УДК 536.24, 539.217.1

ВЛИЯНИЕ ТЕПЛОВОГО ИЗЛУЧЕНИЯ НА ТЕПЛОМАССОПЕРЕНОС ПРИ СМЕШАННОЙ КОНВЕКЦИИ НЕНЬЮТОНОВСКОЙ ЖИДКОСТИ СО СТЕПЕННЫМ УРАВНЕНИЕМ СОСТОЯНИЯ ВБЛИЗИ ВЕРТИКАЛЬНОЙ ПОВЕРХНОСТИ, ПОГРУЖЕННОЙ В ПОРИСТУЮ СРЕДУ, ПРИ НАЛИЧИИ ТЕРМОДИФФУЗИИ И ДИФФУЗИОННОЙ ТЕПЛОПРОВОДНОСТИ

М. А. А. Махмуд, А. М. Меджахед

Университет г. Бенха, 13518 Бенха, Египет E-mail: mostafabdelhameed@yahoo.com

Исследуется влияние теплового излучения, термодиффузии и диффузионной теплопроводности на тепломассоперенос при смешанной конвекции неньютоновской жидкости со степенным уравнением состояния вблизи проницаемой поверхности, погруженной в насыщенную пористую среду. Уравнения задачи, записанные в безразмерных переменных и преобразованные к неавтомодельному виду, решаются с использованием локального неавтомодельного метода совместно с методом стрельбы. Анализируется влияние физических параметров задачи на температуру жидкости и концентрацию. Результаты вычислений представлены в виде графиков. Получены зависимости локальных чисел Нуссельта и Шервуда от параметров задачи.

Ключевые слова: неньютоновская жидкость, смешанная конвекция, пористая среда, тепловое излучение, термодиффузия, диффузионная теплопроводность.

Введение. В последнее время возрос интерес к задаче о смешанной конвекции в потоке пограничного слоя неньютоновской жидкости вдоль вертикальной поверхности, погруженной в насыщенную пористую среду. Это обусловлено тем, что данная задача имеет многочисленные приложения в различных областях науки и техники (химическое производство, почвоведение, машиностроение, порошковая металлургия, геотермальная энергетика, производство систем теплоизоляции, восстановление нефтяных скважин, фильтрация, обеспечение безопасности реакторов, производство керамики, очистка грунтовых вод).

Автомодельные решения задачи о теплопереносе от вертикальной пластины при свободной конвекции в потоке насыщенной пористой среды получены в работе [1]. В [2] исследуется влияние вдува и отсоса на смешанную конвекцию от вертикальной пластины в пористой среде. В [3] предложен новый метод решения задач о неавтомодельных пограничных слоях, применимый для данного участка потока независимо от информации о физических параметрах на других его участках. В [4] получены решения задач о тепловых пограничных слоях, не допускающих автомодельные решения. Задача о потоке пограничного слоя и теплопереносе в случае течения неньютоновской жидкости в пористой среде изучалась в работах [5–13]. Задача о теплопереносе в пористой среде имеет многочисленные приложения (воспламенение топлива, использование теплообменников при высоких температурах, в том числе солнечных коллекторов, систем изоляции, циркуляционных подушек в камерах сгорания и реакторах, создание новых материалов). В [14–17] исследовано влияние теплового излучения на теплоперенос в случае течения неньютоновской жидкости в пористой среде.

В указанных выше работах термодиффузия и диффузионная теплопроводность не учитывались. Необходимость учета этих факторов отмечена в [18]. В [19] исследован тепломассоперенос при естественной конвекции вблизи вертикальной поверхности, погруженной в насыщенную пористую среду, при наличии магнитного поля с учетом термодиффузии и диффузионной теплопроводности. В [20] решена задача о ламинарной смешанной конвекции неньютоновской жидкости со степенным уравнением состояния и теплопереносе с учетом переменной вязкости, термодиффузии и диффузионной теплопроводности. В [21] исследовано влияние термодиффузии и диффузионной теплопроводности на тепломассоперенос при естественной конвекции от вертикальной поверхности, помещенной в пористую среду, при наличии химической реакции. Влияние двойной дисперсии на тепломассоперенос в результате естественной конвекции от вертикальной пластины, погруженной в пористую среду, не удовлетворяющую закону Дарси, с учетом термодиффузии и диффузионной теплопроводности изучалось в [22]. Влияние переменной вязкости, термодиффузии и диффузионной теплопроводности на массоперенос при смешанной конвекции в ламинарном пограничном слое вблизи вертикальной пластины исследовано в [23]. В [24] изучалось влияние термодиффузии и диффузионной теплопроводности на свободную конвекцию от горизонтальной пластины в насыщенной жидкостью пористой среде.

