УДК 533.6.011

РАСЧЕТ ГИДРОДИНАМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ РЕШЕТОК ПРОФИЛЕЙ С УЧЕТОМ ДИФФУЗИИ НЕСТАЦИОНАРНЫХ ЗАКРОМОЧНЫХ СЛЕДОВ

В. А. Юдин

Институт гидродинамики им. М. А. Лаврентьева, 630090 Новосибирск

Разработан полуаналитический метод расчета гидродинамического взаимодействия двух решеток профилей, движущихся относительно друг друга. Учитываются потенциальное возмущение потока решетками и вихревое возмущение, связанное с закромочными следами за профилями. Наряду со стационарными следами, вызванными сходом пограничных слоев с профилей решеток, учитываются нестационарные следы, сходящие с выходных кромок профилей из-за изменения циркуляции скорости на них. Расчет нестационарных следов проводится с учетом их диффузии при наличии вязкости потока в рамках приближенной теории пограничного слоя. Метод реализован в виде программы, позволяющей рассчитывать нестационарные гидродинамические характеристики профилей решеток на персональном компьютере. Приведены примеры расчета и сравнение с экспериментом.

Введение. Расчет гидродинамического взаимодействия решеток на основе численного моделирования полных уравнений Эйлера или Навье — Стокса представляет собой сложную вычислительную задачу [1–4]. Имеющиеся программы требуют десятков и даже сотен часов непрерывной работы самых мощных ЭВМ. При этом время расчета существенно увеличивается при уменьшении осевого зазора между решетками и увеличении количества лопаток ротора и статора.

В работе [5] в квазистационарной постановке предложен полуаналитический метод решения задачи для случая потенциального обтекания решеток, основанный на представлении относительной скорости жидкости на профилях решеток в виде ряда по степеням малого параметра, определяемого осевым зазором между решетками. Автору настоящей работы в рамках этого метода удалось учесть в линейном приближении стационарные закромочные следы, вызванные сходом пограничных слоев с профилей решеток [6], и создать программу, позволяющую проводить серийные расчеты нестационарных гидродинамических характеристик на персональных компьютерах [7]. Задача решалась также в квазистационарной постановке, т. е. без учета нестационарных вихревых следов, сходящих с профилей решеток из-за изменения циркуляции скорости жидкости. Однако новые экспериментальные данные [8] свидетельствуют о том, что эти следы, диффундируя в поток, являются одной из основных причин потерь полного давления и уменьшения КПД ступеней решеток.

В данной работе наряду со стационарными закромочными следами учитываются нестационарные следы (в соответствии с теоремой Томсона о сохранении циркуляции скорости по жидким контурам). В предположении малой интенсивности этих следов учитывается их диффузия в рамках теории пограничного слоя. Так же как и в [5, 6], задача сводится к системе рекуррентных соотношений для определения коэффициентов разложения

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 00-02-17226) в рамках Интеграционного проекта № 1 СО РАН.

Рис. 1. Двухрядная решетка профилей

относительной скорости жидкости на профилях решеток. Программа расчета нестационарных гидродинамических характеристик не требует больших затрат времени и памяти, что позволяет использовать ее на персональных компьютерах.

Основные предположения. В плоскости комплексной переменной z = x + iy рассмотрим двухрядную решетку профилей в потоке несжимаемой жидкости с заданной скоростью $V_{-\infty}$ на бесконечности перед ней. Пусть решетка 2, расположенная ниже по потоку, движется относительно решетки 1 с постоянной скоростью u вдоль оси y (рис. 1). Профили решеток будем считать гладкими, имеющими угловые выходные кромки.

В данной постановке задачи гидродинамическое взаимодействие решеток обусловлено в основном следующими факторами: 1) потенциальным возмущением, распространяющимся как вниз, так и вверх по потоку и вызванным торможением и разгоном потока в окрестности профилей обеих решеток; 2) вихревым возмущением, вызванным сходом пограничных слоев с профилей решетки 1 (стационарными вихревыми следами), которые распространяются только вниз по потоку и взаимодействуют с профилями решетки 2; 3) возмущением от нестационарных вихревых следов, сходящих с выходных кромок профилей обеих решеток из-за изменения циркуляции скорости на них.

