2009. Tom 50. № 2

Март – апрель

C. 302 - 310

УДК 541.221:546.56+546.76

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ CuCrS₂: СТРУКТУРНОЕ И ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ

© 2009 И.Г. Васильева¹*, Т.Ю. Кардаш², В.В. Малахов²

Статья поступила 16 июля 2008 г.

Методами порошковой рентгенометрии и дифференцирующего растворения изучены состав и структура порошка CuCrS2, синтезированного сульфидированием смеси оксидов $Cu_2O:Cr_2O_3 = 1:1$ при 850 °C и охлажденного до комнатной температуры со скоростью 60 °С/мин. Обнаружена ромбоэдрическая фаза CuCrS₂ (пространственная группа R3m), стехиометрическая по составу, с беспорядком в медной подрешетке из-за размещения меди в тетраэдрических и октаэдрических позициях с фактором заполнения последних на 10 %. Структура CuCrS₂ с занятием октаэдров атомами меди при комнатной температуре обнаружена впервые, поскольку в ранее известных структурах атомы меди занимают только тетраэдрические позиции, а вероятность заполнения ими октаэдров появляется при температурах вблизи 400°C (переход порядок—беспорядок). Фаза CuCrS₂ как частично разупорядоченная является промежуточной на пути к полному упорядочению. Показано нестабильное состояние быстро охлажденного порошка CuCrS₂: при повторном нагреве до 500 °C с длительным отжигом в режиме 390 \rightarrow 180 \rightarrow \rightarrow 80 \rightarrow 25 °C его переход к стабильному состоянию сопровождается выделением 2— 4 мас.% фазы Cu_0S_5 . Реальный состав тройного сульфида после выделения фазы Cu_0S_5 обсуждается с привлечением данных структурного метода, дифференцирующего растворения и измерений магнитных свойств.

Ключевые слова: тройной медь-хром-сульфид, частично упорядоченные фазы, структура, состав, фазовые переходы.

ВВЕДЕНИЕ

В настоящее время порошки $CuCrS_2$ интенсивно изучаются, поскольку при высоких температурах $CuCrS_2$ проявляет свойства суперионного проводника, а при низких — магнитного. Слоистая структура этого соединения описывается ромбоэдрической симметрией и принадлежит к структурному типу α -NaFeO2 с пространственной группой R3m [1—3]. В рамках этой структуры известны низко- и высокотемпературная полиморфные модификации $CuCrS_2$, превращение которых при 402 °C описывается обратимым фазовым переходом II рода. Переход проходит без заметных изменений параметров решетки и обусловлен разным распределением атомов меди в медной подрешетке. При беспорядке атомы меди статистически распределены в α - и β -тетраэдрических пустотах, при упорядочении они занимают только α -позиции (обозначения α и β введены в [4, 5]). По результатам исследований методами ДТА и ДСК превращение порядок—беспорядок считают быстрым и полностью завершающимся при температуре 402 °C [3, 6]. При этом электрические и магнитные свойства высокотемпературных порошков $CuCrS_2$, имеющих одинаковый набор межплоскостных расстояний, меняются от образца к образцу и зависят от условий синтеза последних [7—9].