Влияние теплового излучения, термодиффузии и диффузионной теплопроводности на установившийся тепломассоперенос при гидромагнитной смешанной конвекции от вертикальной проницаемой поверхности, погруженной в однородную пористую среду, исследовалось в [25]. Совместное влияние термодиффузии и диффузионной теплопроводности на тепломассоперенос вблизи вертикальной растянутой поверхности в пористой среде, заполненной вязкоупругой жидкостью, изучалось в [26]. В [27] с использованием локального неавтомодельного метода совместно с методом стрельбы выполнен численный анализ влияния термодиффузии и диффузионной теплопроводности на тепломассоперенос при гидромагнитной смешанной конвекции вблизи вертикальной растянутой поверхности в пористой среде. В [28] изучено влияние отсоса (вдува) и наличия источника или стока тепла на тепломассоперенос при смешанной конвекции в неньютоновской жидкости от вертикальной пластины, погруженной в насыщенную жидкостью пористую среду.

Целью данной работы является изучение влияния термодиффузии и диффузионной теплопроводности на тепломассоперенос при смешанной конвекции в установившемся ламинарном потоке пограничного слоя вдоль вертикальной проницаемой пластины при наличии теплового излучения.

1. Математическая формулировка задачи. Рассматривается установившееся двумерное течение пограничного слоя неньютоновской жидкости на вертикальной проницаемой поверхности, погруженной в пористую среду, при наличии теплового излучения. Предполагается, что температура поверхности T_w , поддерживаемая постоянной, больше температуры T_∞ обтекающего потока пористой среды, насыщенной жидкостью. В приближении Буссинеска и с учетом предположений, используемых в теории пограничного слоя, уравнения задачи можно записать в виде

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0; \tag{1}$$

$$u^{n} = U_{\infty}^{n} + \frac{K}{\mu} \rho g [\beta_{T} (T - T_{\infty}) + \beta_{c} (C - C_{\infty})],$$

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha_{e} \frac{\partial^{2} T}{\partial y^{2}} + \frac{Dk_{T}}{c_{s} c_{p}} \frac{\partial^{2} C}{\partial y^{2}} - \frac{1}{\rho c_{p}} \frac{\partial q_{r}}{\partial y},$$

$$u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^{2} C}{\partial y^{2}} + \frac{Dk_{T}}{T_{m}} \frac{\partial^{2} T}{\partial y^{2}},$$
(2)

где x, y — координаты в вертикальном и горизонтальном направлениях соответственно; u, v — компоненты вектора скорости в направлениях осей x, y соответственно; T, C, ρ, μ — температура, концентрация, плотность и коэффициент вязкости потока соответственно; n — показатель в степенном уравнении состояния; c_p — теплоемкость при постоянном давлении; D — массовый коэффициент диффузии; K — проницаемость пористой среды; α_e — температуропроводность; β_T — коэффициент температурного расширения; β_c — коэффициент концентрационного расширения; U_{∞} — скорость основного потока; g — ускорение свободного падения; T_{∞}, C_{∞} — температура и концентрация потока вдали от пластины; k_T — коэффициент термодиффузии; c_s — коэффициент чувствительности концентрации; T_m — средняя температура жидкости; q_r — излучаемый поток тепла.

Модифицированный коэффициент проницаемости пористой среды *K* для неньютоновской жидкости со степенным уравнением состояния определяется следующим образом:

$$K = \frac{1}{2C_t} \left(\frac{n\varepsilon}{3n+1}\right)^n \left(\frac{50k_\varepsilon}{3\varepsilon}\right)^{(n+1)/2}$$

Здесь $k_{\varepsilon} = \varepsilon^3 d^2 / [150(1-\varepsilon)^2]; \varepsilon, d$ — пористость и диаметр частицы пористой среды; согласно работе [29] $C_t = 25/12$, согласно работе [30]

$$C_t = \frac{2}{3} \frac{8n}{9n+3} \frac{10n-3}{6n+1} \left(\frac{75}{16}\right)^{3(10n-3)/(10n+11)}.$$

Краевые условия задачи имеют вид

$$v(x,0) = v_0, \qquad T(x,0) = T_w, \qquad C(x,0) = C_w,$$
$$u(x,\infty) = U_\infty, \qquad T(x,\infty) = T_\infty, \qquad C(x,\infty) = C_\infty,$$

где $v_0 < 0$ — скорость отсоса, $v_0 > 0$ — скорость вдува; T_w , C_w — температура и концентрация на стенке соответственно.

