УДК 546.65-16: 536.21

Температурные и концентрационные зависимости теплопроводности твердых растворов сульфидов гадолиния и диспрозия

С.М. Лугуев¹, Н.В. Лугуева¹, В.В. Соколов²

¹Институт физики им. Х.И. Амирханова ДНЦ РАН, Махачкала ²Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

E-mail: luguev.if@mail.ru

В диапазоне температур 80–400 К выполнено экспериментальное исследование теплопроводности ряда составов твердых растворов системы сульфидов гадолиния и диспрозия. В работе приведены данные о коэффициенте теплопроводности и теплопроводности решетки исследованных образцов. Установлено, что замещение ионов гадолиния ионами диспрозия приводит к существенному уменьшению коэффициента теплопроводности образцов и изменению характера его температурной зависимости вследствие резонансного рассеяния фононов парамагнитными ионами диспрозия. Влиянием этого механизма рассеяния фононов обусловлена наблюдающаяся на концентрационной зависимости коэффициента теплопроводности область аномального изменения.

Ключевые слова: теплопроводность, сульфиды гадолиния и диспрозия.

Интерес к изучению сульфидов редкоземельных элементов со структурой фосфида тория связан с возможностью применения ряда этих соединений в качестве рабочих элементов термоэлектрических преобразователей энергии, что обусловлено высокой температурой плавления, возможностью самолегирования при непрерывном изменении состава и низкой теплопроводностью [1]. Коэффициент теплопроводности к является одной из важных характеристик, необходимых для оценки перспективности технического применения термоэлектрического материала. Исследования теплопроводности и термоэлектрических свойств твердых растворов на основе сульфида гадолиния GdS_x (1,469 $\leq x \leq 1,50$) показали, что эти соединения имеют низкие значения коэффициента теплопроводности [2-4], и среди них имеются составы с высокими значениями термоэлектрической эффективности [5, 6]. Для повышения термоэлектрической эффективности материала обычно добиваются снижения его теплопроводности, создавая в нем дополнительные центры рассеяния фононов. Такими центрами для системы GdS_x могут быть легирующие парамагнитные ионы редкоземельного элемента, рассеивающие фононы и снижающие теплопроводность без изменения электрических характеристик соединения. В работе [7] было показано, что парамагнитные ионы диспрозия являются эффективными центрами рассеяния фононов. В работах [5, 6] приведены данные

© Лугуев С.М., Лугуева Н.В., Соколов В.В., 2012

концентрационной зависимости коэффициента теплопроводности твердых растворов системы $Gd_{1-c}Dy_cS_x$ ($0 \le c \le 1, x \approx 1,48$) при 300 К. В настоящей работе выполнены исследования температурной зависимости κ ряда образцов этой системы в широком интервале температур (80–400 K) с целью изучения характера влияния на теплопроводность процессов рассеяния фононов парамагнитными ионами диспрозия в зависимости от температуры.

Синтез соединений соответствующих составов осуществлялся сульфидированием оксидов гадолиния и диспрозия методом, разработанным для сульфидов и оксисульфидов редкоземельных металлов [8]. Кристаллизация синтезированных составов проводилась из расплава в инертной атмосфере протягиванием реактора с графитовым тиглем через одновитковый индуктор. Полученные цилиндрические образцы кристаллов были диаметром 10 мм и высотой 10–30 мм. Для исследования теплопроводности из центральной, наиболее однородной части слитка вырезались образцы. Состав образцов контролировался по данным газохроматографические ского анализа [9] с точностью 0,015 вес. % по сере. По результатам рентгеновских измерений образцы имели структуру типа Th_3P_4 .

Измерения коэффициента теплопроводности выполнены абсолютным стационарным методом, основанном на создании осевого теплового потока через исследуемые образцы, на установке, подобной установке типа "А" из работы [10], где приведены принципиальная схема измерительной ячейки прибора и расчетные формулы. В измерительной ячейке прибора между двумя одинаковыми образцами располагался нагреватель, который имел толщину 0,3 мм и сечение, равное сечению образцов. Тепловой поток от нагревателя создавал в обоих образцах разность температур, измерявшуюся индивидуально отградуированными медьконстантановыми термопарами (диаметр проволок меди и константана равен 0,1 мм). Термопары припаивались к серебряным штифтам, вставленным в тонкие параллельные отверстия (диаметр отверстий 0,3 мм), просверленные в образцах. Благодаря высокой теплопроводности серебра, штифты быстро принимали среднюю температуру данного сечения. Потери тепла излучением с поверхности образцов учитывались расчетным методом. Поскольку мы не имели данных о величине и температурной зависимости коэффициента лучеиспускания исследованных твердых растворов, то боковые поверхности образцов зачернялись, что позволяло считать коэффициент лучеиспускания такой поверхности близким к коэффициенту лучеиспускания абсолютно черного тела. Для исключения погрешностей, обусловленных конвективным теплообменом, в приборе создавался высокий вакуум. Погрешность измерений не превышала 3-4 % в зависимости от области температур. Одновременно с измерениями κ на тех же образцах проводились измерения электропроводности σ и термоэдс а, что позволяло определить электронную составляющую теплопроводности к₂. Медные ветви термопар использовались для определения разности потенциалов между зондами при измерении электропроводности образцов и измерении термоэдс.

