УДК 532.529.3

К расчету течений теплопроводной парогазокапельной смеси

В.С. Суров

Южно-Уральский государственный университет (НИУ), просп. Ленина, 76, Челябинск, 454080 E-mail: surovvictor@gmail.com

Английская версия этой статьи печатается в журнале "Numerical Analysis and Applications" No 2, Vol. 13, 2020.

Суров В.С. К расчету течений теплопроводной парогазокапельной смеси // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 2020. — Т. 23, № 2. — С. 201–217.

Проведен характеристический анализ уравнений односкоростной теплопроводной парогазокапельной смеси, в которой учтен межфракционный теплообмен и показана их гиперболичность. Приведены расчетные формулы метода Годунова с линеаризованным римановым решателем, с использованием которого рассчитан ряд течений смеси.

DOI: 10.15372/SJNM20200207

Ключевые слова: гиперболическая модель односкоростной теплопроводной парогазокапельной смеси, межфракционный теплообмен, метод Годунова, линеаризованный римановский решатель.

Surov V.S. To calculating heat-conducting vapor–gas–droplet mixture flows // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. – Novosibirsk, 2020. – Vol. 23, № 2. – P. 201–217.

A characteristic analysis of the equations of a single–velocity heat–conducting vapor–gas–drop mixture is carried out, in which the interfraction heat exchange is taken into account and their hyperbolicity is shown. The computational formulas of the Godunov method with a linearized Riemann solver are presented with whose use a number of the mixture flows are calculated.

Keywords: hyperbolic model of a heat-conducting vapor-gas-drop mixture, inter-fractional heat transfer, Godunov's method, linearized Riemann solver.

Введение

Односкоростные модели многокомпонентных сред [1–5] используются при моделировании волновых процессов во вспененных жидкостях и полимерах [6, 7], в пузырьковых средах [8], для расчетов течений жидкостей при наличии кавитации, кипящих и испаряющихся жидкостей [9], детонационных явлений [10], для локализации контактных поверхностей в многожидкостной гидродинамике [11]. В данной работе рассматривается модель парогазокапельной смеси с калорическими уравнениями состояния газа $\varepsilon_{\rm g} = \varepsilon_{\rm g}(\rho_{\rm g}^0, p)$ и пара $\varepsilon_{\rm st} = \varepsilon_{\rm st}(\rho_{\rm st}^0, p)$. Капельная фракция считается несжимаемой. В отличие от упомянутых выше работ, смесь полагается теплопроводной, при этом для обеспечения гиперболичности уравнений модели вместо закона Фурье, как и в [12], использован закон Максвелла–Каттанео [13], учитывающий релаксацию теплового потока. Кроме того, в используемой модели учтен межфракционный теплообмен. Для интегрирования уравнений модели смеси применялся модифицированный конечно-объемный метод Годунова [14], первоначально предложенный для численного решения задач газовой динамики. Этот метод может быть эффективно использован при интегрировании многомерных уравнений модели смеси на криволинейных сетках.

1. Гиперболическая модель смеси

Уравнения, описывающие одномерное течение парогазокапельной смеси при наличии межфракционного теплообмена, но без учета теплопроводности среды, в дивергентной форме имеют вид:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} &= 0, \qquad \frac{\partial \rho u}{\partial t} + \frac{\partial (p + \rho u^2)}{\partial x} = 0, \\ \frac{\partial}{\partial t} \left[\rho \left(\varepsilon + \frac{1}{2} u^2 \right) \right] + \frac{\partial}{\partial x} \left(\left[\rho \left(\varepsilon + \frac{1}{2} u^2 \right) + p \right] u \right) = 0, \\ \frac{\partial \alpha_{g} \rho_{g}^{0}}{\partial t} + \frac{\partial \alpha_{g} \rho_{g}^{0} u}{\partial x} &= 0, \qquad \frac{\partial \alpha_{g} \rho_{g}^{0} u}{\partial t} + \frac{\partial \alpha_{g} (p + \rho_{g}^{0} u^2)}{\partial x} = f_{g}, \\ \frac{\partial}{\partial t} \left[\alpha_{g} \rho_{g}^{0} \left(\varepsilon_{g} + \frac{1}{2} u^2 \right) \right] + \frac{\partial}{\partial x} \left(\alpha_{g} \left[\rho_{g}^{0} \left(\varepsilon_{g} + \frac{1}{2} u^2 \right) + p \right] u \right) = f_{g} u + Q_{g}, \end{aligned}$$
(1)
$$\frac{\partial \alpha_{st} \rho_{st}^{0}}{\partial t} + \frac{\partial \alpha_{st} \rho_{st}^{0} u}{\partial x} = 0, \qquad \frac{\partial \alpha_{s}}{\partial t} + \frac{\partial \alpha_{s} u}{\partial x} = 0, \qquad \frac{\partial \alpha_{s} \rho_{s}^{0} u}{\partial t} + \frac{\partial \alpha_{s} (p + \rho_{s}^{0} u^2)}{\partial x} = f_{s}, \\ \frac{\partial}{\partial t} \left[\alpha_{s} \rho_{s}^{0} \left(\varepsilon_{s} + \frac{1}{2} u^2 \right) \right] + \frac{\partial}{\partial x} \left(\alpha_{s} \left[\rho_{s}^{0} \left(\varepsilon_{s} + \frac{1}{2} u^2 \right) + p \right] u \right) = f_{s} u + Q_{s}, \end{aligned}$$

где $f_{\rm g}$ и $f_{\rm s}$ — плотности сил межфракционного взаимодействия [5], которые заранее неизвестны и определяются в процессе интегрирования системы (1); $\rho = \alpha_{\rm g} \rho_{\rm g}^0 + \alpha_{\rm st} \rho_{\rm st}^0 + \alpha_{\rm s} \rho_{\rm s}^0$ — плотность смеси; $\alpha_{\rm g}$, $\alpha_{\rm st}$ и $\alpha_{\rm s}$ — объемные доли газа, пара и дисперсной фракции ($\alpha_{\rm g} + \alpha_{\rm st} + \alpha_{\rm s} = 1$); Q_k — интенсивность межкомпонентного теплообмена на единину объема смеси между k-й фракцией (газа, пара и дисперсной фракции) и остальными ($Q_{\rm g} + Q_{\rm st} + Q_{\rm s} = 0$); $\varepsilon = \frac{1}{\rho} (\alpha_{\rm g} \rho_{\rm g}^0 \varepsilon_{\rm g} + \alpha_{\rm st} \rho_{\rm st}^0 \varepsilon_{\rm st} + \alpha_{\rm s} \rho_{\rm s}^0 \varepsilon_{\rm s})$ и $\varepsilon_{\rm s} = c_{v,s} \theta_{\rm s}$ — удельные внутренние энергии смеси в целом и несжимаемой фракции; θ_k — температура k-й фракции. Законы сохранения массы, импульса и энергии для смеси в целом в квазилинейной форме имеют вид:

$$\frac{1}{\rho}\frac{D\rho}{Dt} + \frac{\partial u}{\partial x} = 0, \quad \frac{Du}{Dt} + \frac{1}{\rho}\frac{\partial p}{\partial x} = 0, \quad \frac{D\varepsilon}{Dt} - \frac{p}{\rho^2}\frac{D\rho}{Dt} = 0,$$

где $\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}$. Соответствующие законы сохранения для газа и пара примут вид:

$$\frac{D\rho_{\rm g}}{Dt} + \rho_{\rm g}\frac{\partial u}{\partial x} = 0, \quad \rho_{\rm g}\frac{Du}{Dt} + \frac{\partial\alpha_{\rm g}p}{\partial x} = f_{\rm g}, \quad \frac{D\varepsilon_{\rm g}}{Dt} + \frac{\alpha_{\rm g}p}{\rho_{\rm g}}\frac{\partial u}{\partial x} = \frac{Q_{\rm g}}{\rho_{\rm g}}, \quad \frac{D\rho_{\rm st}}{Dt} + \rho_{\rm st}\frac{\partial u}{\partial x} = 0,$$