В соответствии с аппроксимацией Росселанда [31] излучаемый поток тепла q_r определяется следующим образом:

$$q_r = -\frac{4\sigma^*}{3k^*} \frac{\partial T^4}{\partial y}$$

 $(\sigma^*$ — постоянная Стефана — Больцмана; k^* — среднее значение коэффициента поглощения).

Следуя [32], предположим, что температура внутри потока меняется незначительно, поэтому величина T^4 может быть представлена в виде линейной функции температуры. Разлагая T^4 в ряд Тейлора в окрестности T_{∞} и пренебрегая малыми членами более высокого порядка, получаем

$$T^4 \simeq 4T_\infty^3 T - 3T_\infty^4$$

Уравнение неразрывности выполняется тождественно, если функцию потока ввести следующим образом:

$$u = \frac{\partial \psi}{\partial y}, \qquad v = -\frac{\partial \psi}{\partial x}.$$

Далее будем использовать следующие величины:

$$\eta = \frac{y}{x} \left(\operatorname{Pe}_{x}^{1/2} + \operatorname{R}_{x}^{1/2} \right), \qquad \xi = \frac{v_{0}x}{\alpha_{e}} \left(\operatorname{Pe}_{x}^{1/2} + \operatorname{R}_{x}^{1/2} \right)^{-1},$$

$$\psi = \alpha_{e} \left(\operatorname{Pe}_{x}^{1/2} + \operatorname{R}_{x}^{1/2} \right) f(\xi, \eta), \qquad \theta(\xi, \eta) = \frac{T - T_{\infty}}{T_{w} - T_{\infty}}, \qquad \varphi(\xi, \eta) = \frac{C - C_{\infty}}{C_{w} - C_{\infty}}.$$
(3)

Здесь $\operatorname{Pe}_x = U_{\infty} x / \alpha_e$, $\operatorname{R}_x = (x / \alpha_e) (\rho g \beta_T | T_w - T_{\infty} | K / \mu)^{1/n}$ — локальное число Пекле и модифицированное локальное число Рэлея соответственно.

Подставляя (3) в уравнения (2), получаем

$$nf'^{n-1}f'' = (1-\chi)^{2n}(\theta' + N\varphi'),$$

$$(1+R)\theta'' + \mathrm{Df}\operatorname{Pr}\varphi'' + \frac{1}{2}f\theta' = \frac{1}{2}\xi\left(f'\frac{\partial\theta}{\partial\xi} - \theta'\frac{\partial f}{\partial\xi}\right),$$

$$\mathrm{Le}^{-1}\varphi'' + \mathrm{Le}^{-1}\operatorname{Sc}\operatorname{Sr}\theta'' + \frac{1}{2}f\varphi' = \frac{1}{2}\xi\left(f'\frac{\partial\varphi}{\partial\xi} - \varphi'\frac{\partial f}{\partial\xi}\right)$$
(4)

(штрих обозначает производную по переменной η). Краевые условия принимают следующий вид:

$$f(\xi,0) + \xi \frac{\partial f}{\partial \xi}(\xi,0) = -2\xi, \qquad \theta(\xi,0) = 1, \qquad \varphi(\xi,0) = 1,$$
$$f'(\xi,\infty) = \chi^2, \qquad \theta(\xi,\infty) = \varphi(\xi,\infty) = 0.$$

Здесь Le = α_e/D — число Льюиса; $N = \beta_c (C_w - C_\infty)/[\beta_T (T_w - T_\infty)]$ — отношение концентрации к термоплавучести; $\chi = [1 + (R_x / Pe_x)^{1/2}]^{-1}$ — параметр смешанной конвекции; $R = 16\sigma^* T_\infty^3/(3\rho c_p k^* \alpha_e)$ — параметр излучения; Df = $Dk_T (C_w - C_\infty)/[\nu c_s c_p (T_w - T_\infty)]$ — параметр диффузионной теплопроводности (число Дюфура); Pr = $\mu/(\rho \alpha_e)$ — число Прандтля; $\nu = \mu/\rho$ — кинематическая вязкость; Sc = ν/D — число Шмидта; Sr = $Dk_T (T_w - T_\infty)/[\nu T_m (C_w - C_\infty)]$ — параметр термодиффузии (число Соре).