Будем рассматривать малые возмущения основного потока решетками (профили в решетках достаточно тонкие, слабоизогнутые и обтекаются под небольшими углами атаки). В связи с этим считаем, что вихревые следы располагаются вдоль критических линий тока основного потока через решетки (эволюцией следов за решеткой 1 при прохождении через решетку 2 пренебрегаем). При расчете возмущения от нестационарных вихревых следов за решеткой 2 и возмущения вверх по потоку от нестационарных вихревых следов за решеткой 1 будем моделировать их линиями контактного разрыва скорости, как принято в рамках модели идеальной жидкости. Расчет нестационарных вихревых следов вниз по потоку от решетки 1 проводится с учетом диффузии этих следов при наличии вязкости потока [9]. Влиянием нестационарных вихревых следов за решеткой 2 на течение жидкости в области решетки 1 пренебрегаем.

Метод решения. Представим комплексную скорость жидкости в точке z области течения в каждый момент времени t в виде

$$V(z,t) = v(z,t) + J(z) + J_1(z,t) + J_2(z,t).$$
(1)

Здесь v — аналитическая по z функция всюду во внешности двухрядной решетки (v определяет потенциальное возмущение потока решетками); J — кусочно-непрерывная функция, определяющая комплексную скорость жидкости за решеткой 1 при отсутствии ре-

шетки 2 (J порождена стационарными вихревыми следами за решеткой 1); J_1 и J_2 соответствуют полям скоростей, создаваемым нестационарными следами за решетками 1 и 2. Функция J_1 аналитична по z в левой полуплоскости $x < -\Delta/2$, а J_2 — в правой полуплоскости $x > -\Delta/2$, за исключением линий контактного разрыва скорости за решеткой 2 (Δ — расстояние между решетками).

Функция v(z,t) в представлении (1) должна удовлетворять следующим условиям:

1) непротекания жидкости на профилях решеток

$$\operatorname{Im}_{i} \{ v(z,t) \exp (i\alpha_{\mu}(\sigma)) \} = \begin{cases} -\operatorname{Im}_{i} \{ J_{1}(z) \exp (i\alpha_{1}(\sigma)) \}, & z \in L_{1k}, \\ -u \cos \alpha_{2}(\sigma) - \operatorname{Im}_{i} \{ J(z) + J_{1}(z,t) + J_{2}(z,t) \}, & z \in L_{2k}, \end{cases}$$
(2)

где μ — номер решетки; k — номер профиля решетки; $L_{\mu k}$ — контур k-го профиля μ -й решетки; $\alpha_{\mu}(\sigma)$ — угол, образованный касательной к профилю $L_{\mu k}$ в точке z и положительным направлением оси x; σ — длина дуги контура профиля, отсчитываемая от выходной кромки в положительном направлении обхода (против часовой стрелки);

2) постоянства скорости жидкости на бесконечности перед решетками

$$\lim_{x \to -\infty} v(z,t) = V_{-\infty};$$
(3)

3) периодичности потока в направлении оси y

$$v(z,t) = v(z+iL,t) = v(z,t+L/u),$$
(4)

где $L = N_1 h_1 = N_2 h_2; h_1, h_2$ — шаги решеток; N_1, N_2 — количество лопаток в периоде двухрядной решетки;

4) условию Жуковского — Чаплыгина о конечности скорости в острых выходных кромках профилей решеток.

В соответствии с (3), (4) функция v(z,t) определяется формулой Коши для периодических функций

$$v(z,t) = \frac{1}{2Li} \int_{L_1} \sum_{m=0}^{N_1-1} v_{1m}(\zeta_1,t) \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} - i \frac{m}{N_1} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right) + 1 \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_1+\Delta/2}{L} \right] d\zeta_1 + \frac{1}{2Li} \left[\operatorname{cth} \pi \left(\frac{z-\zeta_$$

$$+\frac{1}{2Li}\int_{L_2}\sum_{m=0}^{N_2-1}v_{2m}(\zeta_2,t)\left[\operatorname{cth}\pi\left(\frac{z-\zeta_2-iut-\Delta/2}{L}-i\frac{m}{N_2}\right)+1\right]d\zeta_2+V_{-\infty}.$$
 (5)

Здесь L_1 , L_2 — сдвинутые вдоль оси x на $\Delta/2$ и $-\Delta/2$ исходные профили первой и второй решеток соответственно в момент времени t = 0; $v_{\mu k}(\zeta_{\mu}, t) = v(z_k, t)$; $z_1 = \zeta_1 + ikh_1 - \Delta/2$, $\zeta_1 \in L_1$; $z_2 = \zeta_2 + ikh_2 + iut + \Delta/2$, $\zeta_2 \in L_2$.

