ПОЛИМОРФИЗМ ГЕНА АПОЛИПОПРОТЕИНА Е В ПОПУЛЯЦИИ КОРЕННЫХ ЖИТЕЛЕЙ ГОРНОЙ ШОРИИ И ЕГО АССОЦИАЦИЯ С ПАРАМЕТРАМИ УГЛЕВОДНОГО ОБМЕНА

Е.В. Шахтшнейдер¹, М.И. Воевода¹, М.Ю. Огарков ³, О.Л. Барбараш³, О.М. Поликутина³, Я.В. Казачек³, В.А. Баум¹, Н.С. Юдин², В.Ф. Кобзев ², А.Г. Ромащенко²

¹ Научно-исследовательский институт терапии СО РАМН, Новосибирск ² Институт цитологии и генетики СО РАН, Новосибирск ³ Кемеровский кардиологический диспансер

Цель исследования: изучить ассоциацию полиморфизма гена аполипопротеина Е с параметрами углеводного обмена в популяции коренных жителей Горной Шории.

Материалы и методы: в исследование включены 40 мужчин и 80 женщин в возрасте 25—64 лет, коренные жители Горной Шории — шорцы. Полиморфизм гена аполипопротеина изучен Е методом, основанном на подходе [Hixson et. al., 1990]. Уровень глюкозы крови определяли стандартным энзиматическим методом.

Результаты: частота аллелей $\epsilon 2$, $\epsilon 3$, $\epsilon 4$ у мужчин составила 6,5, 80,4, 13,1 %, у женщин - 7,6, 72,6, 19,8 % соответственно. Частота генотипов $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$, $\epsilon 4/\epsilon 4$ в популяции составила 1,8, 12,4, 51,8, 31,2, 2,9 % соответственно. Средние уровни глюкозы крови натощак при генотипах $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$ и $\epsilon 4/\epsilon 4$ определены 4,6±0,3 мг/дл, 4,6±0,1, 4,0±0,1, 4,7±0,1, 5,8±0,3 мг/дл (pGLM = 0,000) у мужчин и 4,7±0,3мг/дл, 4,7±0,1, 4,1±0,1, 4,9±0,1, 5,9±0,2мг/дл у женщин (pGLM = 0,000). После проведения теста толерантности к глюкозе уровень глюкозы сыворотки в случае генотипов $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$ и $\epsilon 4/\epsilon 4$ составил 6,0±0,6, 6,1±0,3, 5,2±0,2, 6,4±0,2, 8,4±0,5 мг/дл (pGLM = 0,000) у мужчин и 6,2±0,6, 6,1±0,2, 5,5±0,1, 6,7±0,1, 8,6±0,5 мг/дл (pGLM = 0,000) у женщин.

Выводы: популяция коренных жителей Горной Шории характеризуется высокой частотой распространения аллеля $\epsilon 4$, особенно у женщин. Генотип $\epsilon 4/\epsilon 4$ ассоциирован с высоким уровнем глюкозы сыворотки.

Ключевые слова: ген аполипопротеина Е, полиморфизм, глюкоза, популяция, Горная Шория

Полиморфизм гена аполипопротеина Е (APOE) вносит значительный вклад в развитие сердечно-сосудистых и нейродегенеративных заболеваний. На сегодняшний день он является одним из наиболее изучаемых генетических маркеров нарушения липидного обмена в мире.

Аполипопротеин Е входит в состав ремнантов хиломикрон, ЛОНП и ЛВП с высокой молекулярной массой. Ген, кодирующий этот липопротеин, имеет полиморфизм с тремя аллелями $\epsilon 2$, $\epsilon 3$, $\epsilon 4$, которые образуют шесть возможных генотипов: $\epsilon 2/\epsilon 2$, $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$, $\epsilon 4/\epsilon 4$. По данным различных исследований в человеческой популяции наиболее распространенным является аллель $\epsilon 3$. Его частота составляет от 0,67 до 0,83 в различных популяциях [1, 2, 3]. Частота аллеля $\epsilon 4$ также подвержена значительным колебаниям: от 0,06 в популяции Северного Китая до 0,31 в популяциях корен-

ных жителей Сибири, Северной Америки, Африки. Аллель ε2 встречается с частотой от 0,02 в популяции Японии до 0,13 в популяции Франции.

