УДК 539.3

МЕТОД ПСЕВДОГЕОМЕТРИЧЕСКОЙ НЕЛИНЕЙНОСТИ ДЛЯ РАСЧЕТА СЛОИСТЫХ ОБОЛОЧЕК

Р. А. Каюмов

Казанская государственная архитектурно-строительная академия, 420043 Казань

Решена задача о напряженно-деформированном состоянии многослойных оболочек. Материал слоев считается нелинейно-упругим, зависимость деформаций от перемещений — нелинейной. Перемещения представлены в виде разложения по функциям поперечной координаты, содержащим неизвестные параметры. Для получения разрешающих уравнений используется вариационный принцип Лагранжа. Рассмотрена методика минимизации функционала энергии. Приводится пример расчета трехслойной балки, проводится сравнение с точным решением, анализируются особенности предложенного подхода.

Уточненным теориям оболочек и пластин посвящено большое количество работ. При построении теорий используются разложения в ряды по различным системам функций, асимптотическое интегрирование, методы, основанные на ряде гипотез (обзоры по данным подходам можно найти во многих работах, например, в [1–5]). Широкое применение в технике многослойных тонкостенных элементов конструкций с неоднородными механическими свойствами по толщине привело к необходимости уточнения гипотез о распределении напряжений и деформаций в оболочках. Такие гипотезы вводятся как для всего пакета, так и для каждого слоя, поэтому порядок системы уравнений зависит от числа слоев. Одним из недостатков данного подхода является трудность оценки погрешности решения, а значит, и сравнения разных моделей оболочек. Однако в интегральном смысле это можно сделать, вычислив и сравнив полную потенциальную энергию для различных теорий.

В отличие от известных подходов в настоящей работе компоненты вектора перемещений ищутся в виде суммы произведений искомых функций. Это приводит к псевдогеометрической нелинейности задачи. Предложенный подход позволяет выбрать лучшую в отмеченном выше смысле гипотезу о распределении перемещений в многослойных оболочках.

1. Рассмотрим слоистую оболочку, состоящую из нелинейно-упругих слоев. Пусть имеется поверхность приведения с координатными осями x^1, x^2 , по нормали к которой направлена ось x^3 .

Компоненты вектора перемещений u_{β} в слое или пакете в целом ищутся в виде разложения по системе функций $f_{\beta}^{i}(x^{3})$:

$$u_{\beta} = u_{\beta 0}(x^1, x^2) + \sum_{i=1}^{I} f_{\beta}^i(x^3) u_{\beta i}(x^1, x^2), \quad f_{\beta}^i(0) = 0, \quad \beta = 1, 2, 3.$$
 (1)

В большинстве случаев, особенно для однородных оболочек, ограничиваются первыми двумя членами в рядах (1), причем $f^i_\beta(x^3)$ представляют собой степенные функции

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 99-01-00410).

переменной x^3 . В некоторых работах применялись полиномы Лежандра. При исследовании слоистых оболочек в качестве $f^i_{\beta}(x^3)$ часто используются составные функции, параметры которых априори определяются из условий жесткого контакта слоев, непрерывности поперечных касательных и нормальных напряжений. Однако поскольку относительно $u_{\beta j}(x^1,x^2)$ задача обычно решается приближенно, то, вообще говоря, нет оснований для того, чтобы точно выполнялись уравнения равновесия на границах слоев. В настоящей работе функции $f^i_{\beta}(x^3)$ задаются с точностью до некоторых констант $C_{m\beta}$, которые ищутся в процессе решения задачи. Предполагается, что эти функции удовлетворяют условиям непрерывности между слоями только по перемещениям.

Далее рассмотрим случай линейной аппроксимации $f^i_{\beta}(x^3)$ в виде

$$f_{\beta}^{i}(x^{3}) = \sum_{m=1}^{M} C_{m\beta} f_{\beta}^{im}(x^{3}), \qquad i = 1, \dots, I.$$
 (2)

Для однозначного определения параметров $C_{m\beta}$ и функций $u_{\beta i}(x^1,x^2)$ на них должны быть наложены условия нормировки. Например, можно считать, что длина вектора $C = \{C_{1\beta}, \dots, C_{M\beta}\}$ равна единице:

$$C_{1\beta}^2 + C_{2\beta}^2 + \ldots + C_{M\beta}^2 = 1.$$
 (3)

Учет этого условия при выводе разрешающих уравнений для искомых неизвестных может осуществляться методом множителей Лагранжа.