¹Институт неорганической химии им. А.В. Николаева СО РАН

²Институт катализа им. Г.К. Борескова СО РАН

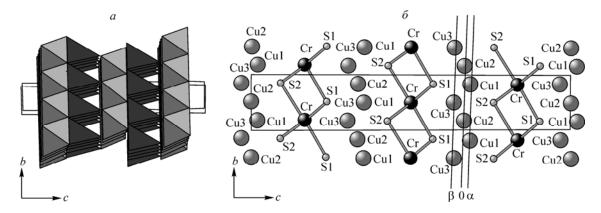
^{*} E-mail: kamarz@che.nsk.su

В материаловедении влияние структурного упорядочения на физические свойства соединений хорошо известно, поэтому проявление этого эффекта на свойствах CuCrS₂ также ожидаемо. Обычно порошки CuCrS₂ получают при температурах между 850 и 1200 °C и охлаждают до комнатной температуры в течение от минут до недель; различие в температурно-временных условиях синтеза будет влиять на масштаб структурного беспорядка. Следует принимать во внимание и тот факт, что закалка или быстрое охлаждение, согласно общей теории упорядочения [10], формирует нестабильное состояние образцов, насыщенное неравновесными вакансиями и с градиентным распределением подвижного компонента между поверхностными слоями и объемом зерен. При повторных нагревах нестабильного образца вакансии являются движущей силой перехода к стабильному состоянию, а характер упорядочения зависит от кинетики процесса порядок—беспорядок.

Настоящее исследование нацелено на определение реального состояния порошка $CuCrS_2$, полученного при $850\,^{\circ}C$ и охлажденного до $20\,^{\circ}C$ со скоростью $60\,^{\circ}C$ /мин, порции которого далее подвергали термообработке в разных режимах для обеспечения разной степени структурной упорядоченности. Экспериментальное доказательство разнообразия структур порошков $CuCrS_2$ имело стимулирующее значение для настоящего исследования еще и с позиций объяснения причин разброса свойств, поскольку до сих пор получение качественных и больших кристаллов $CuCrS_2$ остается нерешенной проблемой, а перспективность соединения $CuCrS_2$ как материала оценивается по свойствам, измеряемым на порошках.

Для характеристики реального состояния порошков использовали порошковую рентгенографию как структурный и дифференцирующее растворение как химический методы. Анализ данных порошковой рентгенографии включал установление фазового состава, рассмотрение возможных структурных моделей, выявление перераспределения интенсивности дифракционных пиков в зависимости от распределения атомов меди и уточнение моделей методом полнопрофильного анализа (метод Ритвельда). Поведение образцов в растворах кислот изучали для идентификации легкоподвижных ионов меди. Известно, что в суперионных соединениях подвижные ионы перемещаются в твердой среде со скоростью, часто сопоставимой с таковой в жидких средах [11]. Эта способность слоистых соединений обмениваться в растворах своими подвижными ионами с ионами других металлов или протонами растворителя без разрушения исходной структуры хорошо известна. И постадийное деинтеркалирование составляет основу синтеза катионно-смешанных слоистых соединений [12—14]. Селективность извлечения подвижных ионов металла при взаимодействии твердых оксидов Mn_3O_4 , Pb_3O_4 Pr_7O_{11} , TbO_x с кислотами, связанная со спецификой их размещения в структуре оксидов, показана и в [15, 16]. Здесь неэквивалентность кристаллографических позиций, занимаемых разными типами ионов металла одной природы, подтверждена специальным экспериментом с использованием электронного микроскопа. С этих позиций поведение порошков CuCrS₂ в кислотном растворителе изучали с целью извлечения дополнительной информации о характере размещения ионов меди в структуре соединения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


Исходный порошок CuCrS2 (образец 1) получен сульфидированием смеси оксидов $Cu_2O:Cr_2O_3=1:1$ при 850 °C в течение 44 ч с последующим охлаждением до комнатной температуры со скоростью 60 °C. Порции образца 1 выдерживали в вакууме в разных режимах. Температурно-временной режим для образца 2, а именно: 1 сутки при 500 °C, 4 суток при 390 °C, 7 суток при 180 °C, 6 суток при 80 °C и охлаждение до 25 °C со скоростью 25°/мин, был выбран в обеспечение равновесного упорядоченного состояния. В термическом эксперименте *in situ* в вакуумной камере использовали пошаговый нагрев образца 1 со скоростью 0,5 °C/с в режиме $25 \rightarrow 300 \rightarrow 500$ °C и дальнейшее охлаждение его до комнатной температуры со скоростью 20 °C/мин. Условия этого эксперимента (один и тот же образец на платиновой подложке) практически исключали влияние эффекта текстурирования образца на результаты расчета интенсивности рефлексов в структурных исследованиях.