Следует отметить, что при $\chi = 0$ (Pe_x = 0) имеет место свободная конвекция, при $\chi = 1$ (R_x = 0) — вынужденная конвекция. Смешанная конвекция соответствует значениям параметра $\chi \in (0, 1)$.

С использованием локального метода неавтомодельных решений [3] получим приближенное решение уравнений (4). Дополнительные уравнения можно получить, дифференцируя уравнения (4) по переменной ξ и пренебрегая членами, содержащими $\partial^2 f / \partial \xi^2$, $\partial^2 \theta / \partial \xi^2$ и $\partial^2 \varphi / \partial \xi^2$. В результате имеем уравнения

$$nf'^{n-1}f'' = (1-\chi)^{2n}(\theta' + N\varphi'),$$

$$(1+R)\theta'' + Df \Pr \varphi'' + f\theta'/2 = \xi(f'\theta_1 - \theta'f_1)/2,$$

$$Le^{-1}\varphi'' + Le^{-1}Sc Sr \theta'' + f\varphi'/2 = \xi(f'\varphi_1 - \varphi'f_1)/2,$$

$$nf'^{n-1}f''_1 + n(n-1)f'^{n-2}f'_1f'' = (1-\chi)^{2n}(\theta'_1 + N\varphi'_1),$$

$$(1+R)\theta''_1 + Df \Pr \varphi''_1 + (f_1\theta' + f\theta'_1)/2 = (f'\theta_1 - \theta'f_1)/2 + \xi(f'_1\theta_1 - \theta'_1f_1)/2,$$

$$Le^{-1}\varphi''_1 + Le^{-1}Sc Sr \theta''_1 + (f_1\varphi' + f\varphi'_1)/2 = (f'\varphi_1 - \varphi'f_1)/2 + \xi(f'_1\varphi_1 - \varphi'_1f_1)/2;$$

$$f(0) + \xi f_1(0) = -2\xi, \quad \theta(0) = \varphi(0) = 1, \quad f_1(0) = -1, \quad \theta_1(0) = \varphi_1(0) = 0,$$

$$f'(\infty) = \chi^2, \quad \theta(\infty) = \varphi(\infty) = 0, \quad f'_1(\infty) = \theta_1(\infty) = \varphi_1(0) = 0,$$
(6)
$$rge f_1 = \partial f/\partial\xi; \ \theta_1 = \partial \theta/\partial\xi; \ \varphi_1 = \partial \varphi/\partial\xi.$$

Таблица 1

χ	$- heta'(\xi,0)$						
	$\xi = -0.5$	$\xi = 0$	$\xi = 0,5$	$\xi = 1,\!0$	$\xi = 1,5$	$\xi = 2$	
0	0,7123	$0,\!4439$	0,2560	0,1420	0,0724	0,0343	
$_{0,1}$	$0,\!6777$	$0,\!4036$	0,2285	0,1130	0,0523	0,0221	
0,2	$0,\!6543$	0,3734	$0,\!1941$	0,0911	0,0386	0,0142	
0,3	$0,\!6437$	0,3552	$0,\!1757$	0,0769	0,0294	0,0097	
0,4	0,6460	$0,\!3506$	0,1681	0,0698	0,0250	0,0074	
0,5	0,6601	0,3606	0,1727	0,0711	0,0248	0,0073	
0,6	$0,\!6744$	0,3833	0,1900	0,0805	0,0237	0,0088	
0,7	0,7170	0,4174	0,2190	0,0982	0,0380	0,0129	
0,8	0,7575	0,4602	0,2566	0,1250	0,0541	0,0206	
0,9	0,8035	0,5100	0,3010	0,1616	0,0763	0,0329	
$1,\!0$	0,8540	0,5643	$0,\!3520$	0,2030	$0,\!1050$	$0,\!0504$	

Значения функци
и $-\theta'(\xi,0)$ при $n=1,\,N=0,\,R=0,\,{\rm Sr}=0,\,{\rm Df}=0,$ полученные в настоящей работе

Таблица 2

Значения функции $-\theta'(\xi, 0)$ при n = 1, N = 0, R = 0, Sr = 0, Df = 0, полученные в работе [28]

