 4,55; 5,48; 4,55	4,59	0,61	Канал в мишени отсутствовал
12	4,6	0,1	4,95; 3,63; 4,79; 4,63; 4,96	4,59	$0,\!56$	Разбит
13	4,6	0,2	3,04; 3,93; 3,18; 4,39; 4,00	3,77	0,68	Разбит
14	4,6	0,3	6,20; 6,07; 6,14; 3,92; 5,93	$5,\!65$	0,97	Частично разбит
15	4,6	1,0	6,23; 4,90; 6,46; 6,46; 6,73	6,15	0,73	Мишень с каналом отсутствовала

Результаты экспериментов

В эксперименте 14 (диаметр отверстия равен 0,3D, расстояние от K3 до основания сборки составляет 6,4D) установлено, что КС беспрепятственно проходит через отверстие. При этом угол отклонения γ оси КС от оси КЗ приблизительно равен 1°, что обусловлено погрешностью изготовления КЗ.

Влияние разностенности облицовки K3 на угол отклонения γ оси KC определяется параметром Δ/δ (Δ — разностенность облицовки K3; δ — толщина облицовки [2]). С увеличением калибра заряда D разностенность Δ обычно не меняется, толщина облицовки δ увеличивается пропорционально D, вследствие чего влияние разностенности Δ на угол отклонения γ оси KC от оси K3 уменьшается [2, 3]. Можно ожидать, что с увеличением калибра D относительный диаметр отверстия, необходимый для прохождения KC, будет уменьшаться.

В экспериментах 11, 13 наличие отверстия в преграде приводит к значительному уменьшению глубины бронепробития K3: глубина бронепробития в отсутствие отверстия превышает глубину бронепробития при его наличии на величину, приближенно равную 0,8D. Такое уменьшение глубины бронепробития K3 трудно объяснить в рамках гидродинамической модели проникания [4]. Предполагается, что из-за углового рассеяния KC происходит ее взаимодействие с поверхностью отверстия, при этом имеют место рикошет и искривление KC в косой УВ [5]. В результате глубина бронепробития искривленной KC значительно уменьшается. Итак, экспериментально исследовано взаимодействие КС с преградой, имеющей осевое отверстие. Определен диаметр отверстия в преграде, обеспечивающий беспрепятственное прохождение КС. При диаметре отверстия, приближенно равном 0,2 калибра заряда, установлено значительное уменьшение глубины бронепробития КС, что объясняется искривлением КС вследствие рикошета на поверхности отверстия.

ЛИТЕРАТУРА

- 1. Растопшин М. М. Способы борьбы с танками, оснащенными динамической защитой // Техника и вооружение. 1977. № 10. С. 14–20.
- 2. Тарасов В. А., Баскаков В. Д., Дубовской М. А. Влияние технологической наследственности на пробивное действие кумулятивных зарядов // Оборон. техника. 1995. № 4. С. 54–59.
- 3. **Физика** взрыва / Под ред. Л. П. Орленко. М.: Физматлит, 2004. Т. 2. С. 299–309.
- 4. **Лаврентьев М. А.** Проблемы гидродинамики и их математические модели / М. А. Лаврентьев, Б. В. Шабат. М.: Наука, 1973. С. 260–270.
- 5. Фомин В. М. Высокоскоростное взаимодействие тел / В. М. Фомин, А. И. Гулидов, Г. А. Сапожников и др. Новосибирск: Изд-во СО РАН, 1999. С. 387–390.

Поступила в редакцию 24/IX 2007 г., в окончательном варианте — 12/XI 2007 г.