Отдельные исследования свидетельствуют, что генотипы, содержащие $\epsilon 2$ аллель, связаны с более низкими уровнями общего холестерина сыворотки (ОХС) и липопротеидов низкой плотности (ЛНП) и более высоким уровнем триглицеридов (ТГ), чем генотип $\epsilon 3/\epsilon 3$. В то время как генотипы, содержащие $\epsilon 4$ аллель, имеют повышенный уровень ОХС и ЛНП. Полиморфизм гена *АРОЕ* определяет от 5 до 15 % нарушений липидного профиля [4]. В некоторых исследованиях было отмечено влияние полиморфизма гена *АРОЕ* на более высокий риск развития сердечно-сосудистых заболеваний при наличии у обследуемых лиц сахарного диабета [5, 6]. По-видимому, гипергликемия приводит к

гликозилированию апопротеина E, что нарушает его функцию, а аллель є4, изменяя аминокислотную последовательность белка, усиливает нарушение взаимодействия апопротеина E с рецепторами.

В нашей работе представлены результаты исследования полиморфизма гена *APOE* в популяции коренных жителей Горной Шории (Кемеровская область). Проводился анализ полиморфизма кодирующей части гена *APOE* (112 и 158 С/Т).

МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования выполнены на репрезентативной выборке из 170 человек коренных жителях Горной Шории (Кемеровская область) — шорцах. Материал собран при проведении одномоментного обследования неорганизованной сельской популяции Горной Шории в местах компактного проживания коренного населения. Возрастной диапазон составил 21—72 года.

ДНК выделяли из 10 мл периферической крови по стандартной методике Манниатис и др., 1984 [7].

Генотипирование гена *APOE* проводили с определением аллелей ε2, ε3, ε4. Для анализа была использована оригинальная методика генотипирования, основанная на подходе, предложенном Hixson et al., 1990 [8]. Геномную ДНК амплифицировали с помощью полимеразной цепной реакции (ПЦР) в стандартной реакционной смеси и далее гидролизовали рестриктазой AspLE I с сайтом распознавания GCGC. Визуализацию продуктов рестрикции проводили методом гель-электрофореза в 10 % полиакриламидном геле с последующей окраской бромистым этидием и тестировали с применением системы компьютерной видеосъемки.

Кровь для исследования брали минимум через 12 ч после последнего приема пищи из локтевой вены.

Уровень глюкозы капиллярной крови определяли экспресс-методом (натощак и через 120 мин после приема 75 г глюкозы) при помощи глюкометра фирмы "Берингер-Манхейм", используя тест-полоски этой же фирмы. С-пептид и иммунореактивный инсулин определены иммуноферментным методом.

Анализ ассоциации показателей углеводного обмена с изучаемым полиморфизмом проводили с использованием пакета прикладных статистических программ.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В популяции Горной Шории обследовано 170 человек (33 мужчины и 137 женщин), средний возраст составил 44,9±14 лет для мужчин и 44,5±13,7 года для женщин, в возрастном диапа-

зоне 21—72 года. Широкий возрастной диапазон связан с малочисленностью данной этнической группы. Частота генотипов $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$, $\epsilon 4/\epsilon 4$ в популяции составила 1,8, 12,4, 51,8, 31,2, 2,9 % соответственно. Частота аллелей $\epsilon 2$, $\epsilon 3$, $\epsilon 4$ составила у мужчин 6,5, 80,4, 13,1 %, у женщин — 7,6, 72,6, 19,8 % соответственно. Частота генотипов находится в равновесии Харди—Вайнберга.

Результаты анализа межпопуляционных различий по частоте генотипов показали, что популяция Горной Шории с высоким уровнем достоверности отличалась большей распространенностью генотипов, содержащих аллель $\varepsilon 4$, от европеоидной популяции г. Новосибирска (p < 0.05) [9].

В популяции Горной Шории максимальные уровни глюкозы крови натощак наблюдаются при генотипе $\varepsilon 4/\varepsilon 4$ как у мужчин, так и у женщин (табл. 1). Также высокие уровни глюкозы крови выявлены при генотипах $\varepsilon 2/\varepsilon 4$, $\varepsilon 2/\varepsilon 3$ и $\varepsilon 3/\varepsilon 4$ по сравнению с генотипом $\varepsilon 3/\varepsilon 3$. Минимальные уровни глюкозы крови определяются при генотипе $\varepsilon 3/\varepsilon 3$. В возрастных группах 18-44 лет. и 45-72 лет выявлено статистически значимая ассоциация генотипов полиморфизма кодирующей части гена APOE с уровнем глюкозы крови как у мужчин, так и у женщин (p = 0,000).

При объединении возрастных групп в популяции шорцев выявлено статистически значимая ассоциация возраста, ИМТ и генотипов полиморфизма кодирующей части гена APOE с уровнем глюкозы крови как у мужчин, так и у женщин (p < 0.05).