К более простым выкладкам можно прийти, используя условие

$$C_{1\beta} = 1. (4)$$

Перемещения представляются следующим образом:

$$u_{\beta} = u_{\beta 0}(x^{1}, x^{2}) + u_{\beta 1}(x^{1}, x^{2})[f_{\beta}^{11}(x^{3}) + C_{2\beta}f_{\beta}^{12}(x^{3}) + \dots + C_{M\beta}f_{\beta}^{1M}(x^{3})] + + u_{\beta 2}(x^{1}, x^{2})[f_{\beta}^{21}(x^{3}) + C_{2\beta}f_{\beta}^{22}(x^{3}) + \dots + C_{M\beta}f_{\beta}^{2M}(x^{3})] + \dots$$

Здесь искомыми являются функции $u_{\beta i}$ и параметры $C_{m\beta}$, а f_{β}^{ij} известны.

Если перемещения не малы, то выражения для деформаций имеют вид

$$2\varepsilon_{\alpha_{\beta}} = \nabla_{\alpha}u_{\beta} + \nabla_{\beta}u_{\alpha} + \nabla_{\alpha}u^{\gamma}\nabla_{\gamma}u_{\beta},$$

где ∇_{α} обозначает ковариантное дифференцирование. Суммирование проводится по повторяющимся нижним и верхним греческим индексам.

Физические соотношения для нелинейно-упругого материала можно представить следующим образом:

$$\sigma^{\alpha\beta} = \frac{\partial F(I_1, \dots, I_L)}{\partial \varepsilon_{\alpha\beta}}.$$

Здесь F — упругий потенциал, зависящий от инвариантов I_1, \ldots, I_L типа сверток компонент тензоров деформаций, метрического тензора, тензоров механических характеристик материала.

2. Уравнения для искомых функций $u_{\beta i}$ и параметров $C_{m\beta}$ можно получить на основе различных вариационных принципов. Для упрощения изложения используем принцип Лагранжа

$$\iiint\limits_{V} \sigma^{\alpha\beta} \delta \varepsilon_{\alpha\beta} \, dV = \iiint\limits_{V} q^{\alpha} \delta u_{\alpha} \, dV + \iint\limits_{S} p^{\alpha} \delta u_{\alpha} \, dS. \tag{5}$$

Здесь V — объем, занимаемый оболочкой; q^{α} — компоненты объемной силы; S — поверхность, на которой заданы внешние поверхностные силы p^{α} .

Из (1), (2) следует, что относительно искомых неизвестных задача нелинейна даже в случае отсутствия физической и геометрической нелинейности, поэтому назовем рассматриваемый подход методом псевдогеометрической нелинейности. Для линеаризации задачи используем следующую процедуру. На шаге с номером n-1 функции $u_{\beta i}^{(n-1)}$ и параметры $C_{m\beta}^{(n-1)}$ считаем известными (здесь и далее номер итерации заключается в скобки). На следующем шаге искомые неизвестные представим в виде

$$u_{\beta i}^{(n)} = u_{\beta i}^{(n-1)} + \Delta u_{\beta i}, \quad C_{m\beta}^{(n)} = C_{m\beta}^{(n-1)} + \Delta C_{m\beta}, \quad i = 1, \dots, I, \quad m = 2, \dots, M,$$
 (6)

где Δ — приращение.