где $\rho_k = \alpha_k \rho_k^0$ — приведенная плотность k-й фракции. Учитывая равенства

$$\frac{D\varepsilon_{\rm g}}{Dt} = \frac{\partial\varepsilon_{\rm g}}{\partial p}\frac{Dp}{Dt} + \frac{\partial\varepsilon_{\rm g}}{\partial \rho_{\rm g}^0}\frac{D\rho_{\rm g}^0}{Dt}, \quad \frac{D\varepsilon_{\rm st}}{Dt} = \frac{\partial\varepsilon_{\rm st}}{\partial p}\frac{Dp}{Dt} + \frac{\partial\varepsilon_{\rm st}}{\partial \rho_{\rm st}^0}\frac{D\rho_{\rm st}^0}{Dt}$$

$$\frac{D\varepsilon_{\rm s}}{Dt} = c_{\nu,\rm s} \frac{D\theta_{\rm s}}{Dt}, \quad \frac{D\theta_{\rm s}}{Dt} = \frac{1}{c_{\nu,\rm s}\rho_{\rm s}^0} \left(\frac{p}{\rho} \frac{D\rho}{dt} + \frac{Q_{\rm s}}{\alpha_{\rm s}}\right),$$

$$\frac{D\rho_{\rm g}}{Dt} = \frac{\rho_{\rm g}}{\rho} \frac{D\rho}{Dt}, \quad \frac{D\rho_{\rm s}}{Dt} = \frac{\rho_{\rm s}}{\rho} \frac{D\rho}{Dt}, \quad \frac{D\rho_{\rm st}}{Dt} = \frac{\rho_{\rm st}}{\rho} \frac{D\rho}{Dt}, \quad \frac{D\rho_{\rm st}}{Dt} = \frac{\rho_{\rm st}}{\rho} \frac{D\rho}{Dt} + \frac{\rho_{\rm st}^0}{\rho} \left(\frac{D\alpha_{\rm g}}{Dt} + \frac{D\alpha_{\rm s}}{Dt}\right),$$

закон сохранения энергии для смеси в целом может быть переписан как

$$\frac{Dp}{Dt} - c_a^2 \frac{D\rho}{Dt} = \Pi,$$

где

$$c_{a} = \sqrt{\frac{p\left(\alpha_{\rm st}\frac{\rho_{\rm g}^{0}}{\rho_{\rm st}^{0}}\frac{\partial\varepsilon_{\rm g}}{\partial\rho_{\rm g}^{0}} + \alpha_{\rm g}\frac{\rho_{\rm st}^{0}}{\rho_{\rm g}^{0}}\frac{\partial\varepsilon_{\rm st}}{\partial\rho_{\rm st}^{0}}\right) - \rho_{\rm g}^{0}\rho_{\rm st}^{0}\frac{\partial\varepsilon_{\rm g}}{\partial\rho_{\rm g}^{0}}\frac{\partial\varepsilon_{\rm st}}{\partial\rho_{\rm st}^{0}}}{\rho_{\rm g}^{0}}\frac{\partial\varepsilon_{\rm g}}{\partial\rho_{\rm st}^{0}} + \alpha_{\rm st}\rho_{\rm g}^{0}\frac{\partial\varepsilon_{\rm g}}{\partial\rho_{\rm g}^{0}}\frac{\partial\varepsilon_{\rm st}}{\partial\rho}}{\rho_{\rm g}^{0}}\right)}{\rho_{\rm st}^{0}},$$

$$(2)$$

$$\Pi = \frac{Q_{\rm g}\frac{\rho_{\rm st}^{0}}{\rho_{\rm g}^{0}}\frac{\partial\varepsilon_{\rm st}}{\partial\rho_{\rm st}^{0}} + Q_{\rm st}\frac{\rho_{\rm g}^{0}}{\rho_{\rm st}^{0}}\frac{\partial\varepsilon_{\rm g}}{\partial\rho_{\rm g}^{0}}}{\rho_{\rm g}^{0}}\frac{\partial\varepsilon_{\rm st}}{\partial\rho_{\rm g}^{0}}}{\alpha_{\rm g}\rho_{\rm st}^{0}\frac{\partial\varepsilon_{\rm g}}{\partial\rho_{\rm st}^{0}} + \alpha_{\rm st}\rho_{\rm g}^{0}\frac{\partial\varepsilon_{\rm st}}{\partial\rho_{\rm g}^{0}}}}$$

Здесь c_a — адиабатическая скорость звука. Таким образом, система уравнений модели смеси (1) в квазилинейной форме принимает вид:

$$\frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + \rho\frac{\partial u}{\partial x} = 0, \quad \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + \frac{1}{\rho}\frac{\partial p}{\partial x} = 0, \quad \frac{\partial p}{\partial t} + u\frac{\partial p}{\partial x} + \rho c_a^2\frac{\partial u}{\partial x} = \Pi, \\
\frac{\partial\rho_g^0}{\partial t} + u\frac{\partial\rho_g^0}{\partial x} + G_g\frac{\partial u}{\partial x} = H_g, \quad \frac{\partial\alpha_g}{\partial t} + u\frac{\partial\alpha_g}{\partial x} + I_g\frac{\partial u}{\partial x} = J_g, \\
\frac{\partial\rho_{st}^0}{\partial t} + u\frac{\partial\rho_{st}^0}{\partial x} + G_g\frac{\partial u}{\partial x} = H_{st}, \quad \frac{\partial\alpha_s}{\partial t} + u\frac{\partial\alpha_s}{\partial x} + \alpha_s\frac{\partial u}{\partial x} = 0, \\
\frac{\partial\theta_s}{\partial t} + u\frac{\partial\theta_s}{\partial x} + Y_s\frac{\partial u}{\partial x} = \frac{Q_s}{\alpha_s\rho_s^0c_{v,s}},$$
(3)

где

$$\begin{aligned} G_{\rm g} &= \left(\frac{p}{\rho_{\rm g}^0} - \rho c_a^2 \frac{\partial \varepsilon_{\rm g}}{\partial p}\right) \left(\frac{\partial \varepsilon_{\rm g}}{\partial \rho_{\rm g}^0}\right)^{-1}, \quad H_{\rm g} = \left(\frac{Q_{\rm g}}{\alpha_{\rm g} \rho_{\rm g}^0} - \Pi \frac{\partial \varepsilon_{\rm g}}{\partial p}\right) \left(\frac{\partial \varepsilon_{\rm g}}{\partial \rho_{\rm g}^0}\right)^{-1}, \quad I_{\rm g} = \alpha_{\rm g} \left(1 - \frac{G_{\rm g}}{\rho_{\rm g}^0}\right), \\ J_{\rm g} &= -\frac{\alpha_{\rm g} H_{\rm g}}{\rho_{\rm g}^0}, \quad G_{\rm st} = \frac{\rho_{\rm st}}{\alpha_{\rm st}} \left(1 - \frac{\alpha_{\rm g} G_{\rm g}}{\rho_{\rm g}^0}\right), \quad H_{\rm st} = \frac{\rho_{\rm st}^0 J_{\rm g}}{\alpha_{\rm st}}, \quad Y_{\rm s} = \frac{p}{c_{v,\rm s} \rho_{\rm s}^0}. \end{aligned}$$

Систему (3) перепишем в векторной форме:

$$\frac{\partial \mathbf{U}}{\partial t} + A \frac{\partial \mathbf{U}}{\partial x} = \mathbf{Z},\tag{4}$$

где

$$\mathbf{U} = \begin{pmatrix} \rho \\ u \\ p \\ \rho_{g}^{0} \\ \alpha_{g} \\ \rho_{st}^{0} \\ \alpha_{s} \\ \theta_{s} \end{pmatrix}, \quad A = \begin{pmatrix} u & \rho & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & u & 1/\rho & 0 & 0 & 0 & 0 & 0 \\ 0 & \rho c_{a}^{2} & u & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{g} & 0 & u & 0 & 0 & 0 & 0 \\ 0 & G_{g} & 0 & 0 & u & 0 & 0 & 0 \\ 0 & G_{st} & 0 & 0 & 0 & u & 0 & 0 \\ 0 & \alpha_{s} & 0 & 0 & 0 & 0 & u & 0 \\ 0 & Y_{s} & 0 & 0 & 0 & 0 & 0 & u \end{pmatrix}, \quad \mathbf{Z} = \begin{pmatrix} 0 \\ 0 \\ \Pi \\ H_{g} \\ J_{g} \\ H_{st} \\ 0 \\ \frac{Q_{s}}{\alpha_{s}\rho_{s}^{0}c_{v,s}} \end{pmatrix}.$$

Матрица, составленная из правых собственных столбцов матрицы A, соответствующих собственным значениям

$$\lambda_1 = u - c_a, \quad \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 = u, \quad \lambda_8 = u + c_a,$$

имеет вид

как

$$\Omega = \frac{1}{Y_{\rm s}} \begin{pmatrix} \rho & 0 & 0 & 0 & 0 & 0 & Y_{\rm s} & \rho \\ -c_a & 0 & 0 & 0 & 0 & 0 & c_a \\ \rho c_a^2 & 0 & 0 & 0 & 0 & 0 & \rho c_a^2 \\ G_{\rm g} & 0 & 0 & 0 & Y_{\rm s} & 0 & G_{\rm g} \\ I_{\rm g} & 0 & 0 & 0 & Y_{\rm s} & 0 & 0 & I_{\rm g} \\ G_{\rm st} & 0 & 0 & Y_{\rm s} & 0 & 0 & \sigma_{\rm st} \\ \alpha_{\rm s} & 0 & Y_{\rm s} & 0 & 0 & 0 & \alpha_{\rm s} \\ Y_{\rm s} & Y_{\rm s} & 0 & 0 & 0 & 0 & Y_{\rm s} \end{pmatrix}.$$
(5)

Поскольку собственные значения системы (4) — действительные числа, а собственные векторы — линейно независимые, поэтому уравнения модели относятся к гиперболическому типу [15]. Ниже описан использующий эти собственные векторы линеаризованный римановский решатель [16], который применяется в численных схемах метода Годунова.