Результаты измерений коэффициента теплопроводности исследованных образцов приведены в табл. 1. На рис. 1 представлены температурные зависимости коэффициента теплопроводности образцов: $GdS_{1,48}$ (образцы, не содержащие парамагнитных ионов), $Gd_{0,6}Dy_{0,4}S_{1,48}$ (из области составов, где теплопроводность слабо зависит от концентрации ионов Dy), $Gd_{0,2}Dy_{0,8}S_{1,48}$ (образцы с минимальной теплопроводностью в этой системе при 300 К [5, 6]) и $DyS_{1,48}$.

Анализ механизмов переноса тепла в исследованных соединениях показывает, что перенос тепла в них осуществляется колебаниями кристаллической решетки и свободными электронами. Электронная компонента теплопроводности

Таблица 1

Коэффициент теплопроводности сульфидов гадолиния и диспрозия

Т, К	κ , BT/M·K					
	GdS _{1,48}	$Gd_{0,6}Dy_{0,4}S_{1,48}$	$Gd_{0,4}Dy_{0,6}S_{1,48}$	$Gd_{0,2}Dy_{0,8}S_{1,48}$	DyS _{1,48}	
80	1,32	0,98	0,88	0,71	0,85	
100	1,32	1,00	0,89	0,73	0,87	
120	1,30	1,01	0,90	0,74	0,88	
140	1,29	1,02	0,91	0,75	0,88	
160	1,27	1,02	0,91	0,75	0,89	
180	1,25	1,02	0,92	0,76	0,90	
200	1,23	1,02	0,93	0,76	0,90	
220	1,20	1,02	0,93	0,76	0,89	
240	1,17	1,02	0,94	0,76	0,88	
260	1,14	1,02	0,93	0,76	0,87	
280	1,12	1,01	0,93	0,75	0,86	
300	1,10	1,01	0,92	0,74	0,85	
320	1,08	1,00	0,91	0,73	0,84	
340	1,05	0,99	0,9	0,72	0,84	
360	1,03	0,98	0,89	0,71	0,83	
380	1,01	0,97	0,87	0,69	0,82	
400	0,99	0,96	0,86	0,68	0,81	

 $\kappa_3 = L\sigma T$, где L — число Лоренца, σ — коэффициент электропроводности. Параметр L определялся с привлечением экспериментальных данных термоэдс по формулам для параболической зоны в предположении, что рассеяние носителей тока происходит в основном на колебаниях кристаллической решетки [11]. Вклад к₂ в перенос тепла в исследованных образцах колеблется от 7 до 30 % от общей теплопроводности в зависимости от состава и температуры. Нельзя ожидать в них переноса тепла электромагнитным излучением, ввиду поглощения его электронами проводимости. Теплопроводность кристаллической решетки к_р определялась как разность между экспериментальными данными к и рассчитанными значениями к_а. Данные к_р исследованных образцов приведены в табл. 2. Температурные зависимости решеточной теплопроводности образцов представлены на рис. 2. Сульфиды гадолиния и диспрозия имеют одинаковую кристаллическую структуру, близкие значения средней массы атомов, поэтому можно было ожидать, что абсолютные величины и температурные зависимости теплопроводности решетки этих материалов будут близки между собой. Как видно из рис. 2, температурные зависимости к_п образцов Gd_{0,6}Dy_{0,4} S_{1,48}, Gd_{0,2}Dy_{0,8} S_{1,48} и DyS_{1,48} подобны и имеют необычный для решеточной теплопроводности вид, причем теплопроводность у Gd_{0,2}Dy_{0,8}S_{1,48} значительно ниже, чем у Gd_{0.6}Dy_{0.4}S_{1.48}. Теплопроводность решетки GdS_{1.48} выше, чем у образцов, в которых часть ионов гадолиния замещена ионами диспрозия, и имеет отличающуюся от них температур-

ную зависимость в области T < 300 К.