Дифракционные измерения проводили на дифрактометре X'TRA (Thermo ARL) с использованием CuK_{α} -излучения. По аналогии с [2, 3] съемка проведена в интервале углов $2\theta = 10$ — 70° (интервал рефлексов с $I/I_0 \ge 1$ %) с шагом $0,02^{\circ}$ и временем накопления в точке 5 с. Уточнение кристаллической структуры проводили методом полнопрофильного анализа по программе GSAS [17]. Программу PCW [18] применяли для уточнения параметров решетки, выявления возможных позиций размещения атомов меди в структуре $CuCrS_2$, теоретических расчетов интенсивности пиков при вариации типов позиций и фактора их заполнения (ФЗП) атомами. В эксперименте *in situ* использован дифрактометр D8 (Bruker) и условия съемки: CuK_{α} -излучение, графитовый монохроматор на отраженном пучке, геометрия съемки с параллельным пучком. Интервал углов сканирования по шкале $2\theta = 12$ — 70° с шагом $0,02^{\circ}$, накопление в каждой точке 5 с.

Выбор растворителя твердых образцов $CuCrS_2$, имеющих, согласно [4], высокую подвижность ионов меди при комнатной температуре, базировался на теории метода ДР [19] и его рекомендации использовать растворители с высокими значениями химического потенциала для подавления процесса селективного извлечения подвижных ионов твердых соединений. Порошки $CuCrS_2$ растворяли в: 1,2N HCl при 20—60°C; чередующихся кислотах 1,2N HCl $\rightarrow 3N$ HNO₃ при 20—60°C и 3N HNO₃ при 20—80°C. Характер растворения порошков не менялся при смене растворителя, и выбор остановлен на 3N HNO₃ при 20—80°C, в которой образцы растворялись полностью в течение 25—30 мин.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для вариантов уточнений структуры $CuCrS_2$ в качестве исходной модели использованы структурные данные [1—3], согласно которым $CuCrS_2$ имеет ромбоэдрическую ячейку (пр. гр. R3m, a=3,483 Å, c=18,720 Å) с несколько искаженной от плотнейшей упаковкой атомов серы. Ионы Cr^{3+} занимают октаэдрические пустоты, образуя матричные слои CrS_2 , между которыми располагаются ионы Cu^{1+} в тетраэдрических пустотах (α -позиции) (рис. 1, a). Анализ структуры выявил три позиции (α - и β -тетраэдры и o-октаэдры), которые могут быть заняты дополнительными атомами меди, но расстояния между которыми исключают возможность их одновременного заполнения (см. рис. 1, δ). Независимые координаты атомов исходной модели приведены в табл. 1. Уточнение в распределении атомов меди выполняли перебором возможных позиций и степенью их заполнения. На первом этапе уточнения атомы меди занимали только α -позиции с $\Phi 3\Pi = 1$. Уточнение всех профильных параметров, фона рентгенограмм, параметров решетки, положения нуля, профиля пиков при этом приводило к R-фактору в 10 %. Дальнейшее уточнение координат z атомов серы и меди уменьшало R-фактор. Уточнение $\Phi 3\Pi$ (с фик-

 $Puc.\ I.$ Полиэдрическое представление кристаллической структуры $CuCrS_2$ вдоль [100] с α -тетраэдрическими позициями, занятыми атомами меди — a; проекция элементарной ячейки структуры $CuCrS_2$ на плоскость [100] с возможными положениями атомов меди в α -, β -тетраэдрических и o-октаэдрических позициях: начало координат исходной ячейки в позиции атома Cr — δ