В популяции Горной Шории максимальные уровни глюкозы крови после проведения теста толерантности к глюкозе (ТТГ) наблюдаются при генотипе $\varepsilon 4/\varepsilon 4$ как у мужчин, так и у женщин (табл. 2). Минимальные уровни глюкозы крови определяются при генотипе є 3/є 3. В возрастной группе 45-72 лет выявлено независимое влияние ИМТ на уровень глюкозы крови (p = 0.002). В обеих возрастных группах не выявлено влияния возраста и пола на уровень глюкозы крови после нагрузки. В возрастных группах 18-44 и 45-72 лет выявлено статистически значимое влияние генотипов полиморфизма кодирующей части гена АРОЕ на уровень глюкозы крови как у мужчин, так и у женщин (p = 0.000).

При объединении возрастных групп в популяции шорцев минимальные уровни глюкозы крови после нагрузки определены при генотипе $\varepsilon 3/\varepsilon 3$ у мужчин и женщин. Наиболее высокие уровни глюкозы крови выявлены при генотипе $\varepsilon 4/\varepsilon 4$. В популяции шорцев различия между генотипами по полиморфизму в кодирующей области гена по уровню глюкозы крови после нагрузки были статистически значимы.

Таблица 1 Уровни глюкозы крови натощак (ммоль/л) для генотипов полиморфизма кодирующей части гена APOE в популяции Горной Шории

	$x(S_x)$		$x(S_x)$		$x(S_x)$		
	Возраст						
Генотип	18-44		45-72		18-72		
	Пол						
	M	ж	М	Ж	М	Ж	
ε2/ε4	$ - \\ n = 0 $	$ \begin{array}{c} 4,5 \ (0,4) \\ n = 1 \end{array} $	4,8 (0,4) n = 1	5.0 (0.4) $n = 1$	4,6 (0,3) n = 1	4,7 (0,3) $n = 2$	
ε2/ε3	$ 4,2 (0,2) \\ n = 1 $	$ \begin{array}{c} 4,2 \ (0,2) \\ n = 6 \end{array} $	$ 4,9 (0,2) \\ n = 3 $	5.1 (0.2) n = 11	4,6 (0,1) n = 4	4,7 (0,1) $n = 17$	
ε3/ε3	$ 3,9 (0,1) \\ n = 11 $	$ \begin{array}{c} 3.9 \ (0.1) \\ n = 36 \end{array} $	$ \begin{array}{c} 4,1 \ (0,2) \\ n = 9 \end{array} $	4,3 (0,1) n = 32	$ \begin{array}{c} 4,0 \ (0,1) \\ n = 20 \end{array} $	4,1 (0,1) n = 68	
ε3/ε4	$ \begin{array}{c} 4,6 \ (0,1) \\ n = 3 \end{array} $	$ 4,7 (0,1) \\ n = 21 $	$ \begin{array}{c} 4,8 \ (0,2) \\ n = 4 \end{array} $	5.0 (0.1) n = 25	$ \begin{array}{c} 4,7 \ (0,1) \\ n = 7 \end{array} $	4.9 (0.1) n = 46	
ε4/ε4	$ \begin{array}{c} -\\ n=0 \end{array} $	$ \begin{array}{c} 6,1 \ (0,4) \\ n = 1 \end{array} $	$ 5,8 (0,3) \\ n = 1 $	6.0 (0.3) $n = 3$	$ 5,8 (0,3) \\ n = 1 $	5.9 (0.2) n = 4	
Возраст (р)	0,363		0,434		0,000*		
ИМТ (р)	0,568		0,008*		0,012*		
Пол (р)	0,883		0,202		0,231		
Генотип (р)	0,000*		0,000*		0,000*		

Таблица 2 Уровни глюкозы крови после нагрузочного теста (ммоль/л) для разных генотипов полиморфизма кодирующей части гена *APOE* в популяции Горной Шории