В рассматриваемой линейной постановке задачи функции влияния нестационарных вихревых следов $J_{\mu}(z_{\mu},t)$ для значений $z_{\mu} = x_{\mu} + jy_{\mu}$ в областях $x_1 < -\Delta/2$ и $x_2 > -\Delta/2$ выражаются интегралами [10]

$$J_{\mu}(z_{\mu},t) = \frac{1}{2Li} \int_{0}^{\infty} \sum_{m=0}^{N_{\mu}-1} \gamma_{\mu m}(\zeta_{\mu},t) \Big[\operatorname{cth} \pi \Big(\frac{z_{\mu} - \zeta_{\mu}(\tau)}{L} - i \frac{m}{N_{\mu}} \Big) + 1 \Big] d\tau, \tag{6}$$

где au — дуговая координата на линии контактного разрыва скорости за профилем L_{μ} ,

отсчитываемая от его выходной кромки. Интенсивность $\gamma_{\mu m}(\zeta_{\mu}(\tau), t)$ нестационарного вихревого следа в точке $\zeta_{\mu}(\tau)$ в момент времени t определяется формулой

$$\gamma_{\mu m}(\zeta_{\mu}(\tau), t) = -\frac{1}{V_{0\mu}(\tau)} \frac{\partial \Gamma_{\mu m}}{\partial t}\Big|_{t=t_1} \qquad \left(t = t_1 + T(\tau), \quad T(\tau) = \int_0^t \frac{d\tau}{V_{0\mu}(\tau)}\right). \tag{7}$$

Здесь $\Gamma_{\mu m}(t) = \int_{L_{\mu}} V_{\mu m}(s) \, ds$ — циркуляция скорости жидкости вокруг *m*-го профиля μ -й

решетки; $V_{0\mu}(\tau)$ — относительная скорость основного стационарного потока (соответствующего $\Delta = \infty$) на критической линии тока за профилем L_{μ} в системе координат, связанной с μ -й решеткой.

Следуя [5, 6], относительную скорость жидкости $V_{\mu k}(s, t)$ представим в виде

$$V_{\mu k}(s,t) = \sum_{n=0}^{\infty} \sum_{r=0}^{n} [u_{\mu n r}(s) \cos r(\omega t + k\psi_{\mu}) + v_{\mu n r}(s) \sin (\omega t + k\psi_{\mu})] \exp (-2\pi n\Delta/r), \quad (8)$$

где $\omega = 2\pi u/L; \ \psi_{\mu} = (-1)^{\mu} 2\pi/N_{\mu}.$

В представлении (5) устремим точку z из области течения к k-му профилю μ -й решетки. Используя предельные формулы Племеля — Сохоцкого, выражения (6), условия непротекания (2) и разлагая cth z в степенной ряд

$$\operatorname{cth} z + 1 = \begin{cases} 2\sum_{n=0}^{\infty} \exp\left(-2nz\right), & \operatorname{Real} z > 0, \\ -2\sum_{n=1}^{\infty} \exp\left(2nz\right), & \operatorname{Real} z < 0, \end{cases}$$

получим систему рекуррентных соотношений для определения коэффициентов разложения скорости жидкости в ряд (8)

$$K_{1r}(U_{1nr}) = \Pi_{1nr}(U_{2pq}, \ p \in \overline{1, n-1}, \ q \in \overline{0, p}),$$

$$K_{2r}(U_{2nr}) = \Pi_{2nr}(U_{1pq}, \ p \in \overline{1, n}, \ q \in \overline{0, p}),$$
(9)

где $U_{\mu nr} = u_{\mu nr} + j v_{\mu nr} \ (\mu = 1, 2; i \neq j).$

Интегральный оператор $K_{\mu r}$ в системе (9) имеет вид

$$K_{\mu r}(U_{\mu nr}) = \frac{1}{2} U_{\mu nr}(\sigma) - \frac{\exp\left(i\alpha^{\mu}(\sigma)\right)}{2Li} \int_{L_{\mu}} U_{\mu nr}(s) \sum_{m=0}^{N_{\mu}-1} \exp\left(-jrm\psi_{\mu}\right) \times \left[\operatorname{cth} \pi \left(\frac{z_{\mu} - \zeta_{\mu}}{L} - i\frac{m}{N_{\mu}}\right) + 1 - R_{\mu r}(\sigma) \right] ds,$$