При дополнительном учете распространения тепла уравнение энергии для смеси в целом принимает вид

$$\frac{\partial}{\partial t} \left[\rho \left(\varepsilon + \frac{1}{2} u^2 \right) \right] + \frac{\partial}{\partial x} \left(\left[\rho \left(\varepsilon + \frac{1}{2} u^2 \right) + p \right] u + w \right) = 0,$$

где w — плотность теплового потока. При этом полагалось, что единственной фракцией в смеси, заполняющей пространство связным образом, является паровая компонента. Все остальные фракции "вкраплены" в несущую, поэтому в энергетических уравнениях для капельной и газовой фракций опущены члены вида div(α_k, w_k), ответственные за контактный перенос тепла в этих компонентах [12]. Для получения гиперболической системы уравнений вместо закона Фурье применялся закон Максвелла–Каттанео [13]:

$$\tau \left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x}\right) + w = -\chi \frac{\partial \theta}{\partial x},\tag{6}$$

учитывающий релаксацию теплового потока и обеспечивающий конечность скорости перемещения тепловых волн. Здесь τ — время релаксации. Принимая во внимание формулу для средней температуры смеси $\theta = \alpha_{\rm g} \theta_{\rm g} + \alpha_{\rm s} \theta_{\rm s} + \alpha_{\rm st} \theta_{\rm st}$, где температура каждой из фракций определяются из термических уравнений состояния компонентов смеси $\theta_{\rm g} = \theta_{\rm g}(\rho_{\rm g}^0, p)$ и $\theta_{\rm st} = \theta_{\rm st}(\rho_{\rm st}^0, p)$, выражение (6), учитывая равенство $\rho_{\rm st}^0 = \frac{\rho - \alpha_{\rm g} \rho_{\rm g}^0 - \alpha_{\rm s} \rho_{\rm s}^0}{1 - \alpha_{\rm g} - \alpha_{\rm s}}$, перепишется

204

$$\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + k_p\frac{\partial p}{\partial x} + k_\rho\frac{\partial \rho}{\partial x} + k_{\rho_{\rm g}^0}\frac{\partial \rho_{\rm g}^0}{\partial x} + k_{\alpha_{\rm g}}\frac{\partial \alpha_{\rm g}}{\partial x} + k_{\alpha_{\rm s}}\frac{\partial \alpha_{\rm s}}{\partial x} + k_{\theta_{\rm s}}\frac{\partial \theta_{\rm s}}{\partial x} + \frac{w}{\tau} = 0,$$

где

$$k_{p} = \frac{\chi}{\tau} \left(\alpha_{\rm g} \frac{\partial \theta_{\rm g}}{\partial p} + \alpha_{\rm st} \frac{\partial \theta_{\rm st}}{\partial p} \right), \quad k_{\rho} = \frac{\chi}{\tau} \frac{\partial \theta_{\rm st}}{\partial \rho_{\rm st}^{0}}, \quad k_{\rho_{\rm g}^{0}} = \frac{\alpha_{\rm g} \chi}{\tau} \left(\frac{\partial \theta_{\rm g}}{\partial \rho_{\rm g}^{0}} - \frac{\partial \theta_{\rm st}}{\partial \rho_{\rm st}^{0}} \right),$$
$$k_{\alpha_{\rm g}} = \frac{\chi}{\tau} \left[\theta_{\rm g} - \theta_{\rm st} + \left(\rho_{\rm st}^{0} - \rho_{\rm g}^{0} \right) \frac{\partial \theta_{\rm st}}{\partial \rho_{\rm st}^{0}} \right], \quad k_{\alpha_{\rm s}} = \frac{\chi}{\tau} \left[\theta_{\rm s} - \theta_{\rm st} + \left(\rho_{\rm g}^{0} - \rho_{\rm s}^{0} \right) \frac{\partial \theta_{\rm st}}{\partial \rho_{\rm st}^{0}} \right], \quad k_{\theta_{\rm s}} = \frac{\alpha_{\rm s} \chi}{\tau}.$$

После преобразований, аналогичных проделанным для адиабатического варианта смеси, система уравнений модели при наличии теплопроводности в квазилинейной форме принимает вид:

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0, \quad \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0,$$

$$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho c_a^2 \frac{\partial u}{\partial x} + \eta \frac{\partial w}{\partial x} = \Pi, \quad \frac{\partial \rho_g^0}{\partial t} + u \frac{\partial \rho_g^0}{\partial x} + G_g \frac{\partial u}{\partial x} = H_g,$$

$$\frac{\partial \alpha_g}{\partial t} + u \frac{\partial \alpha_g}{\partial x} + I_g \frac{\partial u}{\partial x} = J_g, \quad \frac{\partial \rho_{st}^0}{\partial t} + u \frac{\partial \rho_{st}^0}{\partial x} + G_g \frac{\partial u}{\partial x} = H_{st},$$

$$\frac{\partial \alpha_s}{\partial t} + u \frac{\partial \alpha_s}{\partial x} + \alpha_s \frac{\partial u}{\partial x} = 0, \quad \frac{\partial \theta_s}{\partial t} + u \frac{\partial \theta_s}{\partial x} + Y_s \frac{\partial u}{\partial x} = \frac{Q_s}{\alpha_s \rho_s^0 c_{v,s}},$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + k_p \frac{\partial p}{\partial x} + k_{\rho_g^0} \frac{\partial \rho_g^0}{\partial x} + k_{\alpha_g} \frac{\partial \alpha_g}{\partial x} + k_{\alpha_s} \frac{\partial \alpha_s}{\partial x} + k_{\theta_s} \frac{\partial \theta_s}{\partial x} + \frac{w}{\tau} = 0,$$
(7)

где $\eta = \left(\alpha_{\rm g}\rho_{\rm g}^0 \frac{\partial \varepsilon_{\rm g}}{\partial p} + \alpha_{\rm st}\rho_{\rm st}^0 \frac{\partial \varepsilon_{\rm st}}{\partial p}\right)^{-1}$. Соответствующие векторы **U**, **Z** и матрица *A* в уравнении (4) имеют вид:

$$\mathbf{U} = \begin{pmatrix} \rho \\ u \\ p \\ \rho_{g}^{0} \\ \alpha_{g} \\ \rho_{st}^{0} \\ \alpha_{s} \\ \theta_{s} \\ w \end{pmatrix}, \quad A = \begin{pmatrix} u & \rho & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & u & \frac{1}{\rho} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \rho c_{a}^{2} & u & 0 & 0 & 0 & 0 & 0 & \eta \\ 0 & G_{g} & 0 & u & 0 & 0 & 0 & 0 & 0 \\ 0 & I_{g} & 0 & 0 & u & 0 & 0 & 0 & 0 \\ 0 & G_{st} & 0 & 0 & 0 & u & 0 & 0 & 0 \\ 0 & \alpha_{s} & 0 & 0 & 0 & 0 & u & 0 & 0 \\ 0 & \gamma_{s} & 0 & 0 & 0 & 0 & u & 0 \\ k_{\rho} & 0 & k_{p} & k_{\rho_{g}^{0}} & k_{\alpha_{g}} & 0 & k_{\alpha_{s}} & k_{\theta_{s}} & u \end{pmatrix}, \quad \mathbf{Z} = \begin{pmatrix} 0 \\ 0 \\ \Pi \\ H_{g} \\ J_{g} \\ H_{st} \\ 0 \\ \frac{Q_{s}}{\alpha_{s} \rho_{s}^{0} c_{v,s}} \\ -\frac{w}{\tau} \end{pmatrix}$$

Матрица, составленная из правых собственных столбцов матрицы A, соответствующих собственным значениям

$$\lambda_1 = u - c_1, \quad \lambda_2 = u - c_2, \ \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 = u, \ \lambda_8 = u + c_2, \quad \lambda_9 = u + c_1,$$

имеет вид

$$\Omega = \frac{1}{\rho} \begin{pmatrix} \rho & \rho & -\rho \frac{k_{\rho_g^0}}{k_{\rho}} & -\rho \frac{k_{\alpha_g}}{k_{\rho}} & 0 & -\rho \frac{k_{\alpha_s}}{k_{\rho}} & -\rho \frac{k_{\theta_s}}{k_{\rho}} & \rho & \rho \\ -c_1 & -c_2 & 0 & 0 & 0 & 0 & 0 & c_1 & c_2 \\ \rho c_1^2 & \rho c_2^2 & 0 & 0 & 0 & 0 & 0 & \rho c_2^2 & \rho c_1^2 \\ G_g & G_g & \rho & 0 & 0 & 0 & 0 & G_g & G_g \\ I_g & I_g & 0 & \rho & 0 & 0 & 0 & I_g & I_g \\ G_{st} & G_{st} & 0 & 0 & \rho & 0 & 0 & \sigma_{st} & G_{st} \\ \alpha_s & \alpha_s & 0 & 0 & \rho & 0 & \alpha_s & \alpha_s \\ Y_s & Y_s & 0 & 0 & 0 & 0 & \rho & Y_s & Y_s \\ S_1 & S_2 & 0 & 0 & 0 & 0 & 0 & -S_2 & -S_1 \end{pmatrix},$$
(8)