Уравнения для $\Delta u_{\beta i}$ получим при $\Delta C_{m\beta}=0$. Запишем соотношения для перемещений, деформаций и напряжений:

$$\varepsilon_{\alpha\beta}^{(n)} = \varepsilon_{\alpha\beta}^{(n-1)} + \Delta\varepsilon_{\alpha\beta}, \qquad \sigma_{(n)}^{\alpha\beta} = \sigma_{(n-1)}^{\alpha\beta} + E_{(n-1)}^{\alpha\beta\gamma\theta} \Delta\varepsilon_{\gamma\theta}. \tag{7}$$

Здесь

$$2\varepsilon_{\alpha\beta}^{(n-1)} = \nabla_{\alpha}u_{\beta}^{(n-1)} + \nabla_{\beta}u_{\alpha}^{(n-1)} + \nabla_{\alpha}u_{(n-1)}^{\gamma}\nabla_{\gamma}u_{\beta}^{(n-1)}$$

$$2\Delta\varepsilon_{\alpha\beta} = \nabla_{\alpha}\Delta u_{\beta} + \nabla_{\beta}\Delta u_{\alpha} + \nabla_{\alpha}u_{(n-1)}^{\gamma}\nabla_{\gamma}\Delta u_{\beta} + \nabla_{\alpha}\Delta u^{\gamma}\nabla_{\gamma}u_{\beta}^{(n-1)},$$

$$u_{\beta}^{(n-1)} = u_{\beta 0}^{(n-1)} + \sum_{i=1}^{I} u_{\beta i}^{(n-1)} \left[\sum_{m=1}^{M} C_{m\beta}^{(n-1)} f_{\beta}^{im} \right], \quad \Delta u_{\beta} = \Delta u_{\beta 0} + \sum_{i=1}^{I} \Delta u_{\beta i} \left[\sum_{m=1}^{M} C_{m\beta}^{(n-1)} f_{\beta}^{im} \right],$$

$$\sigma_{(n-1)}^{\alpha\beta} = \frac{\partial F^{(n-1)}}{\partial \varepsilon_{\alpha\beta}}, \qquad E_{(n-1)}^{\alpha\beta\gamma\theta} = \frac{\partial^2 F^{(n-1)}}{\partial \varepsilon_{\alpha\beta} \, \partial \varepsilon_{\gamma\theta}}.$$

Тогда из (5) относительно Δu_{β} следует вариационное уравнение

$$\iiint_{V} E_{(n-1)}^{\alpha\beta\gamma\theta} \Delta \varepsilon_{\gamma\theta} \delta \Delta \varepsilon_{\alpha\beta} \, dV = -\iiint_{V} \sigma_{(n-1)}^{\alpha\beta} \delta \Delta \varepsilon_{\alpha\beta} \, dV + \iiint_{V} q^{\beta} \delta \Delta u_{\beta} \, dV + \iint_{S} p^{\beta} \delta \Delta u_{\beta} \, dS. \quad (8)$$

Найдя отсюда $\Delta u_{\beta i}$, по формулам (7) можно вычислить функции $\sigma_{(n)}^{\alpha\beta}$, $\varepsilon_{\alpha\beta}^{(n)}$. Система уравнений относительно искомых параметров $\Delta C_{m\beta}$ получается из (5), (6) при предположении, что $\Delta u_{\beta i} = 0$ или функции $u_{\beta i}^{(n)} = u_{\beta i}^{(n-1)} + \Delta u_{\beta i}$ известны. В последнем случае

$$u_{\beta} = u_{\beta 0}^{(n)}(x_1, x_2) + \sum_{i=1}^{I} u_{\beta i}^{(n)}(x_1, x_2) \sum_{m=1}^{M} (C_{m\beta}^{(n-1)} + \Delta C_{m\beta}) f_{\beta}^{im}(x^3).$$
 (9)

Используя условие нормировки (4), выражения для деформаций и напряжений запишем в виде

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha\beta}^{(n)} + \sum_{m=2}^{M} e_{\alpha\beta}^{m} \Delta C_{m\beta},$$

$$2e_{\alpha\beta}^{m} = \nabla_{\alpha} \left[\sum_{i=1}^{I} f_{\beta}^{im} u_{\beta i}^{(n)} \right] + \nabla_{\beta} \left[\sum_{i=1}^{I} f_{\alpha}^{im} u_{\alpha i}^{(n)} \right] +$$

$$+ \nabla_{\alpha} \left[u_{\gamma 0}^{(n)} + \sum_{i=1}^{I} \sum_{j=2}^{M} C_{j\beta}^{(n-1)} f_{\gamma}^{im} u_{\gamma i}^{(n)} \right] \nabla^{\gamma} \left[\sum_{i=1}^{I} f_{\beta}^{im} u_{\beta i}^{(n)} \right] +$$