где

$$R_{\mu r}(\sigma) = \int_{0}^{\infty} \frac{jr\omega t}{V_{0\mu}(\tau)} \exp\left(j\omega rT(\tau)\right) \left[\operatorname{cth} \pi \left(\frac{z_{\mu} - \zeta_{\mu}(\tau)}{L} - i\frac{m}{N_{\mu}}\right) + 1 \right] d\tau$$

$$\Pi_{100}(\sigma) = V_{-\infty} \exp(i\alpha_1(\sigma)),$$

$$\Pi_{200}(\sigma) = \frac{\exp(i\alpha_1(\sigma))}{h_1 i} \int_{L_1} u_{100}(s) \, ds + (V_{-\infty} + iu) \exp(i\alpha_2(\sigma)) + K_{20}[A_0(\sigma)],$$

$$\Pi_{\mu n r}(\sigma) = (-1)^{\mu} \delta_2 \mathscr{Z}_{\nu r} \exp\left(i\alpha_{\mu}(\sigma)\right) \left[(1-ij) \sum_{k=\mathscr{Z}_1}^{n-E(\nu/2)} P_{\nu k}^{n-k} (k-n+r) \varphi_{\mu}(\sigma, n-k) + (1+ij) \sum_{k=\mathscr{Z}_2}^{n-E(\nu/2)} P_{\nu k}^{n-k} (k-n-r) \overline{\varphi}_{\mu}(\sigma, n-k) \right] + (2-\nu) K_{2r} [A_r(\sigma)],$$

$$\varphi_{\mu}(\sigma, k) = \exp\left[(-1)^{\nu} 2\pi k \left(\xi_{\mu}(\sigma) + i\eta_{\mu}(\sigma)\right)/L\right],$$

$$P_{\mu n}^{k}(r) = \begin{cases} \frac{1}{2h_{\mu}i} \int_{L_{\mu}} [U_{\mu nr}(\sigma) - (2 - \nu)A_{nr}(\sigma)]\varphi_{\mu}(\sigma, k) \, d\sigma, & r > 0, \\ \frac{1}{h_{\mu}i} \int_{L_{\mu}} [U_{\mu n0}(\sigma) - (2 - \nu)A_{n0}(\sigma)]\varphi_{\mu}(\sigma, k) \, d\sigma, & r = 0, \\ \frac{1}{2h_{\mu}i} \int_{L_{\mu}} [\bar{U}_{\mu nl}(\sigma) - (2 - \nu)\bar{A}_{nl}(\sigma)]\varphi_{\mu}(\sigma, k) \, d\sigma, & l = -r > 0, \end{cases}$$

Здесь E(x) — целая часть числа
 x;чертой сверху обозначены комплексно-сопряженные п
оjвеличины.

Функции $f_r(\sigma)$ и $J_{1nr}(\sigma)$ в выражении для $A_{nr}(\sigma)$ являются коэффициентами разложения функций $J_m(\sigma,t)$ и $J_{1m}(\sigma,t)$ в ряды

$$J_m(\sigma,t) = J\left(z_2(s) + imh_2 + iut + \frac{\Delta}{2}\right) = \sum_{r=0}^{\infty} f_r(\sigma) \exp\left(-jr(\omega t + m\psi_2)\right);\tag{10}$$

$$J_{1m}(\sigma,t) = J_1\left(z_2(s) + imh_2 + iut + \frac{\Delta}{2}\right) =$$
$$= \sum_{n=0}^{\infty} \sum_{r=0}^{\infty} J_{1nr}(\sigma) \exp\left(-jr(\omega t + m\psi_2)\right) \exp\left(-\frac{2\pi n\Delta}{L}\right). \quad (11)$$

Рис. 2. Закромочные следы за профилями решетки

Отличие полученных выражений от приведенных в работе [6] связано с добавлением к ядрам операторов $K_{\mu r}$ членов $R_{\mu r}(\sigma)$, появление которых вызвано влиянием вверх по потоку нестационарных вихревых следов за решетками, а также с наличием в выражениях для $\Pi_{\mu nr}(\sigma)$ дополнительных слагаемых, определяемых функцией J_{1nr} , возникающей при учете диффузии нестационарных следов вниз по потоку от первой решетки.

Задание функций J(z) и $J_1(z,t)$. Для задания функции J(z) используется известная зависимость скорости потока в следе за одиночной решеткой (при отсутствии решетки 2) от коэффициента профильных потерь $\zeta_{\rm np}$ (рис. 2). Выражения для коэффициента f_r разложения (10) приведены в [6].