2.4	$- heta'(\xi,0)$					
Χ	$\xi = -0.5$	$\xi = 0$	$\xi = 0,5$	$\xi = 1,0$	$\xi = 1,5$	$\xi = 2$
0	0,7121	0,4440	0,2601	0,1424	0,0725	0,0341
$_{0,1}$	0,6770	$0,\!4037$	0,2230	0,1134	0,0526	0,0221
$_{0,2}$	0,6526	0,3734	$0,\!1944$	0,0914	0,0384	0,0143
$_{0,3}$	0,6406	0,3552	$0,\!1757$	0,0769	0,0294	0,0097
0,4	0,6415	$0,\!3507$	0,1681	0,0700	0,0250	0,0075
$_{0,5}$	0,6545	0,3605	0,1725	0,0710	0,0248	0,0073
0,6	0,6783	0,3834	$0,\!1890$	0,0803	0,0240	0,0088
0,7	0,7112	0,4175	0,2167	0,0982	0,0385	0,0129
0,8	0,7515	0,4604	0,2539	0,1247	0,0541	0,0206
$0,\!9$	0,7978	0,5100	0,2986	0,1590	0,0764	0,0329
$1,\!0$	0,8488	0,5643	0,3483	0,1998	0,1049	$0,\!0504$

Система нелинейных уравнений (5) с краевыми условиями (6) решалась численно методом Рунге — Кутты совместно с методом стрельбы. Эта процедура продолжалась до тех пор, пока не достигалась погрешность 10^{-5} .

Сравнение полученных результатов с данными работ [2, 28] при n = 1, N = 0, R = 0, Sr = 0, Df = 0 (табл. 1–3) показывает, что они хорошо согласуются.

Физическими величинами, представляющими интерес в рассматриваемой задаче, являются локальное число Нуссельта Nu_x и локальное число Шервуда Sh_x:

$$Nu_{x} = \frac{x(-\partial T/\partial y)|_{y=0}}{T_{w} - T_{\infty}} = -(Pe_{x}^{1/2} + R_{x}^{1/2})\theta'(\xi, 0),$$

$$Sh_{x} = \frac{x(-\partial C/\partial y)|_{y=0}}{C_{w} - C_{\infty}} = -(Pe_{x}^{1/2} + R_{x}^{1/2})\varphi'(\xi, 0).$$

2. Результаты исследования и их обсуждение. На рис. 1–5 представлены зависимости температуры и концентрации от параметра η при различных значениях параметров R, Df, Sr как для псевдопластических жидкостей (n < 1), так и для дилатантных

Таблица З

	· · · · · · · · · · · · · · · · · · ·						
24	$- heta'(\xi,0)$						
X	$\xi = -0.5$	$\xi = 0$	$\xi = 0,5$	$\xi = 1,0$	$\xi = 1,5$	$\xi = 2$	
0	0,7114	$0,\!4437$	0,2593	0,1417	0,0717	0,0335	
0,1	$0,\!6763$	0,4035	0,2223	0,1127	0,0519	0,0216	
0,2	$0,\!6520$	0,3732	0,1937	0,0907	0,0378	0,0139	
0,3	0,6401	$0,\!3550$	0,1750	0,0762	0,0288	0,0084	
0,4	0,6411	$0,\!3504$	0,1674	0,0693	0,0244	0,0072	
0,5	$0,\!6543$	0,3603	0,1719	0,0704	0,0242	0,0069	
0,6	$0,\!6782$	0,3832	0,1884	0,0797	0,0284	0,0085	
0,7	0,7111	$0,\!4196$	0,2036	0,0999	0,0339	0,0134	
0,8	0,7515	0,4602	0,2534	0,1242	0,0535	0,0201	
0,9	0,7978	0,5097	0,2982	$0,\!1586$	0,0758	0,0324	
$1,\!0$	0,8488	0,5642	0,3488	$0,\!1996$	$0,\!1047$	0,0502	

Значения функции $-\theta'(\xi, 0)$ при n = 1, N = 0, R = 0, Sr = 0, Df = 0, полученные в работе [2]

(n>1).Зависимости получены при фиксированных значениях параметров: Le = 1, N=1, $\chi=0.5,$ Pr = 10.

На рис. 1 видно, что с увеличением параметра излучения R температура увеличивается, следовательно, толщина пограничного теплового слоя также увеличивается. При этом концентрация уменьшается (см. рис. 2).

На рис. 3 представлена зависимость температуры от параметра η при различных значениях числа Дюфура Df. Видно, что с увеличением числа Дюфура температура увеличивается. Поскольку влияние числа Дюфура на концентрацию пренебрежимо мало, графики соответствующей зависимости не приведены.