где $S_i = rac{
ho c_i (c_a^2 - c_i^2)}{\eta}, \, i = 1, 2.$ Здесь

$$c_{1} = \sqrt{e_{1}^{2} \left[c_{a}^{2} + k_{p}\eta + \sqrt{(c_{a}^{2} + k_{p}\eta)^{2} + 4\eta \left(k_{\rho} + \frac{k_{\rho_{g}^{0}}G_{g} + k_{\alpha_{g}}I_{g} + k_{\alpha_{s}}\alpha_{s} + k_{\theta_{s}}Y_{s}}{\rho} \right) \right]},$$

$$c_{2} = \sqrt{\frac{1}{2} \left[c_{a}^{2} + k_{p}\eta - \sqrt{(c_{a}^{2} + k_{p}\eta)^{2} + 4\eta \left(k_{\rho} + \frac{k_{\rho_{g}^{0}}G_{g} + k_{\alpha_{g}}I_{g} + k_{\alpha_{s}}\alpha_{s} + k_{\theta_{s}}Y_{s}}{\rho} \right) \right]},$$
(9)

суть газодинамическая и тепловая скорости перемещения возмущений в смеси соответственно.

В качестве калорических и термических уравнений состояния, составляющих смесь компонентов, использовались следующие: для газа

$$\varepsilon_{\rm g} = \frac{p}{(\gamma_{\rm g} - 1)\rho_{\rm g}^0}, \quad \theta_{\rm g} = \frac{p}{R_{\rm g}\rho_{\rm g}^0}, \tag{10}$$

где $R_{\rm g}$ — газовая постоянная; для водяного пара

$$\varepsilon_{\rm st} = \frac{(p + \gamma_{\rm st} p_{\rm st})(1 - b_{\rm st} \rho_{\rm st}^0)}{(\gamma_{\rm st} - 1)\rho_{\rm st}^0} + q_{\rm st}, \quad \theta_{\rm st} = \frac{(p + p_{\rm st})(1 - b_{\rm st} \rho_{\rm st}^0)}{(\gamma_{\rm st} - 1)\rho_{\rm st}^0 c_{v,\,\rm st}},\tag{11}$$

где $\gamma_{\rm st}$ = 1.47; $p_{\rm st}$ =0; $q_{\rm st}$ = 2.077616 Дж/кг; $c_{v,\,\rm st}$ = 0.955 · 10³ Дж/(кг · K); $b_{\rm st}$ =0 [10].

На рис. 1а представлена зависимость $c_a(\alpha_{\rm g})$ для парогазокапельной смеси с объемной долей несжимаемой фракции (воды) $\alpha_{\rm s}$ =0.005 ($\rho_{\rm s}^0 = 1000 \text{ kr/m}^3$, $c_{v,s} = 3.61 \times 10^3 \text{ m}^2/(\text{c}^2 \cdot \text{K})$, $T_{\rm s} = 293 \text{ }^{\circ}\text{K}$, $\gamma_{\rm g} = 1.4$, $R_{\rm g} = 8314/29 \text{ Дж/(kr \cdot K)}$) при нормальных условиях, а также кривая $c_w(\alpha_{\rm g})$, рассчитанная по формуле Вуда [17]

$$\frac{1}{\rho c_w^2} = \frac{\alpha_{\rm g}}{\rho_{\rm g}^0 c_{\rm g}^2} + \frac{\alpha_{\rm st}}{\rho_{\rm st}^0 c_{\rm st}^2}$$

где $c_{\rm g} = \sqrt{\frac{\gamma_{\rm g} p}{\rho_{\rm g}^0}}, c_{\rm st} = \sqrt{\frac{\gamma_{\rm st}(p+p_{\rm st})}{\rho_{\rm st}^0(1-b_{\rm st}\rho_{\rm st}^0)}}$. Отметим, что с уменьшением объемной доли несжи-

маемой фракции в смеси кривая $c_a(\alpha_g)$ приближается к $c_w(\alpha_g)$ и совпадает с последней при $\alpha_s=0$, что естественно, поскольку в формуле Вуда отсутствует учет теплофизических свойств дисперсной фракции. На рис. 16 приведены зависимости $c_1(\alpha_g)$, $c_2(\alpha_g)$, полученные при тех же условиях, что на предыдущем графике. Заметим, что газодинамическая скорость звука оказывается близкой к адиабатической, а тепловая — достаточно мала.

Рис. 1. Зависимости скоростей звука в смеси при $\alpha_s = 0.05$: c_w и c_a — сплошная и штриховая кривые соответственно (a); c_1 и c_2 — сплошная и штриховая соответственно, c_a — кружочки (б)

2. Методика численных расчетов

При интегрировании уравнений модели смеси использовался метод Годунова [14], который опишем для задач с двумя пространственными переменными. Ранее этот метод применялся для расчета адиабатических течений односкоростных многокомпонентных смесей [18]. Система двумерных уравнений модели с межфракционным теплообменом в декартовой координатной системе может быть переписана так:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = \mathbf{H},\tag{12}$$

где

$$\mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho e \\ \alpha_{g} \rho_{g}^{0} u \\ \alpha_{g} \rho_{g}^{0} u \\ \alpha_{g} \rho_{g}^{0} v \\ \alpha_{g} \rho_{g}^{0} v \\ \alpha_{g} \rho_{g}^{0} v \\ \alpha_{g} \rho_{g}^{0} v \\ \alpha_{g} \rho_{g}^{0} e_{g} \\ \alpha_{st} \rho_{st} \\ \alpha_{s} \\ \alpha_{s} \\ \alpha_{s} \rho_{s}^{0} v \\ \alpha_{s} \rho_{s}^{0} u \\ \alpha_{s} \rho_{s}^{0} v \\ \alpha_{s} \rho_{s}^{0} u e_{g} + p/\rho_{g}^{0} \\ \alpha_{st} \rho_{st}^{0} u \\ \alpha_{st} \rho_{st}^{0} u \\ \alpha_{st} \rho_{st}^{0} v \\ \alpha_{st} \rho_{s}^{0} u v \\ \alpha_{st} \rho_{st}^{0} u \\ \alpha_{st} \rho_{s}^{0} u v \\ \alpha_{st} \rho_{s}^{0} u v \\ \alpha_{st} \rho_{s}^{0} u v \\ \alpha_{st} \rho_{st}^{0} v u \\ \alpha_{st} \rho_{st}^{0} v z \\ \alpha_{st} \rho_{st}^{0} v (e_{s} + p/\rho_{s}^{0}) \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} \rho v \\ \rho v u \\ \rho \rho v \\ \rho v (e + p/\rho) \\ \alpha_{g} \rho_{g}^{0} v u \\ \alpha_{g} \rho_{g}^{0} v u \\ \alpha_{st} \rho_{st} v \\ \alpha_{st} \rho_{st}^{0} v e_{st} \rho_{st}^{0} v \\ \alpha_{st} \rho_{st}^{0} v e_{st$$

 $\mathbf{H} = (0, 0, 0, 0, 0, f_{gx}, f_{gy}, f_{gx}u + f_{gy}v + Q_g, 0, 0, f_{sx}, f_{sy}, f_{sx}u + f_syv + Q_s)'.$

Штрихом отмечен оператор транспонирования, $e = \varepsilon + (u^2 + v^2)/2$, $e_k = \varepsilon_k + (u^2 + v^2)/2$, k соответствует газу и дисперсной фракции. Для модели с дополнительным учетом теплопроводности смеси векторы **F**, **G** в уравнении (12) имеют вид:

$$\mathbf{F} = \begin{pmatrix} \rho u \\ p + \rho u^2 \\ \rho uv \\ \rho u(e + p/\rho) + w_x \\ \alpha_g \rho_g^0 u \\ \alpha_g(p + \rho_g^0 u^2) \\ \alpha_g \rho_g^0 u(e_g + p/\rho_g^0) \\ \alpha_{st} \rho_{st} u \\ \alpha_s u \\ \alpha_s(p + \rho_s^0 u^2) \\ \alpha_s \rho_s^0 u(e_s + p/\rho_g^0) \\ \alpha_s \rho_s^0 u(e_s + p/\rho_g^0) \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} \rho v \\ \rho v u \\ p + \rho v^2 \\ \rho v(e + p/\rho) + w_y \\ \alpha_g \rho_g^0 v \\ \alpha_g \rho_g^0 v u \\ \alpha_g(p + \rho_g^0 v^2) \\ \alpha_s \rho_s^0 v(e_g + p/\rho_g^0) \\ \alpha_{st} \rho_s v u \\ \alpha_s \rho_s^0 v u \\ \alpha_s(p + \rho_s^0 v^2) \\ \alpha_s \rho_s^0 v(e_s + p/\rho_s^0) \end{pmatrix}.$$