$$+ \nabla_{\alpha} \left[\sum_{i=1}^{I} f_{\gamma}^{im} u_{\gamma i}^{(n)} \right] \nabla^{\gamma} \left[u_{\beta 0}^{(n)} + \sum_{i=1}^{I} \sum_{j=2}^{M} C_{j\beta}^{(n-1)} f_{\beta}^{im} u_{\beta i}^{(n)} \right],$$

$$\sigma^{\alpha\beta} = \sigma_{(n)}^{\alpha\beta} + E_{(n)}^{\alpha\beta\gamma\theta} \sum_{m=2}^{M} e_{\gamma\theta}^{m} \Delta C_{m\beta}.$$

$$(10)$$

Подставляя (10) в (5), получим уравнение для $\Delta C_{m\beta}$

$$\iiint_{V} \left[\sigma_{(n)}^{\alpha\beta} + E_{(n)}^{\alpha\beta\gamma\theta} \sum_{m=2}^{M} e_{\gamma\theta}^{m} \Delta C_{m\beta} \right] \sum_{m=2}^{M} e_{\gamma\theta}^{m} \delta \Delta C_{m\beta} \, dV =$$

$$= \iiint_{V} q^{\beta} \sum_{i=1}^{I} u_{\beta i}^{(n)} \sum_{m=2}^{M} f_{\beta}^{im} \delta \Delta C_{m\beta} \, dV + \iint_{S} p^{\beta} \sum_{i=1}^{I} u_{\beta i}^{(n)} \sum_{m=2}^{M} f_{\beta}^{im} \delta \Delta C_{m\beta} \, dS. \tag{11}$$

Итерационный процесс решения уравнений (8), (11) продолжается до тех пор, пока приращения $\Delta C_{m\beta}$ и $\Delta u_{\beta i}$ не станут малыми по некоторой норме.

Решение данным методом, вообще говоря, может и не сходиться, например, в том случае, если начальное приближение $C_{m\beta}$ выбрано неудачно. С этой точки зрения в физически нелинейных, но геометрически линейных задачах методы минимизации потенциальной энергии упругой оболочки предпочтительнее сведения задачи к системе нелинейных уравнений (8)–(11). При геометрической нелинейности для получения начального значения для функций $u_{\beta i}$ и параметров $C_{m\beta}$ можно использовать пошаговый процесс по параметру продолжения (например, нагрузки). На первом шаге рассматривается геометрически линейная задача, для которой справедлива теорема о минимуме потенциальной энергии упругой системы, и методами теории оптимизации находятся $C_{m\beta}$. В качестве начального приближения допустимо использование и тех значений $C_{m\beta}$, которые можно получить из выражений для функций f_{β}^{i} , построенных другими методами [4, 5] из условий жесткого контакта слоев и непрерывности напряжений в трансверсальном направлении. На последующих шагах при решении системы (8)–(11) для сходимости процесса приращение параметра продолжения (нагрузки) необходимо брать не слишком большим. При расходимости возвращаются к предыдущему шагу и уменьшают приращение.

В случае геометрически нелинейной задачи вместо решения системы (8)–(11) можно также использовать методы оптимизации, сформулировав задачу минимизации функционала в терминах приращений $\Delta C_{m\beta}$ при фиксированном $u_{\beta i}^{(n)}$ и в терминах $\Delta u_{\beta i}$ при фиксированном $C_{m\beta}^{(n)}$. Однако использование системы (8)–(11) предпочтительнее, так как на каждом шаге итерации при решении нелинейной задачи необходимо решать небольшую по размерности дополнительную систему уравнений (11) относительно $\Delta C_{m\beta}$.