На рис. 4 показана зависимость температуры от параметра η при различных значениях числа Cope Sr. Из рис. 4 следует, что с увеличением числа Cope вблизи пограничного слоя температура уменьшается, в то время как вдали от него увеличивается. На рис. 5 представлена зависимость концентрации от параметра η при различных значениях числа Cope Sr. Видно, что с увеличением числа Cope концентрация увеличивается.

Рис. 1. Зависимость температуры от параметра η при Le = 1,0, N = 1, $\chi = 0.5$, Df = 0.03, Sr = 0.1, $\xi = -2$, Pr = 10 и различных значениях параметра излучения:

 $a - n = 0,5, \ \delta - n = 1,5; \ 1 - R = 0, \ 2 - R = 2, \ 3 - R = 5$

Рис. 2. Зависимость концентрации от параметра η при Le = 1,0, N = 1, $\chi = 0,5$, Df = 0,03, Sr = 0,1, $\xi = -2$, Pr = 10 и различных значениях параметра излучения: a - n = 0,5, $\delta - n = 1,5$; 1 - R = 0, 2 - R = 2, 3 - R = 5

Рис. 3. Зависимость температуры от параметра η при Le = 1,0, N = 1, $\chi = 0,5$, R = 0,5, Sr = 0,1, $\xi = -2$, Pr = 10 и различных значениях числа Дюфура: a - n = 0,5, $\delta - n = 1,5$; 1 - Df = 0,03, 2 - Df = 0,05, 3 - Df = 0,075

Рис. 4. Зависимость температуры от параметра η при Le = 1,0, N = 1, $\chi = 0,5$, R = 0,5, Df = 0,03, $\xi = -2$, Pr = 10 и различных значениях числа Соре: a - n = 0,5, $\delta - n = 1,5$; 1 - Sr = 0,1, 2 - Sr = 0,6, 3 - Sr = 1,4

Рис. 5. Зависимость концентрации от параметра η при Le = 1,0, N = 1, χ = 0,5, R = 0,5, Df = 0,03, $\xi = -2$, Pr = 10 и различных значениях числа Cope: a - n = 0,5, $\delta - n = 1,5$; 1 - Sr = 0,1, 2 - Sr = 0,4, 3 - Sr = 0,6, 4 - Sr = 1,0, 5 - Sr = 1,4

Таблица 4

0110 1011111	Ф <i>J</i> шцш	• (\$, •) 1	(s , o) mpm	λ 0,0, $\Box 0$	-,,	55 0,0,11 10
ξ	n	R	Df	Sr	$-\theta'(\xi,0)$	$-\varphi'(\xi,0)$
-2,0	0,5	0,5	0,03	$1,\!0$	$1,\!1502$	$1,\!4555$
$^{-1,0}$	0,5	0,5	0,03	$1,\!0$	0,7558	0,9228
0	0,5	0,5	0,03	$1,\!0$	$0,\!4717$	0,5380
0,2	0,5	0,5	0,03	1,0	$0,\!4262$	$0,\!4785$
0,5	0,5	0,5	0,03	1,0	0,3648	0,3993
-2,0	1,5	0,5	0,03	1,0	1,0836	$1,\!3853$
-1,0	1,5	0,5	0,03	1,0	$0,\!6117$	0,7621
0	1,5	0,5	0,03	1,0	0,2699	0,3021
0,2	1,5	0,5	0,03	1,0	0,2225	0,2415
0,5	1,5	0,5	0,03	1,0	0,1628	0,1683
-2,0	0,5	0	0,03	$_{0,1}$	$1,\!4976$	1,9888
-2,0	0,5	2,0	0,03	$_{0,1}$	0,5575	2,0753
-2,0	0,5	5,0	0,03	$_{0,1}$	0,3230	2,1036
-2,0	1,5	0	0,03	0,1	$1,\!4439$	1,9310
-2,0	1,5	2,0	0,03	$_{0,1}$	0,4989	1,9914
-2,0	1,5	5,0	0,03	$_{0,1}$	0,2702	2,0070
-2,0	0,5	0,5	0,03	$_{0,1}$	1,0231	2,0286
-2,0	0,5	0,5	$0,\!05$	0,1	0,7614	2,0495
-2,0	0,5	0,5	0,075	$_{0,1}$	$0,\!4279$	2,0760
-2,0	1,5	0,5	0,03	0,1	0,9666	1,9609
-2,0	1,5	0,5	$0,\!05$	0,1	0,7039	1,9772
-2,0	1,5	0,5	0,075	0,1	0,3695	1,9980
-2,0	0,5	0,5	0,03	$_{0,1}$	1,0231	2,0286
-2,0	0,5	0,5	0,03	0,4	1,0612	1,8514
-2,0	0,5	0,5	0,03	0,6	1,0889	1,7258
-2,0	0,5	0,5	0,03	1,0	$1,\!1488$	$1,\!4539$
-2,0	0,5	0,5	0,03	1,4	1,2151	$1,\!1506$
-2,0	1,5	0,5	0,03	0,1	0,9668	1,9609
-2,0	1,5	0,5	0,03	0,4	1,0034	1,7839
-2,0	1,5	0,5	0,03	0,6	1,0285	$1,\!6578$
-2,0	1,5	0,5	0,03	1,0	1,0836	$1,\!3853$
-2,0	1,5	0,5	0,03	1,4	1,1452	1,0813