Векторы U и H — те же, что и в модели без учета теплопроводности. В этой модели наряду с (12) используются уравнения недивергентного вида:

$$\frac{\partial w_x}{\partial t} + u \frac{\partial w_x}{\partial x} + v \frac{\partial w_x}{\partial y} + k_p \frac{\partial p}{\partial x} + k_\rho \frac{\partial \rho}{\partial x} + k_{\rho_g^0} \frac{\partial \rho_g^0}{\partial x} + k_{\alpha_g} \frac{\partial \alpha_g}{\partial x} + k_{\alpha_s} \frac{\partial \alpha_s}{\partial x} + k_{\theta_s} \frac{\partial \theta_s}{\partial x} + \frac{w_x}{\tau} = 0,$$
(13)
$$\frac{\partial w_y}{\partial t} + u \frac{\partial w_y}{\partial x} + v \frac{\partial w_y}{\partial y} + k_p \frac{\partial p}{\partial x} + k_\rho \frac{\partial \rho}{\partial x} + k_{\rho_g^0} \frac{\partial \rho_g^0}{\partial x} + k_{\alpha_g} \frac{\partial \alpha_g}{\partial x} + k_{\alpha_s} \frac{\partial \alpha_s}{\partial x} + k_{\theta_s} \frac{\partial \theta_s}{\partial x} + \frac{w_y}{\tau} = 0.$$

Применяя к имеющему дивергентную форму уравнению (12) методику перехода от дифференциальных соотношений к конечно-объемным [14], получим следующие выражения для (i, j) ячейки, связывающие искомые параметры на новом временном слое $t + \Delta t$ (с индексами вверху) с соответствующими значениями на предыдущем слое t (с индексами внизу):

$$\mathbf{U}^{i,j} = \mathbf{U}_{i,j} - (\mathbf{\Phi}_A + \mathbf{\Phi}_B + \mathbf{\Phi}_C + \mathbf{\Phi}_D)_{i,j} \frac{\Delta t}{S_{i,j}} + \mathbf{H}_{i,j} \Delta t,$$
(14)

где для модели без учета теплопроводности смеси

$$\label{eq:phi} \Phi = \begin{pmatrix} LNR \\ L(\sigma P + NRU) \\ L(\omega P + NRV) \\ LN(P + ER) \\ A_{\rm g}R_{\rm g}^{0}LN \\ A_{\rm g}L(\sigma P + NR_{\rm g}^{0}U) \\ A_{\rm g}L(\omega P + NR_{\rm g}^{0}V) \\ A_{\rm g}LN(P + E_{\rm g}R_{\rm g}^{0}) \\ A_{\rm st}R_{\rm st}^{0}LN \\ A_{\rm s}R_{\rm s}^{0}LN \\ A_{\rm s}L(\sigma P + NR_{\rm s}^{0}U) \\ A_{\rm s}L(\sigma P + NR_{\rm s}^{0}V) \\ A_{\rm s}L(\omega P + NR_{\rm s}^{0}V) \\ A_{\rm s}LN(P + E_{\rm s}R_{\rm s}^{0}) \end{pmatrix} .$$

208

При наличии теплопроводности потоковые выражения на гранях расчетной ячейки те же, что и без ее учета, за исключением энергетического соотношения для смеси в целом, которое имеет вид $\Phi_4 = LN(P + ER) + W$.

Здесь: $L_A = \left(\left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right)^2 + \left(y_{i-\frac{1}{2},j-\frac{1}{2}} - y_{i-\frac{1}{2},j+\frac{1}{2}} \right)^2 \right)^{1/2}, \dots$ — длины граней ячейки; $S_{i,j} = \frac{1}{2} \left[\left(x_{i+\frac{1}{2},j+\frac{1}{2}} - x_{i-\frac{1}{2},j-\frac{1}{2}} \right) \left(y_{i-\frac{1}{2},j+\frac{1}{2}} - y_{i+\frac{1}{2},j-\frac{1}{2}} \right) - \left(x_{i-\frac{1}{2},j+\frac{1}{2}} - x_{i-\frac{1}{2},j-\frac{1}{2}} \right) \right) \right]$ — ее площадь; $\sigma_A = \left(y_{i-\frac{1}{2},j-\frac{1}{2}} - y_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} - x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j-\frac{1}{2} + x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j+\frac{1}{2} + x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j+\frac{1}{2} + x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j+\frac{1}{2} + x_{i-\frac{1}{2},j+\frac{1}{2}} \right) / L_A, \ \omega_A = \left(x_{i-\frac{1}{2},j+\frac{1}{2} + x_{i-\frac{1}{2},j+\frac{1}{2$

Рис. 2. Фрагмент криволинейной сетки

"Большие" величины, которые входят в выражения (14) (P — давление; U, V — скорости, R — плотность смеси; A — объемная доля), относящиеся к граням смежных ячеек, определяются из решения соответствующих задач Римана. Для модели теплопроводной смеси при вычислении оставшихся неизвестными переменных w_x и w_y на новом временном слое запишем в конечно-разностном виде уравнения (13) как

$$\frac{(w_x)^{i,j} - (w_x)_{i,j}}{\Delta t} + u_{i,j} \frac{(W_x)_{i+\frac{1}{2},j} - (W_x)_{i-\frac{1}{2},j}}{\Delta x_{i,j}} + (k_p)_{i,j} \frac{P_{i+\frac{1}{2},j} - P_{i-\frac{1}{2},j}}{\Delta x_{i,j}} + (k_p)_{i,j} \frac{P_{i+\frac{1}{2},j} - P_{i-\frac{1}{2},j}}{\Delta x_{i,j}} + (k_p)_{i,j} \frac{(R_g^0)_{i+\frac{1}{2},j} - (R_g^0)_{i-\frac{1}{2},j}}{\Delta x_{i,j}} + (k_{\alpha_g})_{i,j} \frac{(A_g)_{i+\frac{1}{2},j} - (A_g)_{i-\frac{1}{2},j}}{\Delta x_{i,j}} + (k_{\theta_g})_{i,j} \frac{(\Theta_g)_{i+\frac{1}{2},j} - (\Theta_g)_{i-\frac{1}{2},j}}{\Delta x_{i,j}} = -\left(\frac{w_x}{\tau}\right)_{i,j} - v_{i,j} \frac{(w_x)_{i,j+\frac{1}{2}} - (w_x)_{i,j-\frac{1}{2}}}{\Delta y_{i,j}},$$

$$\begin{aligned} \frac{(w_y)^{i,j} - (w_y)_{i,j}}{\Delta t} + v_{i,j} \frac{(W_y)_{i,j+\frac{1}{2}} - (W_y)_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} + (k_p)_{i,j} \frac{P_{i,j+\frac{1}{2}} - P_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} + \\ (k_\rho)_{i,j} \frac{R_{i,j+\frac{1}{2}} - R_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} + (k_{\rho_g^0})_{i,j} \frac{(R_g^0)_{i,j+\frac{1}{2}} - (R_g^0)_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} + (k_{\alpha_g})_{i,j} \frac{(A_g)_{i,j+\frac{1}{2}} - (A_g)_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} + \\ (k_{\alpha_s})_{i,j} \frac{(A_s)_{i,j+\frac{1}{2}} - (A_s)_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} + (k_{\theta_s})_{i,j} \frac{(\Theta_s)_{i,j+\frac{1}{2}} - (\Theta_s)_{i,j-\frac{1}{2}}}{\Delta y_{i,j}} \\ &= -\left(\frac{w_y}{\tau}\right)_{i,j} - u_{i,j} \frac{(w_y)_{i+\frac{1}{2},j} - (w_x)_{i-\frac{1}{2},j}}{\Delta x_{i,j}}, \end{aligned}$$

из которых рассчитываются $(w_x)^{i,j}$, $(w_y)^{i,j}$, что завершает вычислительный цикл.