Более удобным может оказаться подход, использующий комбинацию двух методик. Из системы уравнений (8) находятся $\Delta u_{\beta i}$, а параметры $C_{m\beta}$ определяются из задачи

минимизации полной потенциальной энергии упругой системы П (данный подход применен и при решении тестовой задачи). Выражение для П имеет вид

$$\Pi = \frac{1}{2} \iiint\limits_{V} \sigma^{\alpha\beta} \varepsilon_{\alpha\beta} \, dV - \iiint\limits_{V} q^{\alpha} u_{\alpha} \, dV - \iint\limits_{S} p^{\alpha} u_{\alpha} \, dS.$$

Для решения задачи на минимум можно использовать известные алгоритмы теории оптимизации, в частности следующий. Для ряда значений $C_{m\beta}$ проводится численный эксперимент, т. е. решается задача теории оболочек и вычисляются "экспериментальные" значения полной потенциальной энергии П. С использованием регрессионного анализа по этим значениям П строится функция регрессии $\psi(C_{1\beta},C_{2\beta},\ldots,C_{M\beta})$, с помощью которой находятся значения параметров $C_{m\beta}^*$, минимизирующие функцию ψ . В новой окрестности $C_{m\beta}^*$ вновь выбирается ряд значений $C_{m\beta}$, проводится численный эксперимент, строится новая функция регрессии $\psi(C_{1\beta},C_{2\beta},\ldots,C_{M\beta})$ и определяются минимизирующие ее значения параметров $C_{m\beta}^*$ и т. д. При достаточном уменьшении окрестности значений $C_{m\beta}^*$ получим с требуемой точностью искомые $C_{m\beta}$, минимизирующие полную потенциальную энергию Π .

3. Продемонстрируем предложенный подход на физически и геометрически линейной задаче об изгибе многослойной балки (единичной ширины, высоты 2H, длины l под синусо-идальной нагрузкой) с граничными условиями типа Навье (аналог шарнирного опирания), имеющей точное решение [6, 7]. Задача решалась способами, описанными выше. При использовании (3) вместо двух неизвестных $C_{1\beta}$, $C_{2\beta}$ можно ввести одну, удовлетворяющую условию (3): $C_{1\beta} = \sin \varphi_{\beta}$, $C_{2\beta} = \cos \varphi_{\beta}$. Для условия (4) искомой неизвестной является только $C_{2\beta}$, так как $C_{1\beta} = 1$.

Примем простейшую аппроксимацию (1): $u_1=f_1^1(x^3)u_{11}(x^1)=[C_{11}f_1^{11}(x^3)+C_{21}f_1^{12}(x^3)]u_{11}(x^1), \ u_3=f_{30}(x^1),$ где $f_1^{11}=x^3.$ Введем следующие обозначения: $x=x^1,$ $z=x^3,$ $f(z)=f_1^{12}(x^3),$ $\varepsilon=\varepsilon_{11},$ $\gamma=\varepsilon_{13},$ $\sigma=\sigma^{11},$ $\tau=\sigma^{13},$ $u_{11}(x^1)=Uu(x),$ $f_{30}(x^1)=Ww(x),$ $C_1=C_{11},$ $C_2=C_{21},$ $\varphi=\varphi_1,$ $G=G_{13}$ — модуль сдвига, $E=E_{11}$ — модуль Юнга, штрих обозначает дифференцирование. Тогда

$$u_1 = [C_1 z + C_2 f(z)] U u(x), u_3 = W w(x),$$
 (12)

где U, W, C_1, C_2 — искомые константы. Выражения для деформаций и напряжений имеют вид $\varepsilon = Uu'_x[C_1z + C_2f(z)], \ \gamma = Uu[C_1 + C_2f'_z(z)] + Ww'_x, \ \sigma = E\varepsilon, \ \tau = G\gamma.$

В расчетах принималось, что пакет имеет симметричное строение, а нагрузка — только нормальную составляющую $q=(q_0/2)\sin{(\pi x/l)}$, приложенную на верхней и нижней поверхностях балки. В (12) можно принять $u=\cos{(\pi x/l)}$, $w=\sin{(\pi x/l)}$.