Анализ данных к_р показывает, что основными механизмами рассеяния фононов в исследованных образцах являются фононфононные процессы и процессы рассеяния

Рис. 1. Температурные зависимости коэффициента теплопроводности $GdS_{1,48}(1)$, $Gd_{0,6}Dy_{0,4}S_{1,48}(2)$, $DyS_{1,48}(3)$, $Gd_{0,2}Dy_{0,8}S_{1,48}(4)$.

377

Таблица 2

Т, К	$\kappa_{\rm p}$, ${ m Bt/M}\cdot{ m K}$					
	GdS _{1,48}	$Gd_{0,6}Dy_{0,4}S_{1,48}$	Gd _{0,4} Dy _{0,6} S _{1,48}	Gd _{0,2} Dy _{0,8} S _{1,48}	$\mathrm{DyS}_{1,48}$	
80	1,23	0,90	0,80	0,63	0,76	
100	1,20	0,90	0,79	0,63	0,75	
120	1,18	0,90	0,78	0,62	0,75	
140	1,16	0,89	0,78	0,62	0,74	
160	1,14	0,89	0,77	0,61	0,75	
180	1,11	0,87	0,77	0,61	0,75	
200	1,08	0,86	0,76	0,60	0,74	
220	1,04	0,85	0,76	0,60	0,73	
240	1,00	0,84	0,76	0,60	0,71	
260	0,97	0,84	0,75	0,60	0,7	
280	0,93	0,83	0,75	0,60	0,69	
300	0,9	0,82	0,74	0,56	0,66	
320	0,87	0,81	0,73	0,54	0,65	
340	0,85	0,80	0,72	0,53	0,64	
360	0,83	0,78	0,70	0,51	0,63	
380	0,81	0,77	0,68	0,49	0,62	
400	0,79	0,76	0,67	0,48	0,61	

Решеточная теплопроводность сульфидов гадолиния и диспрозия

фононов дефектами. В отличие от $GdS_{1,48}$, в катионной подрешетке $Gd_{0,6}Dy_{0,4}S_{1,48}$, $Gd_{0,2}Dy_{0,8}S_{1,48}$ и $DyS_{1,48}$ имеются парамагнитные ионы Dy. Резонансное рассеяние фононов на парамагнитных ионах и определяет необычный для случая фононного теплопереноса характер температурной зависимости κ_p составов $Gd_{0,6}Dy_{0,4}S_{1,48}$, $Gd_{0,2}Dy_{0,8}S_{1,48}$ и $DyS_{1,48}$.

На рис. З представлены температурные зависимости величины $-\Delta \kappa$, на которую снижается теплопроводность образцов составов $Gd_{0,6}Dy_{0,4}S_{1,48}$ и $Gd_{0,2}Dy_{0,8}S_{1,48}$ в результате замещения ионов гадолиния ионами диспрозия. Эта величина определяется как рассеянием фононов расщепленными кристаллическим полем уровнями парамагнитных ионов диспрозия, так и рассеянием фононов в результате разницы в массах ионов гадолиния и диспрозия. Поскольку вклад второго механизма в снижение теплопроводности не очень значителен (разница в массах Gd и Dy невелика), то по величине $-\Delta \kappa$ можно судить о вкладе в снижение теплопроводности не очень значителен (разница в массах Gd и Dy невелика), то по величине $-\Delta \kappa$ можно судить о вкладе в снижение теплопроводности процессов резонансного рассеяния фононов парамагнитными ионами. Как видно из рис. 3, величина $-\Delta \kappa$ состава $Gd_{0,6}Dy_{0,4}S_{1,48}$ с меньшим содержанием ионов Dy заметно ниже, чем у $Gd_{0,2}Dy_{0,8}S_{1,48}$, где Dy является основной компонентой в катионной подрешетке.

Концентрационные зависимости коэффициента теплопроводности при 300 и 400 К представлены на рис. 4. Как видно из рис. 4, замещение гадолиния диспрозием в твердых растворах $Gd_{1-c}Dy_cS_{1,48}$ в области концентраций $0 \le c \le 0,6$ приводит к незначительному снижению коэффици-

Рис. 2. Температурные зависимости решеточной теплопроводности $GdS_{1,48}$ (1), $Gd_{0,6}Dy_{0,4}S_{1,48}$ (2), $DyS_{1,48}$ (3), $Gd_{0,2}Dy_{0,8}S_{1,48}$ (4).