3. Алгоритм приближенного решения задачи Римана

Для вычисления потоков массы, импульса, энергии и тепла, перетекающих через грани смежных ячеек, решаются одномерные задачи распада произвольного разрыва, параметры которых соответствуют значениям в этих смежных ячейках. Точный решатель задачи Римана для модели смеси в адиабатическом приближении, требующий значительных временных затрат, рассмотрен в [19]. Римановский решатель, основанный на характеристических соотношениях, приведен в [20]. Отметим работу [21], в которой при интегрировании уравнений для смеси идеальных газов (без учета межфракционного теплообмена) использовался римановский решатель (без учета межфракционного теплообмена) использовался римановский решатель (ЛРР) для расчета одномерной задачи распада произвольного разрыва [16] для системы уравнений, записанной в квазилинейной форме. Соотношение для ЛРР, с использованием которого вычисляются параметры смеси на контактной границе ($\mathbf{U}_{(\mathbf{L}+\mathbf{R})/2}$) по известным значениям "слева" от контактной границы ($\mathbf{U}_{\mathbf{L}}$) и "справа" от нее ($\mathbf{U}_{\mathbf{R}}$, имеет вид

$$\mathbf{U}_{(\mathrm{L+R})/2}^{*} = \frac{1}{2}(\mathbf{U}_{\mathrm{L}} + \mathbf{U}_{\mathrm{R}}) - \frac{1}{2}\sum_{k} a_{k} \operatorname{sign}(\lambda_{k}) \mathbf{X}_{k},$$
(15)

где \mathbf{X}_k — правые собственные столбцы матрицы A, которые определяются в соответствии с данными выражений из (5) и (8). Значения входящих в (15) констант a_i рассчитывались из системы линейных уравнений:

$$\sum_{i} a_i \mathbf{X}_i = \Delta \mathbf{U},$$

где $\Delta \mathbf{U} = \mathbf{U}_{\mathrm{R}} - \mathbf{U}_{\mathrm{L}}.$

Для смеси без учета теплопроводности выражения для a_i имеют вид:

$$a_{1} = \frac{Y_{s}}{2c_{a}} \left(\frac{\Delta p}{\rho c_{a}} - \Delta u\right), \quad a_{2} = \Delta\theta_{s} - \frac{Y_{s}\Delta p}{\rho c_{a}^{2}}, \quad a_{3} = \Delta\alpha_{s} - \frac{\alpha_{s}\Delta p}{\rho c_{a}^{2}}, \quad a_{4} = \Delta\rho_{st}^{0} - \frac{G_{st}\Delta p}{\rho c_{a}^{2}}, \\ a_{5} = \Delta\alpha_{g} - \frac{I_{s}\Delta p}{\rho c_{a}^{2}}, \qquad a_{6} = \Delta\rho_{g}^{0} - \frac{G_{g}\Delta p}{\rho c_{a}^{2}}, \quad a_{7} = \Delta\rho - \frac{\Delta p}{c_{a}^{2}}, \qquad a_{8} = \frac{Y_{s}}{2c_{a}} \left(\frac{\Delta p}{\rho c_{a}} + \Delta u\right).$$

В случае дополнительного учета теплопроводности смеси формулы для расчета a_i принимают вид:

$$\begin{split} a_{1} &= \frac{\left[c_{1}\Delta p - \rho(c_{a}^{2} - c_{2}^{2})\Delta u - \eta\Delta w\right]N - \rho c_{1}c_{2}^{2}M}{2c_{1}(c_{1}^{2} - c_{2}^{2})N}, \\ a_{2} &= -\frac{\left[c_{2}\Delta p - \rho(c_{a}^{2} - c_{1}^{2})\Delta u - \eta\Delta w\right]N - \rho c_{2}c_{1}^{2}M}{2c_{2}(c_{1}^{2} - c_{2}^{2})N}, \quad a_{3} = \Delta\rho_{g}^{0} - \frac{G_{g}M}{N}, \\ a_{4} &= \Delta\alpha_{g} - \frac{J_{g}M}{N}, \quad a_{5} = \Delta\rho_{st}^{0} - \frac{J_{st}M}{N}, \quad a_{6} = \Delta\alpha_{s} - \frac{\alpha_{s}M}{N}, \quad a_{7} = \Delta\theta_{s} - \frac{Y_{s}M}{N}, \\ a_{8} &= -\frac{\left[c_{2}\Delta p + \rho(c_{a}^{2} - c_{1}^{2})\Delta u + \eta\Delta w\right]N - \rho c_{2}c_{1}^{2}M}{2c_{2}(c_{1}^{2} - c_{2}^{2})N}, \\ a_{9} &= \frac{\left[c_{1}\Delta p + \rho(c_{a}^{2} - c_{2}^{2})\Delta u + \eta\Delta w\right]N - \rho c_{1}c_{2}^{2}M}{2c_{1}(c_{1}^{2} - c_{2}^{2})N}, \\ M &= \Delta\rho + \frac{1}{k_{\rho}}\left(k_{\rho_{g}^{0}}\Delta\rho_{g}^{0} + k_{\alpha_{g}}\Delta\alpha_{g} + k_{\alpha_{s}}\Delta\alpha_{s} + k_{\theta_{s}}\Delta\theta_{s}\right), \\ N &= \rho + \frac{1}{\rho_{g}^{0}}\left(k_{\rho_{g}^{0}}G_{g} + k_{\alpha_{g}}J_{g} + k_{\alpha_{s}}\alpha_{s} + k_{\theta_{s}}Y_{s}\right). \end{split}$$

Для модели только с межфракционным теплообменом "большие" величины на общей грани между ячейками (i, j) и (i + 1, j) рассчитываются из соотношений:

$$\begin{split} (R, \ U, \ P, \ R_{\rm g}^0, \ A_{\rm g}, \ R_{\rm st}^0, \ A_{\rm s}, \ \Theta_{\rm s})_{i+\frac{1}{2},j} \\ &= \begin{cases} (\rho, \ u, \ p, \ \rho_{\rm g}^0, \ \alpha_{\rm g}, \ \rho_{\rm st}, \ \theta_{\rm s})_{i,j}, & \text{если} \ (u-c_a)_{i+\frac{1}{2},j} > 0, \\ (\rho, \ u, \ p, \ \rho_{\rm g}^0, \ \alpha_{\rm g}, \ \rho_{\rm st}, \ \theta_{\rm s})_{i+1,j}, & \text{если} \ (u+c_a)_{i+\frac{1}{2},j} < 0, \\ (\rho, \ u, \ p, \ \rho_{\rm g}^0, \ \alpha_{\rm g}, \ \rho_{\rm st}, \ \theta_{\rm s})_{i+\frac{1}{2},j}, & \text{если} \ (u-c_a)_{i+\frac{1}{2},j} \leq 0, \ (u+c_a)_{i+\frac{1}{2},j} \geq 0. \end{cases} \end{split}$$

При дополнительном учете теплопроводности смеси соответствующие выражения для "больших" величин имеют вид:

$$\begin{split} (R, \ U, \ P, \ R_{\rm g}^0, \ A_{\rm g}, \ R_{\rm st}^0, \ A_{\rm s}, \ \Theta_{\rm s}, \ W)_{i+\frac{1}{2},j} \\ &= \begin{cases} (\rho, \ u, \ p, \ \rho_{\rm g}^0, \ \alpha_{\rm g}, \ \rho_{\rm st}, \ \theta_{\rm s}, \ w)_{i,j}, & \text{если} \ (u-c_1)_{i+\frac{1}{2},j} > 0, \\ (\rho, \ u, \ p, \ \rho_{\rm g}^0, \ \alpha_{\rm g}, \ \rho_{\rm st}, \ \theta_{\rm s}, \ w)_{i+1,j}, & \text{если} \ (u+c_1)_{i+\frac{1}{2},j} < 0, \\ (\rho, \ u, \ p, \ \rho_{\rm g}^0, \ \alpha_{\rm g}, \ \rho_{\rm st}, \ \theta_{\rm s}, \ w)_{i+\frac{1}{2},j}, & \text{если} \ (u-c_1)_{i+\frac{1}{2},j} \le 0, \ (u+c_1)_{i+\frac{1}{2},j} \ge 0. \end{cases} \end{split}$$

На остальных гранях рассматриваемой ячейки потоковые переменные определяются по аналогичным формулам.

4. Результаты численного моделирования

С использованием описанного выше метода Годунова рассчитана одномерная задача распада произвольного разрыва в парогазокапельной смеси, параметры которой до распада следующие: слева от диафрагмы (x < 100) – $p_{0L} = 0.5$ МПа, $u_{0L} = 0$, (α_{g0})_L = 0.987, (α_{s0})_L = 0.01, $\theta_{0L} = 293^{\circ}$ K; справа от нее (x > 100) – $p_{0R} = 0.1$ МПа, $u_{0R} = 0$, (α_{g0})_R = (α_{g0})_L, (α_{s0})_R = (α_{s0})_L, $\theta_{0R} = \theta_{0L}$. Остальные параметры следующие: $\rho_{s}^{0} = 1000$ кг/м³, $c_{v,s} = 3.6 \cdot 10^{3}$ м²/(c² · K), $\chi_{s} = 0.602$ кг · м/(c³ · K), $\tau_{s} = 10^{-2}$ с, $\chi_{g} = 2.58 \cdot 10^{3}$ кг · м/(c³ · K), $\tau_{g} = 10^{-2}$ с, $\tau_{st} = 10^{-2}$ с, $\chi_{st} = 2.48 \cdot 10^{3}$ кг · м/(c³ · K). Межфракционный теплообмен не учитывался, т. е. полагалось, что $Q_{s} = Q_{g} = Q_{st} = 0$. В момент времени t = 0 диафрагма мгновенно удаляется, при этом реализуется режим течения с ударной волной (УВ), движущейся вправо, и волной разрежения, перемещающейся влево.