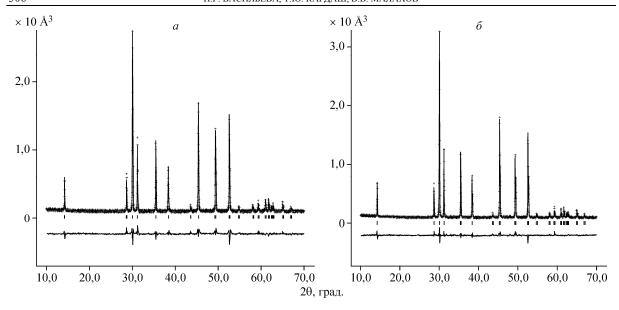
Таблица 1

Исходные	данные	для	<i>уточнения</i>	структуры

Атом	Позиция	x	у	z	ФЗП	Атом	Позиция	х	У	z	ФЗП
Cr1	3a	0	0	0	1	Cu3 (β)	3a	0	0	0,865	0
Cu1 (a)	3a	0	0	0,148	1	S1	3a	0	0	0,264	1
Cu2 (o)	3a	0	0	0,5	0	S2	3a	0	0	0,741	1

Таблица 2

Параметры решетки, координаты, ФЗП и тепловые параметры после уточнения структуры CuCrS₂

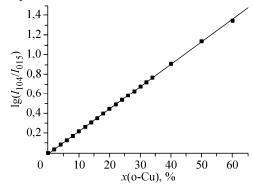

Параметры элементарной ячейки и межатомные расстояния		Атом	Образец 1			Образец 2			
	Обр. 1	Обр. 2		z*	ФЗП	$U_{\scriptscriptstyle \rm H30}$ · 100	z*	ФЗП	$U_{\scriptscriptstyle \rm H30}\!\cdot\!100$
<i>a</i> , ±0,001 Å <i>c</i> , ±0,003 Å	3,481 18,700	3,481 18,703	Cu(1)-α Cu(2)-ο Cr(1) S(1) S(2)	0,14(9) 0,50(0) 0,000 0,26(8) 0,74(4)	0,91 0,09 1,00 1,00 1,00	1,73 80,00 1,11 0,82 0,61	0,14(7) 0,52(9) 0,000 0,26(5) 0,74(2)	0,97 0,03 1,00 1,00 1,00	3,37 73,78 1,25 2,01 1,04

^{*} Координаты x, y = 0 (частная позиция симметрии — 3m (00z)).

Таблица 3 Межатомные расстояния после уточнения структуры CuCrS₂

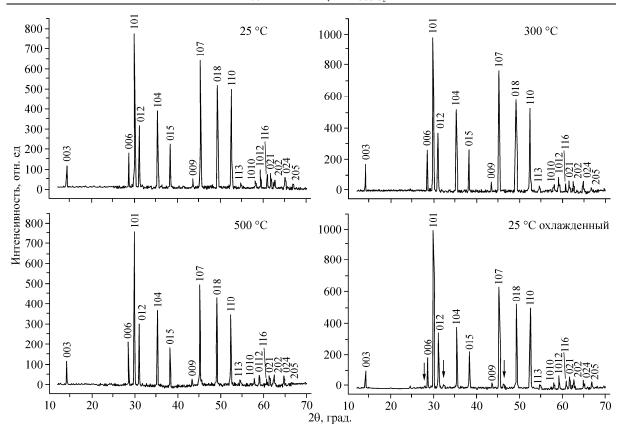
Атом1—Атом2	Расстояние, Å		Полиэдр	Атом1—Атом2	Рассто	Полиэдр		
AIOMI—AIOM2	Образец 1	Образец 2	Полиэдр	AIOMI—AIOM2	Образец 1	Образец 2	полиэдр	
G (1) G(1)	2.210	2 200	_, ,	G (1) G(1)	2.256	2.255		
Cu(1)— $S(1)$	2,218	2,209	$T(\alpha)$	Cr(1)— $S(1)$	2,356	2,377	0	
Cu(1)— $S(2)$	2,416	2,417		Cr(1)— $S(2)$	2,477	2,457		
Cu(2)—S(1)	2,758	2,730	0	Cr(1)—Cu(1)	2,788	2,756		
Cu(2)—S(2)	2,613	2,635						
Cu(2)—Cu(3)	2,037	2,042						