Для упрощения задачи учтем, что в физически линейном случае в уравнении (8) можно перейти от задачи в приращениях к задаче в полных перемещениях, так как $\sigma_{(n)}^{\alpha\beta} = E^{\alpha\beta\gamma\theta}\varepsilon_{\gamma\theta}^{(n)}$, $\delta\Delta\varepsilon_{\alpha\beta}^{(n)} = \delta(\varepsilon_{\alpha\beta}^{(n-1)} + \Delta\varepsilon_{\alpha\beta}) = \delta\varepsilon_{\alpha\beta}^{(n)}$, $\delta\Delta u_{\alpha} = \delta u_{\alpha}^{(n)}$.

Из (8), (11) следует система уравнений относительно $U^{(n)},W^{(n)},\Delta\varphi$ или ΔC_2 . Опуская индексы (n) у $U^{(n)},W^{(n)}$ и (n-1) у $\varphi^{(n-1)}$ или $C_2^{(n-1)}$, запишем ее в виде

$$\int_{0}^{l} \int_{-H}^{H} \{ U(C_1 z + C_2 f)^2 (u_x')^2 E + G[W w_x' + U u(C_1 + C_2 f_z')] (C_1 + C_2 f_z') u \} dx dz = 0,$$

$$\int_{0}^{l} \int_{-H}^{H} \{G[Ww'_x + Uu(C_1 + C_2f'_z)]w'_x\} dx dz = \int_{0}^{l} 2qw dx,$$
(13)

$$\int_{0}^{l} \int_{-H}^{H} \{ U^{2}E[C_{1}z + C_{2}f + \Delta C_{1}z + \Delta C_{2}f](u'_{x})^{2}f + WUGuw'_{x}f'_{z} + U^{2}G[C_{1} + C_{2}f'_{z} + \Delta C_{1} + \Delta C_{2}f'_{z}]f'_{z}u^{2} \} dx dz = 0.$$

Здесь $C_1 = \sin \varphi$, $\Delta C_1 = \cos \varphi \Delta \varphi$, $C_2 = \cos \varphi$, $\Delta C_2 = -\sin \varphi \Delta \varphi$ в случае условия нормировки вида (3) и $\Delta C_1 = 0$ при использовании условия (4).

Введем следующие обозначения:

$$J_{1} = \int_{-H}^{H} G(z)[C_{1}z + C_{2}f'_{z}(z)] dz,$$

$$J_{2} = \int_{-H}^{H} E(z)[C_{1}z + C_{2}f(z)]^{2} dz, \quad J_{3} = \int_{-H}^{H} G(z)[C_{1}z + C_{2}f'_{z}(z)]^{2} dz,$$

$$J_{4} = \int_{-H}^{H} E(z)[f'_{z}(z)]^{2} dz, \quad J_{5} = \int_{-H}^{H} G(z)[f'_{z}(z)]^{2} dz, \quad J_{6} = \int_{-H}^{H} G(z) dz,$$

$$J_{7} = \int_{-H}^{H} E(z)zf(z) dz, \quad J_{8} = \int_{-H}^{H} G(z)f'_{z}(z) dz, \quad J_{9} = \int_{-H}^{H} E(z)f^{2}(z) dz.$$

$$(14)$$

С учетом (14) из (13) получим решение в виде

$$U = q_0 l J_2 / a, \quad a = \pi (J_2^2 - \pi^2 J_1 J_2 / l^2 - J_3 J_6), \quad W = -q_0 (\pi^2 J_1 + l^2 J_3) / (\pi a),$$

$$\Delta \varphi = \frac{J_8 (\pi^2 J_1 + l^2 J_3) / J_2 - (C_1 J_7 + C_2 J_9) \pi^2 - (C_1 J_8 + C_2 J_5) l^2}{(C_2 J_7 - C_1 J_9) \pi^2 + (C_2 J_8 - C_1 J_5) l^2};$$
(15)

$$\Delta C_2 = \left[(\pi^2 J_1 + l^2 J_3) J_5 - \pi^2 J_2 (J_7 + C_2 J_4) - l^2 J_2 (J_8 + C_2 J_5) \right] / \left[(\pi^2 J_4 + l^2 J_5) J_2 \right].$$
 (16)