	$x(S_x)$		$x(S_x)$		$x(S_x)$			
	Возраст							
Генотип	18-44		45-72		18-72			
	Пол							
	М	Ж	М	Ж	M	Ж		
ε2/ε4	n = 0	5,6 (0,8) n = 1	$ \begin{array}{c} 6,5 \ (0,8) \\ n = 1 \end{array} $	7.0 (0.8) $n = 1$	6,0 (0,6) n = 1	6,2 (0,6) $n = 2$		
ε2/ε3	5,6 (0,4) n = 1	5.6 (0.3) n = 6	$ 6,5 (0,4) \\ n = 3 $	6.9 (0.3) $n = 11$	$ \begin{array}{c} 6,1 \ (0,3) \\ n = 4 \end{array} $	6,4 (0,2) $n = 17$		
ε3/ε3	5,1 (0,2) n = 11	5.1 (0.1) n = 36	$ \begin{array}{c} 5,4 & (0,3) \\ n = 9 \end{array} $	5.8 (0.2) n = 32	$ 5,2 (0,2) \\ n = 20 $	5,5 (0,1) n = 68		
ε3/ε4	6,4 (0,3) n = 3	6.3 (0.2) n = 21	$ \begin{array}{c} 6,5 & (0,3) \\ n = 4 \end{array} $	7.0 (0.2) n = 25	$ \begin{array}{c} 6,4 \ (0,2) \\ n = 7 \end{array} $	6,7 (0,1) n = 46		
ε4/ε4	n = 0	9.0 (0.8) n = 1	$ \begin{array}{c} 8,2 \ (0,6) \\ n = 1 \end{array} $	8,7 (0,6) $n = 3$	$ 8,4 (0,5) \\ n = 1 $	8,6 (0,5) $n = 4$		
Возраст (р)	0,377		0,481		0,004*			
ИМТ (р)	0,894		0,002*		0,010*			
Пол (р)	0,937		0,103		0,186			
Генотип (р)	0,000*		0,000*		0,000*			

В популяции Горной Шории также была определена ассоциация средних уровней иммунореактивного инсулина (ИРИ) и С-пептида с полиморфизмом кодирующей части гена *АРОЕ* на подвыборке из 18 человек. ИРИ, С-пептид и генотипы полиморфизма кодирующей части гена *АРОЕ* были определены для 2 мужчин и 16 женщин в возрасте 18—72 лет.

Для полиморфизма кодирующей части гена *APOE* не было выявлено статистически значимой ассоциации с уровнями ИРИ и С-пептида (табл. 3).

В ранее проведенных нами исследованиях была показана ассоциация полиморфизма $-491 \mathrm{A}/\mathrm{T}$ промотора гена APOE в популяции шорцев со средними уровнями ИРИ (p=0,041)

Таблица 3 Уровни ИРИ (мкед/мл) и С-пептида (нмоль/л) для разных генотипов полиморфизма кодирующей части гена APOE в популяции Горной Шории

	I I	ИРИ	С-пептид					
Генотип	$X(S_x)$	$X(S_x)$	$X(S_x)$	$X(S_x)$				
тенотип	Пол							
	M	Ж	M	Ж				
ε2/ε4	_	_	_	_				
ε2/ε3	$\begin{vmatrix} 23,2 & (8,2) \\ n = 1 \end{vmatrix}$	5,4 (6,5) n = 2	0.9 (0.3) n = 1	0.4 (0.2) n = 2				
ε3/ε3	$ \begin{array}{c} 29,7 \ (8,0) \\ n = 1 \end{array} $	$ \begin{array}{c} 11,9 \ (3,9) \\ n = 8 \end{array} $	$ \begin{array}{c} 1,1 \ (0,3) \\ n = 1 \end{array} $	0.5 (0.1) n = 8				
ε3/ε4	_	$ \begin{array}{c} 13,7 \ (4,7) \\ n = 5 \end{array} $	_	0.6 (0.2) n = 5				
ε4/ε4	_	$ \begin{array}{c} 13,3 \ (11,2) \\ n = 1 \end{array} $	_	0.7 (0.4) n = 1				
Возраст (р)	0,806		0,600					
ИМТ (p)	0,826		0,966					
Пол (р)	0,059		0,058					
Генотип (р)	0	,762	0,795					

и С-пептида (p=0.05) [10]. Учитывая этот факт, актуально выполнить дополнительное исследование полиморфизма гена APOE на большем количестве обследованных, с определением ИРИ и С-пептида, для уточнения ассоциативных связей полиморфизма гена APOE и углеводного обмена.

ЗАКЛЮЧЕНИЕ

В популяции шорцев, как и в других популяциях мира, наиболее часто встречается аллель ε3. Частота аллеля ε2 в популяции Горной Шории статистически значимо не отличается от европеоидной популяции Сибири и находится в пределах средних значений для распространенности данного аллеля в других популяциях [1]. По частоте распределения аллелей популяция шорцев занимает близкое положение к популяциям финно-угорских народностей Евразии, коренных жителей Африки и Новой Гвинеи, аборигенам Нового Света и Австралии.