сируемым изотропным температурным фактором) показало наличие вакансий в α -позициях. Значение R-фактора снижалось до 7 % при заполнении атомами меди o-позиций на 10 %, с сохранением фактора занятости α - и o-позиций равным единице. При таком уточнении тепловой параметр атомов меди в октаэдрах (с фиксированным Φ 3П) был много выше, чем для других атомов, свидетельствуя о статистическом расположении атомов меди относительно средней позиции центра октаэдра. Ввод дополнительных атомов меди в тетраэдрические β -позиции не уменьшал R-фактора, но отрицательное значение Φ 3П указывало на то, что такое заполнение не имеет физического смысла. Результаты финального этапа уточнения всех параметров представлены в табл. 2 и 3, а результаты уточнения расчетного и экспериментального профиля рентгенограмм (R_p = 5,1 %, wR_p = 7,5 %) приведены на рис. 2, a. Аналогичные расчеты для образца 2 показали, что при практически равных финальных значениях R-фактора o-позиции атомами меди в нем заняты на 3 % при высоких относительно других атомов значениях тепловых параметров (см. табл. 2, 3). Расчетная и экспериментальная рентгенограммы (R_p = 4,8 %, wR_p = 6,2 %) образца 2 даны на рис. 2, δ . Отметим, что полнопрофильный анализ проведен без введения поправки на возможную текстуру образцов 1 и 2 и без использования специальных



Puc.~2.~ Рентгенограммы порошков CuCrS $_2$: + экспериментальная, — расчетная и разностная для образца 1-a и образца $2-\delta$

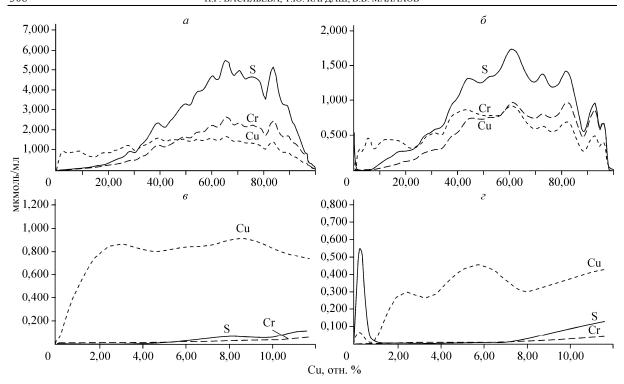
процедур, ее исключающих. Однако хорошая сходимость расчетных и экспериментальных рентгенограмм указывает на незначительный вклад текстуры в получаемые экспериментальные данные или на ее отсутствие.


Расчет теоретических рентгенограмм с учетом тетраэдрических и октаэдрических позиций и их ФЗП атомов меди показал, что вакансии в α-тетраэдрах и заполнение *о*-октаэдров ведет к перераспределению интенсивностей рефлексов (104) и (015) медной подрешетки. Достаточная интенсивность, положение в средней области рентгенограмм и неперекрывание рефлексов (104) и (015) с другими позволили построить калибровочный график изменения соотношений их интенсивности относительно разупорядочения атомов меди в медной подрешетке (рис. 3). Эта зависимость в логарифмических координатах выражалась прямой линией до ФЗП атома меди в октаэдрической позиции, равного 30 %. Графическая оценка разупорядочения в медной подрешетке была особенно полезна в эксперименте *in situ*, где сложно обеспечить прецизионную съемку с большим накоплением, требуемым для полнопрофильного анализа рентгенограмм, снимаемых при различных температурах в одном эксперименте. По графической оценке значение ФЗП октаэдрической позиции атома меди в образце 1 составляло 10 %, что хорошо согласовывалось с расчетом полнопрофильного анализа.