Из (15) следует, что в этой задаче итерациями можно найти C_2 или φ независимо от U,W. Ниже приведены численные результаты для задачи о трехслойной балке из [6]. Полагалось, что $h_1=h_3=h_2/2=h=H/2$ (индексы 1, 2, 3 — номер слоя начиная снизу), $4H=l,\ E_1/E_2=E_3/E_2=500,\ G_1/G_2=G_3/G_2=500,\ G_i=E_i/2,6.$ В качестве f(z) принята функция

$$f = \begin{cases} z - h, & h \leq z \leq H, \\ 0, & -h \leq z \leq h, \\ z + h, & -H \leq z \leq -h. \end{cases}$$
 (17)

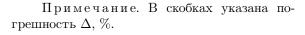
В силу симметрии для уменьшения количества неизвестных $C_{m\beta}$ функция f(z) выбрана так, что она определяет закон изменения перемещений в группе из двух наружных слоев. Тогда интегралы (14) при условии (4) имеют значения

$$J_1 = 2h^3[E^2 + 7E_1 + 5C_2E_1 + C_2^2E_1]/3, \quad J_2 = 2h[G_2 + G_1(1 + C_2)], \quad J_3 = 2h[G_2 + G_1C_2^2],$$

$$J_4 = 2h^3E_1/3, \quad J_5 = 2hG_1, \quad J_6 = 2h[G_2 + G_1], \quad J_7 = 5J_4/2, \quad J_8 = J_5.$$

В данной задаче можно найти C_2 , решив итерациями уравнение (16) или сведя его к квадратному уравнению относительно C_2 , положив в (16) $\Delta C_2 = 0$. В результате расчетов

Решение	$u_1 E_1/(2q_0 H)$	$u_3 E_1/(2q_0 H)$	σ^{11}/q_0
Точное	11,015	57,10	17,40
(15), (16)	11,044	57,32	17,35
	(0,26)	(0,38)	(0,29)
[6]	10,455	54,8	17,55
	(3,9)	(4,4)	(0,68)



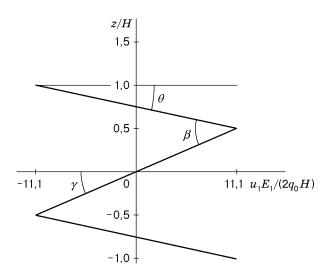


Рис. 1

получено $C_2 = -3{,}032$. В таблице приведены безразмерные значения перемещений u_1 в угловой точке, перемещений u_3 в центре балки, максимального напряжения σ^{11} . В 1-й строке даны точные значения, которые можно получить из [6], во 2-й — результаты вычислений по формулам (15), (16), в 3-й — результаты вычислений из [6]. При минимизации полной потенциальной энергии системы в этой задаче с одной неизвестной φ (или C_2) можно применять простые методы. В этой задаче метод деления отрезка пополам оказался предпочтительнее метода квадратичной аппроксимации функции Π .

Для получения непрерывного распределения по толщине балки поперечных касательных напряжений можно использовать способ интегрирования уравнения равновесия $\partial \sigma/\partial x + \partial \tau/\partial z = 0$ при условии, что $\sigma(x,z)$ известно. Поскольку при вычислениях для поперечного сдвига использовалась грубая аппроксимация в виде кусочно-постоянной функции по аргументу z, точность вычисления τ будет невысокой. Например, в первом и третьем слоях получаем $\tau_{\rm max}/q_0 = 1,73$, в то время как точное значение равно 2,71 [6].

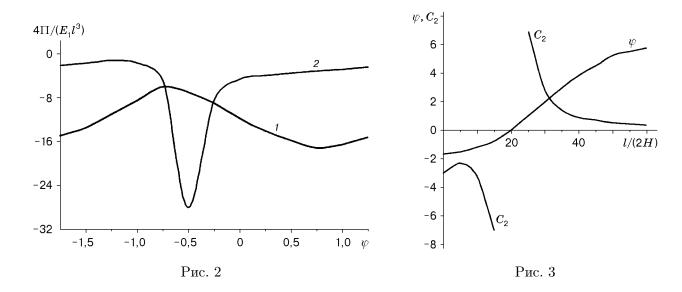
На рис. 1 приведена эпюра тангенциальных перемещений $u_1E_1/(2q_0H)$ при x=0. Угол излома $\pi-\beta$ можно выразить через $C_1,\,C_2$ следующим образом:

$$\pi - \beta = \pi - \theta - \gamma = \pi - \arctan(k(C_1 + C_2)) - \arctan(kC_1), \quad k = UE_1/(2q_0H),$$

где $C_1=1$ или $C_1=\sin\varphi, C_2=\cos\varphi$ при условии (4). Таким образом, C_2 или φ определяют степень излома нормали.