На рис. За–Зе приведены распределения p(x), u(x), $\rho(x)$, $\theta(x)$, $\alpha_{\rm g}(x)$, $\alpha_{\rm st}(x)$, w(x), полученные к моменту времени t = 0.2 с на сетке из 1000 узловых точек. Отметим, что объемные доли газа и пара в смеси находятся в "противофазе", в частности, если за фронтом УВ $\alpha_{\rm g}$ уменьшается, то $\alpha_{\rm st}$, напротив, увеличивается (рис. 3д). Из рис. Зе видно, что действие теплопроводности смеси проявляется на ударных скачках, в волнах разрежения, а также в окрестности контактного разрыва.

Рис. 3. Зависимости параметров при распаде произвольного разрыва в парогазокапельной смеси к моменту времени t = 0.2 с: p(x) (a); u(x) (б); $\rho(x)$ (в); $\theta(x)$ (г); $\alpha_{\rm g}(x)$ — сплошная кривая, $\alpha_{\rm st}(x)$ — кружочки (д); w(x) (е)

В качестве иллюстрации расчета двумерного течения рассмотрено взаимодействие плоской воздушной УВ, распространяющейся по невозмущенному воздуху ($\gamma_{\rm g} = 1.4$, $p_0 = 0.1 \,\mathrm{M\Pi A}$, $\theta = 293^{\circ}\mathrm{K}$), с неподвижным приповерхностным парогазокапельным слоем, начальное положение которого приведено на рис. 4а. Как показано в [22], использование для этой задачи односкоростного приближения оправдано. Модели, учитывающие скоростную неравновесность компонентов смеси [23], необходимо применять в условиях резкого изменения геометрии течения [24]. Давление, скорость и плотность воздуха за фронтом ударной волны рассчитывались из соотношений:

$$p_{\rm sh} = \frac{p_0}{\gamma_{\rm g} + 1} \left[1 + \gamma_{\rm g} (2M^2 - 1) \right], \quad u_{\rm sh} = \frac{2c_0}{\gamma_{\rm g} + 1} \left(M - \frac{1}{M} \right), \quad \left(\rho_{\rm g}^0 \right)_{\rm sh} = \frac{\rho_{g0}^0 (\gamma_{\rm g} + 1)}{\gamma_{\rm g} - 1 + \frac{2}{M^2}}$$

где c_0 и $M = D/c_0$ соответственно скорость звука в невозмущенном газе и число Маха (D — скорость перемещения фронта УВ). Для визуализации парогазокапельного слоя использовался метод маркеров [25], для чего в область, занятой дисперсной средой, помещались невесомые маркеры, перемещающиеся с локальной скоростью смеси, которые в процессе вычислений не участвуют, а используются лишь для целей визуализации деформации парогазокапельного слоя.

На рис. 46, 4в представлены форма деформированного слоя ($\alpha_s = 0.01$, $\alpha_{st} = 0.98$), а также распределения давления и температуры для УВ с числом Маха 1.15, полученные к моменту времени t = 0.12 с описанным выше методом Годунова. Параметры составляющих смесь фракций те же, что и в предыдущем примере. Межфракционный теплообмен не учитывался. Вычисления проводились на сетке из 1000 × 100 ячеек. Как видно из рис. 4, по мере продвижения УВ вдоль слоя на его боковой поверхности наблюдается образование волн, что связано с реверберацией преломленной в слое УВ.

Рис. 4. Распределение параметров при взаимодействии воздушной УВ с приповерхностным парогазокапельным слоем: p/p_0 при t = 0 (a); p/p_0 (б) и T° K (в) при t = 0.12 с

Заключение

С использованием релаксационного закона теплопроводности Максвелла–Каттанео получены недивергентного вида гиперболические уравнения односкоростной теплопроводной парогазокапельной смеси, в которых отсутствуют нефизичные эффекты, связанные с наличием волн, распространяющихся с бесконечно большими скоростями.

Предложен модифицированный метод Годунова, предназначенный для интегрирования недивергентных систем уравнений. При расчете потоковых переменных на гранях расчетных ячеек использован линеаризованный римановский решатель.

Литература

- 1. Murrone A., Guillard H. A five equation reduced model for compressible two phase flow problems // J. Comput. Phys. 2005 Vol. 202, iss. 2. P. 664-698.
- 2. Wackers J., Koren B. A fully conservative model for compressible two-fluid flow // J. Numer. Meth. Fluids. 2005. Vol. 47, N^o (10, 11). P. 1337–1343.
- Kreeft J.J., Koren B. A new formulation of Kapila's five-equation model for compressible two-fluid flow, and its numerical treatment // J. Comput. Phys. - 2010. - Vol. 229, iss. 18. -P. 6220-6242.
- 4. Суров В.С. Односкоростная модель гетерогенной среды // Математическое моделирование. — 2001. — Т. 13, № 10. — С. 27–42.
- 5. Суров В.С. Односкоростная модель гетерогенной среды с гиперболичным адиабатическим ядром // Журн. вычисл. матем. и мат. физики. — 2008. — Т. 48, № 6. — С. 1111–1125. Перевод: Surov V.S. One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel // Computational Mathematics and Mathematical Physics. — 2008. — Vol. 48, № 6. — Р. 1048–1062.
- Surov V.S. Reflection of an air shock wave from a foam layer // High Temperature. 2000. --Vol. 38, № 1. - P. 97-105.
- 7. Суров В.С. Расчет взаимодействия воздушной ударной волны с пористым материалом // Челябинский физико-математический журнал. 1997. Т. 6, № 1. С. 124–134.
- Суров В.С. Анализ волновых явлений в газожидкостных средах // Теплофизика высоких температур.—1998.—Т. 36, № 4.—С. 624–630. Перевод: Surov V.S. Analysis of wave phenomena in gas-liquid media // High Temperature.—1998.—Vol. 36, № 4.—Р. 600–606.
- 9. Saurel R., Boivin P., Lemetayer O. A general formulation for cavitating, boiling and evaporating flows // Computers and Fluids. 2016. Vol. 128. P. 53-64.
- Kapila A.K., Schwendeman D.W., Gambino J.R., Henshaw W.D. A numerical study of the dynamics of detonation initiated by cavity collapse // Shock Waves. - 2015. - Vol. 25, iss. 6. -P. 545-572.
- 11. Суров В.С. О локализации контактных поверхностей в многожидкостной гидродинамике // Инженерно-физический журнал. 2010. Т. 83, № 3. С. 518–527. Перевод: Surov V.S. On localization of contact surfaces in multifluid hydrodynamics //Journal of Engineering Physics and Thermophysics. 2010. Vol. 83, № 3. Р. 549–559.
- Суров В.С. Гиперболическая модель односкоростной многокомпонентной теплопроводной среды // Теплофизика высоких температур. — 2009. — Т. 47, № 6. — С. 905–913. Перевод: Surov V.S. A hyperbolic model of one-velocity multicomponent heat-conducting medium // High Temperature. — 2009. — Vol. 47, № 6. — Р. 870–878.
- 13. Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation // Compt. Rend. Acad. Sci. Paris. 1958. Vol. 247. P. 431-433.
- 14. Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. — М.: Наука, 1976.
- 15. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. — М.: Физматлит, 2012.
- 16. Toro E.F. Riemann solvers with evolved initial condition // Int. J. for Numerical Methods in Fluids. 2006. Vol. 52. P. 433-453.
- 17. Уоллис Г. Одномерные двухфазные течения. М.: Мир, 1972.
- 18. Суров В.С. Метод Годунова для расчета многомерных течений односкоростной многокомпонентной смеси // Инженерно-физический журнал. — 2016. — Т. 89, № 5. — С. 1237–1249. Перевод: Surov V.S. The Godunov method for calculating multidimensional flows of a one-velocity multicomponent mixture // Journal of Engineering Physics and Thermophysics. — 2016. — Vol. 89, № 5. — Р. 1227–1240.