Рентгенограммы CuCrS₂ образца 1 эксперимента *in situ* даны на рис. 4. Нагрев от 25 до 500 °C приводил к тепловому расширению элементарной ячейки с изменением параметра a от 3,479 до 3,490 Å ($\Delta a = \pm 0,002$ Å) и параметра c от 18,687 до 18,751 Å ($\Delta c = \pm 0,003$ Å), а также к возрастанию ФЗП октаэдрических позиций (графическая оценка) от 10 до 14 ат.% (табл. 4). При охлаждении от 500 до 25 °C все величины возвращались к прежним значениям, но в охлаж-

денном образце обнаружены дополнительные линии с d_{hkl} = 3,20, 2,77 и 1,96 Å, относящиеся к фазе Cu₉S₅ (ICDD-PDF-2 — 00-047-1748). При этом не было замечено изменения интенсивности пика (104) (нормирование относительно пика (101) с I_0 = 100 %) в охлажденном образце относительно исходного образца 2.

Рис. 3. Изменение отношения интенсивностей рефлексов (104) и (015) в зависимости от степени заполнения атомами меди октаэдрических позиций (ат. %)



Puc. 4. Рентгенограммы превращений CuCrS₂ образца 1, измеренные *in situ* в температурных режимах $25 \rightarrow 300 \rightarrow 500 \rightarrow 25$ °C. Стрелками обозначены линии, относящиеся к сульфиду меди Cu₉S₅

Кинетические кривые растворения $CuCrS_2$ во всех испытанных растворителях были идентичны, указывая всегда на присутствие в образцах двух типов ионов меди. Растворение образцов в 3N HNO₃, нагреваемой от 20 до 80 °C, показано на рис. 5, a, δ . Видно, что в начальной стадии растворения (3N кислота при 20 °C) селективно извлекается небольшая часть ионов меди за счет обменной реакции с протонами растворителя. Твердый образец при этом не растворяется, на что указывает отсутствие в растворе других элементов, входящих в его состав. Растворение начинается в горячей кислоте, и в растворе появляются одновременно ионы трех элементов — Cr, S и Cu (оставшаяся часть ионов). Ионы меди, обменивающиеся с протонами растворителя, идентифицированы нами как подвижные, а оставшиеся — как прочно связанные со слоями CrS_2 матрицы. Согласно рис. 5, 6, ϵ содержание подвижных ионов меди составляет \sim 15 и \sim 5 % в образцах 1 и 2 соответственно. Очевидно, что оба типа ионов меди имеют разное окружение в структуре и расположены в разных кристаллографически независимых позициях. В [4] рост ионной проводимости образцов $CuCrS_2$ при температурах вблизи 400 °C авторы

 $\begin{tabular}{ll} T a б л и ц a & 4 \\ $\varPi a$ параметры решетки и количество атомов меди в октаэдрических позициях \\ $cmpyкmypы $CuCrS_2$ образца 1 при различных температурах \\ \end{tabular}$

T, °C	a ±0,001 Å	c ±0,003 Å	$\lg(I_{104}/I_{015})$	<i>x</i> (<i>o</i> -Cu), %
25 (исходный)	3,479	18,687	0,26	11
300	3,486	18,726	0,29	13
500	3,490	18,751	0,31	14
25 (конечный)	3,479	18,689	0,23	10

Puc. 5. Кинетические кривые растворения элементов Cu, Cr и S в 3N HNO₃, нагреваемой от 25 до 80 °C, в зависимости от общего содержания меди в твердом образце и начальные участки этих кривых: образец 1 - a и e; образец 2 - b и e

объясняют частичной занятостью атомами меди *о*-позиций и образованием туннеля близлежащими октаэдрическими и тетраэдрическими пустотами, по которому атомы меди могут перемещаться с высокой скоростью. Если принять, что подвижные ионы меди размещены в октаэдрах, а прочно связанные в тетраэдрах, тогда их количества, определенные методом ДР, достаточно близки (с небольшим завышением) к величинам, найденным рентгенографическим уточнением состава образцов 1 и 2. Сходимость результатов разнородных методов свидетельствует о надежности результатов структурных данных.