Результаты численных экспериментов выявили следующие особенности рассматриваемой задачи.

1. Сходимость метода зависит как от начального приближения для параметров C_2 или φ , так и от механических характеристик слоев. На рис. 2 приведены качественные зависимости $4\Pi/(E_1l^3)$ от параметра φ . Кривая I соответствует случаю изотропии ($E_1=E_2$, $G_1=G_2$, значение Π увеличено в 10 раз), кривая 2 — рассмотренному выше случаю. Из рис. 2 следует, что при априорном задании φ без дальнейшего его уточнения для слоистой оболочки, изготовленной из материалов с различными механическими характеристиками, небольшие изменения в значениях φ (малые вариации распределения перемещений) могут приводить к значениям Π , сильно отличающимся от Π_{\min} . Для изотропной балки, наоборот, даже большие погрешности в задании распределения перемещений по толщине не приводят к существенным погрешностям при определении напряжений и перемещений.



При использовании системы (8)–(11) при неудачном выборе начального значения φ можно получить не Π_{\min} , а Π_{\max} .

2. Использование условия (4) может привести к тому, что некоторые из неизвестных C_2,\ldots,C_M , рассматриваемые как функции каких-либо параметров (например, относительной толщины), могут иметь разрывы второго рода. На рис. 3 представлены зависимости $\varphi(l/(2H))$ и $C_2(l/(2H))$ при принятых выше значениях упругих констант. Разрыв второго рода функции C_2 объясняется тем, что в рассматриваемой задаче вклад функции $f_1^{11}=z$ в f_1^1 можно уменьшить, только увеличивая $|C_2|$. На значения $u_1, u_3, \sigma, \varepsilon$ разрыв не влияет. Однако для исключения подобных разрывов необходимо выбирать f_j^{ik} такими, чтобы они позволяли получать более широкий класс функций f_j^i . В рассматриваемой задаче функцию f(z) достаточно принять в виде

$$f(z) = \begin{cases} a(z-h) + h, & z \geqslant h, \\ z, & -h \geqslant z \geqslant h, \\ a(z+h) - h, & -h \geqslant z, \end{cases}$$

где $a \neq 1$.

Другой путь заключается в использовании условия (3), но он приводит к усложнению задачи, за исключением варианта M=2.

Отметим, что аналогичный анализ можно провести для случаев с использованием смешанных функционалов типа Рейсснера.

ЛИТЕРАТУРА

- 1. Амбарцумян С. А. Теория анизотропных пластин. М.: Наука, 1987.
- 2. **Альтенбах X.** Основные направления теории многослойных тонкостенных конструкций: Обзор // Механика композит. материалов. 1998. Т. 34, N° 6. С. 333–348.
- 3. **Григолюк Э. И., Куликов Г. М.** Развитие общего направления в теории многослойных оболочек // Механика композит. материалов. 1988. № 2. С. 287–298.
- 4. Дудченко А. А., Лурье С. А., Образцов И. Ф. Анизотропные многослойные пластины и оболочки. М.: ВИНИТИ, 1983. С. 3-68. (Итоги науки и техники. Сер. Механика деформируемого твердого тела; Т. 15).

- 5. **Григоренко Я. М., Василенко А. Т.** О некоторых подходах к решению задач статики оболочек неоднородной структуры // Прикл. механика. 1998. Т. 34, № 10. С. 42–49.
- 6. **Присяжнюк В. К., Зайвелев И. Б.** К решению плоской задачи теории упругости для многослойного ортотропного композита // Механика композит. материалов. 1991. № 2. С. 206–214.
- 7. Кристенсен Р. Введение в механику композитов. М.: Мир, 1982.

Поступила в редакцию 17/V 1999 г., в окончательном варианте — 30/IX 1999 г.