В популяции Горной Шории была изучена ассоциация полиморфизма гена *APOE* с некоторыми нелипидными факторами риска сердечнососудистых заболеваний, в частности, с параметрами углеводного обмена. В популяции коренных жителей Горной Шории выявлена статистически значимая ассоциация полиморфизма кодирующей части гена *APOE* с уровнем глюкозы крови

как натощак, так и после проведения теста толерантности к глюкозе у мужчин и женщин. В популяции шорцев влияние полиморфизма промотора гена *APOE* на уровень С-пептида и иммунореактивного инсулина требует дальнейшего изучения на большей по объему выборке.

Это исследование демонстрирует вклад полиморфизма гена аполипопротеина Е как фактора, влияющего на развитие гипергликемии в изученной популяции. Таким образом, литературные и полученные нами данные о взаимосвязи полиморфизма гена *APOE* с некоторыми факторами риска сердечно-сосудистых заболеваний подтверждают перспективность исследования генов-кандидатов хронических неинфекционных заболеваний в Сибири.

ЛИТЕРАТУРА

- Utermann G. Apolipoprotein polymorphism and multifactorial hyperlipidaemia // J Inher Metab Dis. 1988. V. 1. P. 74-86.
- Mustafina O.E., Shagisultanova E.I., Tuktarova I.A., Khusnutdinova E.K. Polymorphism of the apolipoprotein E gene and the risk of myocardial infarction // Mol Biol (Mosk). – 2002. – V. 36(6). P. 978-984.
- Davignon J., Gregg R.E., Sing C.F. Apolipoprotein E polymorphism and atherosclerosis // Arteriosclerosis. – 1988. – V. 8. P. 1–21.
- Talmud P.J., Humphries S.E. Gene: environment interaction in lipid metabolism and effect on coronary heart disease risk // Curr. Opin. Lipidol. 2002. V. 13(2). P. 149-54.
- Haffner S.M., Stern M.P., Miettinen H., Robbins D., Howard B.V. Apolipoprotein E Polymorphism and LDL Size in a Biethnic Population // Arterioscler Thromb Vasc Biol. 1996. V. 16(9). P. 1184–1188
- Привалов Д.В., Чумакова О.С., Зотова И.В. и др. Полиморфизм генов липидтранспортной системы крови у пациентов с нестабильной стенокардией и сахарным диабетом // Вестник РАМН. — 2003. — V. 1. — Р. 40-43.
- Манниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984.
- Hixon J.E., Vernier D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI // J Lipid Research. – 1990. – V. 31. P. 545–548.
- Воевода М.И., Степанов В.А., Ромащенко А.Г., Максимов В.Н. Этногенетические особенности подверженности атеросклерозу в этнических группах Сибири (на примере гена аполипопротеина Е) // Бюл. СО РАМН. – 2006. – V. 2 (120). – Р. 63-72.
- Шахтшнейдер Е.В. Связь полиморфизма гена аполипопротеина Е с факторами риска хронических неинфекционных заболеваний в популяциях г. Новосибирска и коренных жителей Горной Шории: Автореф. дис. к-та мед. наук. Новосибирск, 2004.

Objective: we investigated apolipoprotein E gene polymorphism and its influence on a carbohydrate metabolism in native population of Mountain Shoria (West Siberia).

Methods: The study included 40 men and 80 women aged 25-64. The apolipoprotein E polymorphism was analyzed by original method using Hixson's approach. The serum glucose levels were determined by standard enzymatic assays.

Results: The frequencies of $\epsilon 2$, $\epsilon 3$, $\epsilon 4$ alleles in men were 6.5 %, 80.4 %, 13.1 % and in women -7.6 %, 72.6 %, 19.8 % respectively. The frequencies of genotypes $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$, $\epsilon 4/\epsilon 4$ in men and women together were 1.8 %, 12.4 %, 51.8 %, 31.2 % and 2.9 %. Mean fasting serum glucose levels in case of genotypes $\epsilon 2/\epsilon 4$, $\epsilon 2/\epsilon 3$, $\epsilon 3/\epsilon 3$, $\epsilon 3/\epsilon 4$ and $\epsilon 4/\epsilon 4$ were 4.6 ± 0.3 mg/dl, 4.0 ± 0.1 mg

Conclusions: The native population of Mountain Shoria is characterized by relatively high frequencies of $\varepsilon 4$ alleles. The allele $\varepsilon 4$ prevails in women. The genotype $\varepsilon 4/\varepsilon 4$ has been associated with higher serum glucose level.

Key words: apolipoprotein E gene, polymorphism, glucose levels, population, Mountain Shoria

32