Из проведенного эксперимента следует, что переход от образца 1 к образцу 2 сопровождается не только тонкими структурными эффектами, но и изменением их фазового состояния. Образец 1 по данным трех методов (РФА, ДР и ДСК) определен как однофазный. Образец 2 и он же после эксперимента *in situ* является двухфазным. Сульфид меди в образце 2 с содержанием 2—3 мас.% определен из профиля начального участка кинетических кривых растворения методом ДР, чувствительность которого к фазовой неоднородности на 2—3 порядка выше, чем РФА [19] (см. рис. 5, δ , ϵ). Фаза Cu_9S_5 (3—4 мас.%) обнаружена рентгенографически в охлажденном по завершению эксперимента *in situ* образце 2.

Усредненный брутто-состав образцов 1 и 2 как $Cu_{1,05(3)}Cr_{0,98(3)}S_{2,00(4)}$ был определен химически с погрешностью определения элементов 3—4 %. Он выведен по данным анализа нескольких навесок образцов с применением атомно-эмиссионного метода с индуктивно связанной плазмой. Видно, что реальный состав отличается от заложенного при синтезе соотношения Cu:Cr=1:1 небольшим избытком меди. Такое отклонение укладывается в интервал погрешности, обусловленной операцией взвешивания исходных оксидов Cu_2O и Cr_2O_3 и их фазовой чистотой марки "ч.д.а.".

Для однофазного образца 1 брутто-состав соответствует составу тройного сульфида. Состав тройного сульфида в случае двухфазного образца 2 определен как $Cu_{1,01(3)}Cr_{0,98(3)}S_{2,00(4)}$. Он получен вычитанием количества меди, израсходованной на образование бинарной фазы Cu_9S_5 . Тогда различие в составе тройного сульфида образцов 1 и 2 означает, что превращение неста-

бильного и пересыщенного по меди твердого раствора в стабильное состояние обусловлено стремлением фазы к стехиометрии. Похоже, что избыточное над стехиометрией количество меди образца 1 сосредоточено в поверхностных слоях зерен, структура которых разупорядочена и может иметь незаполненные полости. О таком строении зерен свидетельствует и ряд фактов. Так, выделение сульфида меди не изменяет ни параметров ячейки образцов 1 и 2 (см. табл. 2), ни степени заполнения позиций атомами меди (см. табл. 4). Завышенное же содержание ионов подвижной меди, найденное методом ДР относительно результатов уточнения структуры (~15 против 10 %), объясняется дополнительным вкладом ионов меди, содержащихся в поверхностных слоях зерен и переходящих в раствор на начальной стадии. С такой моделью строения зерен согласуется и экспериментальная величина полного магнитного момента $\mu_{30} = 3.75 \mu_{\rm B}$, рассчитанная из зависимости $\chi^{-1}(T)$, измеренной для образца 2. Она хорошо совпадает с ожидаемой величиной $3.87\mu_{\rm B}$ для иона хрома (S=3/2), подтверждая тем отсутствие иных, чем парамагнитных ${\rm Cr}^{3+}$ ионов и диамагнитных ${\rm Cu}^{1+}$, т.е. стехиометрию, определяемую химически. Катионная же нестехиометрия в обеспечение электронейтральности фазы приводила бы к перераспределению зарядов ионов меди и/или хрома, и с появлением дополнительных парамагнитных ионов значимо менялась бы и величина $\mu_{\text{зф}}$. И, наконец, структурный беспорядок поверхностных слоев зерен не является спецификой порошков CuCrS₂ (1), такое состояние типично для быстро охлажденных образцов самой разной природы, примеры которых можно найти в [10, 20].