Рис. 3. Температурные зависимости $-\Delta \kappa$ для $\mathrm{Gd}_{0,2}\mathrm{Dy}_{0,8}\mathrm{S}_{1,48}(1)$ и $\mathrm{Gd}_{0,6}\mathrm{Dy}_{0,4}\mathrm{S}_{1,48}(2)$.

Рис. 4. Концентрационные зависимости коэффициента теплопроводности твердых растворов $Gd_{1-c}Dy_{c}S_{1,48}$ при 300 (1) и 400 (2) К.

ента теплопроводности. Существенное снижение коэффициента теплопроводности наблюдается для составов с с > 0,6, и минимальное значение κ — при с = 0,8. Таким образом, в системе Gd_{1-c}Dy_cS_{1,48} не наблюдается обычная для твердых растворов картина, когда увеличение количества замещенных атомов приводит к снижению теплопроводности и минимум на концентрационной зависимости приходится на состав с равным количеством замещающих друг друга атомов (c = 0,5). Необычность зависимости $\kappa(c)$, возможно обусловлена особенностями процессов рассеяния фононов на расщепленных кристаллическим полем уровнях ионов Dy³⁺ разной концентрации. В области составов, где ионы Dy³⁺ являются основными компонентами катионной подрешетки, теплопроводность заметно снижается.

Таким образом, в результате экспериментального исследования определены температурные зависимости коэффициента теплопроводности и теплопроводности кристаллической решетки составов системы $Gd_{1-c}Dy_cS_{1,48}$. Установлено, что необычная для фононного теплопереноса температурная зависимость коэффициента теплопроводности образцов со значениями с > 0 является следствием рассеяния фононов парамагнитными ионами диспрозия. В исследованном температурном интервале величина снижения теплопроводности в результате этого рассеяния значительно выше в составах, где ионы диспрозия являются основной компонентой в катионной подрешетке.

Список литературы

- Физические свойства халькогенидов редкоземельных элементов / Под ред. В.П. Жузе. Л.: Наука. 1973. 303 с.
- 2. Лугуев С.М., Лугуева Н.В., Соколов В.В. Теплопроводность Gd₂S₃ с избыточным содержанием гадолиния // Физика твердого тела. 2000. Т. 42, № 6. С. 1013–1016.
- 3. Лугуев С.М., Лугуева Н.В., Исмаилов Ш.М., Соколов В.В. Концентрационная зависимость теплопроводности и теплового расширения термоэлектрических материалов системы Gd-S // Термоэлектрики и их применения. Докл. IX межгосуд. семинара С.-Петербург, 2004. СПб: ФТИ им. А.Ф. Иоффе. 2005. С. 197–201.
- 4. Лугуев С.М., Лугуева Н.В., Соколов В.В. Влияние катионных вакансий на теплопроводность твердых растворов GdS_x // Неорганические материалы. 2008. Т. 44, № 8. С. 906–910.
- Luguev S.M., Sokolov V.V., Lugueva N.V. Thermoelectric properties of solid solutions based on Ln₂S₃ – Ln₃S₄ // Advanced Materials and Processing. Proc. of Russia-Japan Seminar, September 15–20, 2007. Novosibirsk. 2007. P. 71–75.

- 6. Лугуев С.М., Лугуева Н.В., Соколов В.В. Термоэлектрические свойства твердых растворов сульфидов гадолиния и диспрозия // Термоэлектрики и их применения. Докл. Х Межгосуд. семинара. С.-Петербург, 2006. СПб: ФТИ им. А.Ф. Иоффе. 2007. С. 179–183.
- **7. Лугуев С.М., Лугуева Н.В., Соколов В.В.** Теплопроводность Gd₂S₃ и Dy₂S₃ // Физика твердого тела. 1988. Т. 30, № 3. С. 873-875.
- Sokolov V.V., Kamarzin A.A., Trushnikova L.N., Savelyeva M.V. Optical materials containing rare earth Ln₂S₃ sulfides // J. Alloys and Comp. 1995. Vol. 225, No. 2. P. 567–570.
- 9. Чучалина Л.С., Васильева И.Г., Камарзин А.А. Косвенный газохроматографический метод определения состава сульфида лантана // Журнал аналитической химии. 1978. Т. 33, № 1. С. 190–192.
- **10.** Девяткова Е.Д., Петров А.В., Смирнов И.А., Мойжес Б.Я. Плавленый кварц как образцовый материал при измерении теплопроводности // Физика твердого тела. 1960. Т. 2, № 4. С. 738–746.
- **11. Смирнов И.А., Тамарченко В.И.** Электронная теплопроводность в металлах и полупроводниках. Л.: Наука, 1977. 180 с.

Статья поступила в редакцию 7 июля 2011 г.