- 19. Суров В.С. Задача Римана для односкоростной модели многокомпонентной смеси // Теплофизика высоких температур. 2009. Т. 47, № 2. С. 283–291. Перевод: Surov V.S. The Riemann problem for one-velocity model of multicomponent mixture // High Temperature. 2009. Vol. 47, № 2. Р. 263–271.
- 20. Суров В.С. Об одном способе приближенного решения задачи Римана для односкоростной многокомпонентной смеси // Инженерно-физический журнал. 2010. Т. 83, № 2. С. 351–356. Перевод: Surov V.S. On a method of approximate solution of the Riemann problem for a one-velocity flow of a multicomponent mixture // Journal of Engineering Physics and Thermophysics. 2010. Vol. 83, № 2. Р. 373–379.
- Суров В.С. Односкоростная модель многокомпонентной теплопроводной среды // Инженерно-физический журнал. — 2010. — Т. 83, № 1. — С. 132–141. Перевод: Surov V.S. Onevelocity model of a multicomponent heat-conducting medium // Journal of Engineering Physics and Thermophysics. — 2010. — Vol. 83, № 1. — Р. 146–157.
- 22. Суров В.С. Численное моделирование взаимодействия воздушной ударной волны с приповерхностным газопылевым слоем // Инженерно-физический журнал. — 2018. — Т. 91, № 2. — С. 393–399. Перевод: Surov V.S. Numerical simulation of the interaction of an air shock wave with a surface gas-dust layer // Journal of Engineering Physics and Thermophysics. — 2018. — Vol. 91, № 2. — Р. 370–376.
- 23. Суров В.С. Гиперболические модели в механике гетерогенных сред // Журн. вычисл. матем. и мат. физики. 2014. Т. 54, № 1. С. 139–148. Перевод: Surov V.S. Hyperbolic models in the mechanics of heterogeneous media // Computational Mathematics and Mathematical Physics. 2014. Vol. 54, № 1. Р. 148–157.
- 24. Суров В.С. Дифракция ударной волны на клине в запыленном газе // Инженернофизический журнал. — 2017. — Т. 90, № 5. — С. 1232–1239. Перевод: Surov V.S. Diffraction of a shock wave on a wedge in a dusty gas // Journal of Engineering Physics and Thermophysics. — 2017. — Vol. 90, № 5. — Р. 1170–1177.
- 25. Суров В.С. Взаимодействие ударных волн с каплями пузырьковой жидкости // Журн. технической физики. — 2001. — Т. 71, № 6. — С. 17–22. Перевод: Surov V.S. Interaction of shock waves with bubble-liquid drops // Technical Physics. The Russian Journal of Applied Physics. — 2001. — Vol. 46, № 6. — Р. 662–667.

Поступила в редакцию 10 сентября 2018 г. После рецензирования без замечаний 1 марта 2019 г. Принята к публикации 19 декабря 2019 г.

Литература в транслитерации

- Murrone A., Guillard H. A five equation reduced model for compressible two phase flow problems // J. Comput. Phys. - 2005 - Vol. 202, iss. 2. - P. 664–698.
- 2. Wackers J., Koren B. A fully conservative model for compressible two-fluid flow // J. Numer. Meth. Fluids. 2005. Vol. 47, N^o (10, 11). P. 1337–1343.
- Kreeft J.J., Koren B. A new formulation of Kapila's five-equation model for compressible two-fluid flow, and its numerical treatment // J. Comput. Phys. - 2010. - Vol. 229, iss. 18. -P. 6220-6242.
- Surov V.S. Odnoskorostnaya model' geterogennoi sredy // Matematicheskoe modelirovanie. 2001. – T. 13, № 10. – S. 27–42.
- 5. Surov V.S. Odnoskorostnaya model' geterogennoi sredy s giperbolichnym adiabaticheskim yadrom // Zhurn. vychisl. matem. i mat. fiziki. 2008. T. 48, № 6. S. 1111–1125. Perevod: Surov V.S. One-velocity model of a heterogeneous medium with a hyperbolic adiabatic kernel // Computational Mathematics and Mathematical Physics. 2008. Vol. 48, № 6. P. 1048–1062.

- Surov V.S. Reflection of an air shock wave from a foam layer // High Temperature. 2000. --Vol. 38, № 1. - P. 97-105.
- 7. Surov V.S. Raschet vzaimodeistviya vozdushnoi udarnoi volny s poristym materialom // Chelyabinskii fiziko-matematicheskii zhurnal. 1997. T. 6, № 1. S. 124–134.
- Surov V.S. Analiz volnovykh yavlenii v gazozhidkostnykh sredakh // Teplofizika vysokikh temperatur. 1998. T. 36, № 4. S. 624–630. Perevod: Surov V.S. Analysis of wave phenomena in gas-liquid media // High Temperature. 1998. Vol. 36, № 4. P. 600–606.
- 9. Saurel R., Boivin P., Lemetayer O. A general formulation for cavitating, boiling and evaporating flows // Computers and Fluids. 2016. Vol. 128. P. 53-64.
- Kapila A.K., Schwendeman D.W., Gambino J.R., Henshaw W.D. A numerical study of the dynamics of detonation initiated by cavity collapse // Shock Waves. - 2015. - Vol. 25, iss. 6. -P. 545-572.
- 11. Surov V.S. O lokalizatsii kontaktnykh poverkhnostei v mnogozhidkostnoi gidrodinamike // Inzhenerno-fizicheskii zhurnal. – 2010. – T. 83, № 3. – S. 518–527. Perevod: Surov V.S. On localization of contact surfaces in multifluid hydrodynamics //Journal of Engineering Physics and Thermophysics. – 2010. – Vol. 83, № 3. – P. 549–559.
- Surov V.S. Giperbolicheskaya model' odnoskorostnoi mnogokomponentnoi teploprovodnoi sredy // Teplofizika vysokikh temperatur. - 2009. - T. 47, Nº 6. - S. 905-913. Perevod: Surov V.S. A hyperbolic model of one-velocity multicomponent heat-conducting medium // High Temperature. - 2009. - Vol. 47, Nº 6. - P. 870-878.
- 13. Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation // Compt. Rend. Acad. Sci. Paris. 1958. Vol. 247. P. 431-433.
- 14. Godunov S.K., Zabrodin A.V., Ivanov M.Ya., Kraiko A.N., Prokopov G.P. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki. M.: Nauka, 1976.
- 15. Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii. M.: Fizmatlit, 2012.
- 16. Toro E.F. Riemann solvers with evolved initial condition // Int. J. for Numerical Methods in Fluids. 2006. Vol. 52. P. 433-453.
- 17. Uollis G. Odnomernye dvukhfaznye techeniya. M.: Mir, 1972.
- 18. Surov V.S. Metod Godunova dlya rascheta mnogomernykh techenii odnoskorostnoi mnogokomponentnoi smesi // Inzhenerno-fizicheskii zhurnal. 2016. T. 89, № 5. S. 1237–1249. Perevod: Surov V.S. The Godunov method for calculating multidimensional flows of a one-velocity multicomponent mixture // Journal of Engineering Physics and Thermophysics. 2016. Vol. 89, № 5. P. 1227–1240.
- 19. Surov V.S. Zadacha Rimana dlya odnoskorostnoi modeli mnogokomponentnoi smesi // Teplofizika vysokikh temperatur. - 2009. - T. 47, N^Q 2. - S. 283-291. Perevod: Surov V.S. The Riemann problem for one-velocity model of multicomponent mixture // High Temperature. -2009. - Vol. 47, N^Q 2. - P. 263-271.
- 20. Surov V.S. Ob odnom sposobe priblizhennogo resheniya zadachi Rimana dlya odnoskorostnoi mnogokomponentnoi smesi // Inzhenerno-fizicheskii zhurnal. 2010. T. 83, Nº 2. S. 351-356. Perevod: Surov V.S. On a method of approximate solution of the Riemann problem for a one-velocity flow of a multicomponent mixture // Journal of Engineering Physics and Thermophysics. 2010. Vol. 83, Nº 2. P. 373-379.
- Surov V.S. Odnoskorostnaya model' mnogokomponentnoi teploprovodnoi sredy // Inzhenernofizicheskii zhurnal. - 2010. - T. 83, Nº 1. - S. 132-141. Perevod: Surov V.S. One-velocity model of a multicomponent heat-conducting medium // Journal of Engineering Physics and Thermophysics. - 2010. - Vol. 83, Nº 1. - P. 146-157.

- 22. Surov V.S. Chislennoe modelirovanie vzaimodeistviya vozdushnoi udarnoi volny s pripoverkhnostnym gazopylevym sloem // Inzhenerno-fizicheskii zhurnal. 2018. T. 91, № 2. S. 393–399. Perevod: Surov V.S. Numerical simulation of the interaction of an air shock wave with a surface gas–dust layer // Journal of Engineering Physics and Thermophysics. 2018. Vol. 91, Nº 2. P. 370–376.
- 23. Surov V.S. Giperbolicheskie modeli v mekhanike geterogennykh sred // ZHurn. vychisl. matem. i mat. fiziki. – 2014. – T. 54, № 1. – S. 139–148. Perevod: Surov V.S. Hyperbolic models in the mechanics of heterogeneous media // Computational Mathematics and Mathematical Physics. – 2014. – Vol. 54, № 1. – P. 148–157.
- 24. Surov V.S. Difraktsiya udarnoi volny na kline v zapylennom gaze // Inzhenerno-fizicheskii zhurnal. 2017. T. 90, № 5. S. 1232–1239. Perevod: Surov V.S. Diffraction of a shock wave on a wedge in a dusty gas // Journal of Engineering Physics and Thermophysics. 2017. Vol. 90, № 5. P. 1170–1177.
- 25. Surov V.S. Vzaimodeistvie udarnykh voln s kaplyami puzyr'kovoi zhidkosti // ZHurn. tekhnicheskoi fiziki. 2001. T. 71, № 6. S. 17–22. Perevod: Surov V.S. Interaction of shock waves with bubble-liquid drops // Technical Physics. The Russian Journal of Applied Physics. 2001. Vol. 46, № 6. P. 662–667.