Таким образом, проведенные рентгенографические и химические исследования показали существование при комнатной температуре стехиометрической фазы $CuCrS_2$ ромбоэдрической симметрии с распределением атомов меди совокупно по двум разным позициям, тетраэдрической и октаэдрической, заполненными на 90 и 10 % соответственно. Фаза с таким размещением атомов меди выявлена впервые, и ее существование обусловлено конкретными условиями синтеза. Она отличается от ранее исследованных фаз, где октаэдрические позиции всегда вакантны при комнатной температуре [1—4]. По сути, это промежуточная фаза при переходе неупорядоченной структуры к упорядоченной. Отметим, что хотя частичное упорядочение этой фазы происходит достаточно быстро, но оно не приводит к упорядоченной структуре с идеальным дальним порядком даже после отжига в течение длительного времени. В других режимах получены упорядоченные фазы $CuCrS_2$ с атомами меди в одной из тетраэдрических позиций [3, 4]. Для них разупорядоченность наступает только вблизи температур 400 °C, когда атомы меди размещаются как в o-, так и β -позициях [4]. Это означает, что переход от беспорядка к порядку для $CuCrS_2$ имеет непрерывный характер с адаптацией структуры к меняющимся условиям синтеза.

Дополнительно к эффекту структурного упорядочения, специфика поверхностных состояний зерен порошков также вносит свой вклад в величины измеряемых физических свойств. Обе эти особенности порошков $CuCrS_2$ следует рассматривать скорее как явление типичное, нежели исключительное. В ситуации, когда физические свойства обусловлены реальным состоянием образца, прогресса в области материаловедения можно ждать, когда материал, чьи свойства изучаются, будет детально охарактеризован химически и структурно.

Работа выполнена при финансовой поддержке ИНТАС, проект 06-1000013-9002, и программы ОХНМ РАН, проект № 5.2.2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bonger P.F., Bruggen C.F., Koopstra J. et al. // J. Phys. Chem. Solids. 1968. 29. P. 977.
- 2. Engelsman F.M., Wiegers G., Jellinek F. et al. // J. Solid State Chem. 1973. 6. P. 574.
- 3. Le Nagard N., Collin G., Gorochov O. // Mater. Res. Bull. 1979. 14. P. 1411.
- 4. Альмухаметов Р.Ф., Якшибаев Р.А., Габитов Э.В., Абдуллин А.Р. // Физика твердого тела. 2000. 42.-C.1465.
- 5. Brüsch P., Yimba T., Büher W. // Phys. Rev. B. 1983. 27. P. 5052.
- 6. Murphy D.W., Chen H.S., Tell B. // J. Electrochem. Soc. 1977. 124. P. 1268
- 7. Abramova G.M., Petrakovskii G.A., Vorotynov A.M. et al. // JETP Let. 2006. 83. P. 118.

- 8. *Tsujii N., Kitazawa H.* // J. Phys.: Condens. Mat. 2007. 19. P. 1.
- 9. Абрамова Г.М., Петраковский Г.А., Воротынов А.М., Великанов А.Н. // Письма в ЖЭТФ. 2006. **83**. С. 148.
- 10. Панин В.Е., Фадин В.П., Дударев Е.Ф. // Укр. физ. журн. 1963. 8. С. 195.
- 11. *Himba T.* // Solid State Commun. 1980. **33**. P. 445.
- 12. Schöllerhorn R. // Physica. 1980. 99B. P. 89.
- 13. Left A., Schöllerhorn R. // Inorg. Chem. 1977. 16. P. 2950.
- 14. Schöllerhorn R., Sick E., Left A. // Mater. Res. Bull. 1975. 10. P. 1005.
- 15. *Kang Z., Eyring L.* // J. Solid State Chem. 1988. **75**. P. 52.
- 16. Brauer G., Pfeiffer B. // Angew. Chem. 1962. 1. S. 551.
- 17. *Toby B.H.* // J. Appl. Crystallogr. 2001. **34**. P. 210.
- 18. Klaus W., Nolze P. // Ibid. 1996. 29. P. 301.
- 19. Малахов В.В., Васильева И.Г. // Успехи химии. 2008. 77. С. 370.
- 20. Hayward M.A., Ramierez A.P., Cava R.J. // J. Solid State Chem. 2002. 166. P. 389.