Значения функций $-\theta'(\xi,0)$ и $-\varphi'(\xi,0)$ при $\chi = 0.5$, Le = 1, N = 1, Sc = 0.6, Pr = 10

Анализ данных, приведенных в табл. 4, показывает, что локальные числа Нуссельта и Шервуда оказывают влияние на рассматриваемый физический процесс. Видно, что и при n = 0.5 (псевдопластическая жидкость), и при n = 1.5 (дилатантная жидкость) локальные числа Нуссельта и Шервуда увеличиваются при отсосе и уменьшаются при вдуве. При наличии излучения локальное число Шервуда увеличивается, а локальное число Нуссельта уменьшается как для псевдопластической жидкости, так и для дилатантной. При n = 0.5; 1.5 с увеличением числа Дюфура локальное число Нуссельта уменьшается, а с увеличением числа Соре увеличивается. Кроме того, в случае вязкой жидкости со степенным уравнением состояния при n = 0.5; 1.5 локальное число Шервуда увеличивается с увеличением числа Дюфура и уменьшается с увеличением числа Соре.

Заключение. Исследовано влияние тепловой диффузии и диффузионной теплопроводности на тепломассоперенос при смешанной конвекции неньютоновской жидкости со степенным уравнением состояния вблизи пористой вертикальной пластины, погруженной в пористую среду, при наличии теплового излучения. С использованием локального метода неавтомодельных решений решена система нелинейных дифференциальных уравнений в частных производных. В результате исследования обнаружено, что как для псевдопластической жидкости, так и для дилатантной локальное число Нуссельта увеличивается с увеличением параметра отсоса Соре и уменьшается с увеличением числа вдува Дюфура, в то время как локальное число Шервуда уменьшается с увеличением параметра Соре и увеличивается с увеличением параметра излучения.

ЛИТЕРАТУРА

- Cheng P., Minkowycz W. J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike // J. Geophys. Res. 1977. V. 82. P. 2040–2044.
- Hooper W. B., Chen T. S., Armaly B. F. Mixed convection from a vertical plate in porous media with surface injection or suction // Numer. Heat Transfer. 1993. V. 25. P. 317–329.
- Sparrow E. M., Quack H., Boerner C. J. Local non-similarity boundary-layer solutions // AIAA J. 1970. V. 8. P. 1936–1942.
- Sparrow E. M., Yu H. S. Local nonsimilarity thermal boundary-layer solutions // Trans. ASME. J. Heat Transfer. 1971. V. 93. P. 328–332.
- 5. White D. A. Non-Newtonian flow in porous media // Chem. Engng Sci. 1967. V. 22. P. 669–672.
- Pascal H., Pascal J. P. Nonlinear effects of non-Newtonian fluids on natural convection in a porous medium // Physica D. 1989. V. 40. P. 393–402.
- Pascal J. P., Pascal H. Free convection in a non-Newtonian fluid saturated porous medium with lateral mass flux // Intern. J. Non-Linear Mech. 1997. V. 32. P. 471–482.
- Subhas A., Veena P. Visco-elastic fluid flow and heat transfer in a porous medium over a stretching sheet // Intern. J. Non-Linear Mech. 1998. V. 33. P. 531–540.
- Jumah R. Y., Mujumdar A. S. Natural convection heat and mass transfer from a vertical flat plate with variable wall temperature and concentration to power-law fluids with yield stress in a porous medium // Chem. Engng Comm. 2001. V. 185. P. 165–182.
- Prasad K. V., Abel S., Datti P. S. Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet // Intern. J. Non-Linear Mech. 2003. V. 38. P. 651–657.
- 11. Cheng C.-Y. Natural convection heat and mass transfer of non-Newtonian power law fluids with yield stress in porous media from a vertical plate with variable wall heat and mass fluxes // Intern. Comm. Heat Mass Transfer. 2006. V. 33. P. 1156–1164.

- Hameed M., Nadeem S. Unsteady MHD flow of a non-Newtonian fluid on a porous plate // J. Math. Anal. Appl. 2007. V. 325. P. 724–733.
- Bataller R. C. On unsteady gravity flows of a power-law fluid through a porous medium // Appl. Math. Comput. 2008. V. 196. P. 356–362.
- Murthy P. V. S. N., Mukherjee S., Srinivasacharya D., Krishna P. V. S. S. S. R. Combined radiation and mixed convection from a vertical wall with suction/injection in a non-Darcy porous medium // Acta Mech. 2004. V. 168. P. 145–156.
- Abel S., Prasad K. V., Mahaboob A. Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface // Intern. J. Therm. Sci. 2005. V. 44. P. 465–476.
- Mahmoud M. A. A., Mahmoud M. A., Waheed S. E. Hydromagnetic boundary layer micropolar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation // Math. Probl. Engng. 2006. Article ID 39392. P. 1–10.
- 17. Krishnambal S., Anuradha P. Effect of radiation on the flow of a visco-elastic fluid and heat transfer in a porous medium over a stretching sheet // J. Appl. Sci. 2006. V. 6. P. 2901–2906.
- Eckert E. R. G. Analysis of heat and mass transfer / E. R. G. Eckert, R. M. Drake. N. Y.: McGraw Hill, 1972.
- Postelnicu A. Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects // Intern. J. Heat Mass Transfer. 2004. V. 47. P. 1467–1472.
- Eldabe N. T., El-Saka A. G., Fouad A. Thermal-diffusion and diffusion-thermo effects on mixed free-forced convection and mass transfer boundary layer flow for non-Newtonian fluid with temperature dependent viscosity // Appl. Math. Comput. 2004. V. 152. P. 867–883.
- Postelnicu A. Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects // Heat Mass Transfer. 2007. V. 43. P. 595–602.
- Partha M. K., Murthy P. V. S. N., Raja Sekhar G. P. Soret and Dufour effects in a non-Darcy porous medium // J. Heat Transfer. 2006. V. 128. P. 605–610.
- Kafoussias N. G., Williams E. W. Thermal-diffusion and diffusion thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity // Intern. J. Engng Sci. 1995. V. 33. P. 1369–1384.
- Lakshmi P. A., Murthy P. V. S. N. Soret and Dufour effects on free convection heat and mass transfer from a horizontal flat plate in a Darcy porous medium // J. Heat Transfer. 2008. V. 130. P. 104504-1–104504-5.
- Chamkha A. J., Ben-Nakhi A. MHD mixed convection-radiation interaction malong a permeable surface immersed in a porous medium in the presence of Soret and Dufour's effects // Heat Mass Transfer. 2008. V. 44. P. 845–856.
- Hayat T., Mustafa M., Pop I. Heat and mass transfer for Soret and Dufour's effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid // Comm. Nonlinear Sci. Numer. Simulat. 2010. V. 15. P. 1183–1196.
- 27. Anwar Bég O., Bakier A. Y., Prasad V. R. Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects // Comput. Materials Sci. 2009. V. 46. P. 57–65.
- Chamkha A. J., Jasem M. A. Mixed convection heat and mass transfer of non-Newtonian fluids from a permeable surface embedded in a porous medium // Intern. J. Numer. Methods Heat Fluid Flow. 2007. V. 17. P. 195–212.

- 29. Christopher R. V., Middlemann S. Power-law through a packed tube // Ind. Engng Chem. Fundam. 1965. V. 4. P. 424–426.
- Dharmadhikari R. V., Kale D. D. Flow of non-Newtonian fluids through porous media // Chem. Engng Sci. 1985. V. 40. P. 527–529.
- Raptis A. Flow of a micropolar fluid past a continuously moving plate by the presence of radiation // Intern. J. Heat Mass Transfer. 1998. V. 41. P. 2865–2866.
- Raptis A. Radiation and viscoelastic flow // Intern. Comm. Heat Mass Transfer. 1999. V. 26. P. 889–895.

Поступила в редакцию 7/VIII 2011 г.