Для задания функции $J_1(z,t)$ воспользуемся приближенным решением задачи о диффузии вихревого слоя [9] (рис. 2)

$$J_1(z,t) = \frac{V_1}{\sqrt{\pi}} \left[\Phi\left(\sqrt{\frac{\operatorname{Re}}{4h_1\xi_k}} \eta_k\right) - \frac{\sqrt{\pi}}{2}\operatorname{sign}\eta_k \right] \frac{\partial\Gamma_{1k}}{\partial t_1} \Big|_{t_1 = t - \xi_k/V_1},\tag{12}$$

где $\Phi(\theta) = \int_{0}^{\theta} \exp\left(-\theta^{2}\right) d\theta$ — интеграл вероятности; Re = $V_{1}h_{1}/\nu$ — число Рейнольдса;

 ν — кинематическая вязкость; V_1 — комплексная скорость жидкости на бесконечности перед решеткой; $\eta_k + i\xi_k = z \exp(i\alpha)$; $\alpha = \arg V_1$; $k = 0, \pm 1, \pm 2, \ldots$

Выражение (11) для коэффициентов $J_{1nr}(\sigma)$ получается из (12) разложением J_1 в ряд Фурье по переменной y с использованием (7), (8) при переходе в систему координат второй решетки. Окончательно имеем

$$J_{1nr}(\sigma) = \sum_{p=\beta_1}^{\beta_2} B_{p,n-|p|,r-p} \exp\left(-jp\omega_1 y_2(\sigma)\right) \exp\left(\frac{2\pi |p|\Delta}{L}\right),\tag{13}$$

где

$$\beta_1 = \left[\frac{-n+r+1}{2}\right]; \qquad \beta_2 = \left[\frac{n+r}{2}\right]; \qquad \omega_1 = \frac{2\pi}{L};$$
$$B_{p,k,l} = -\frac{\delta_2 \mathscr{R}_{1r}}{h_1} jl\omega\Gamma_{1,k,|l|} \int A(x_2(\sigma) + \Delta, y) \exp\left(\frac{jl\omega}{V_1}[(x_2(\sigma) + \Delta)\cos\alpha - y\sin\alpha]\right) \times \exp\left(jp\omega_1 y\right) dy;$$

Рис. 3. Зависимость уровня возбуждающих сил от осевого зазора: сплошные кривые — расчет по предлагаемой модели, штриховые — расчет по модели квазистационарного обтекания [6], точки — данные эксперимента [11] $(1 - n_1 = 30,0 \text{ c}^{-1}, 2 - n_1 = 23,34 \text{ c}^{-1})$; $a - N_1 = 9, N_2 = 10, \tau_1 = 0,71, \tau_2 = 1,33, \zeta_{\Pi P} = 0,021$; $b - N_1 = 3, N_2 = 10, \tau_1 = 0,64, \tau_2 = 1,33, \zeta_{\Pi P} = 0,04$

$$A(x,y) = \frac{1}{\sqrt{\pi}} \left[\Phi\left(\sqrt{\frac{\operatorname{Re}}{4h_1\xi_0}} \eta_0\right) - \frac{\sqrt{\pi}}{2}\operatorname{sign}\eta_0 \right];$$

 Γ_{1nr} — коэффициенты разложения циркуляции $\Gamma_{1m}(s)$ в ряд (8)

$$\Gamma_{1m}(s) = \sum_{n=0}^{\infty} \sum_{r=0}^{n} \Gamma_{1nr} \exp\left(-jr(\omega t + m\psi_1)\right) \exp\left(\frac{-2\pi n\Delta}{L}\right).$$

Заметим, что в силу свойств функции Φ величина A быстро убывает при удалении от оси следа $(y_0, x_2(\sigma) + \Delta), y_0 = -(x_2(\sigma) + \Delta)/\operatorname{tg} \alpha$, и для приближенного вычисления коэффициентов B_{pkl} интегрирование по y достаточно проводить в узком интервале $(y_0 - \varepsilon, y_0 + \varepsilon)$, где ε определяет ширину нестационарного следа в направлении оси y.

Таким образом, формулы (9)–(13) позволяют последовательно определять коэффициенты $U_{\mu nr}$ разложения относительной скорости $V_{\mu m}$ на профилях решеток в ряд (8). Давление на профилях, суммарные силы и момент находятся далее с использованием интеграла Коши — Лагранжа.

Программа и результаты расчета. Изложенный выше метод реализован в виде программы расчета нестационарных аэродинамических характеристик профилей решеток. Программа написана на языке FORTRAN, время расчета одного варианта на персональном компьютере Pentium-II составляет 1 ÷ 5 мин в зависимости от расчетного варианта и числа точек разбиения исходных профилей решеток. Отметим, что время расчета слабо зависит от количества профилей в общем периоде решеток (в отличие от методов прямого расчета уравнений Эйлера или Навье — Стокса).

На рис. 3 приведены результаты расчета и данные эксперимента [11]. По оси ординат отложен уровень возбуждающих сил на профиле второй решетки

$$\lambda_{2y} = (\max Y_2(t) - \min Y_2(t)) / Y_2^0, \qquad t \in [0, T_2],$$

где $T_2 = 2\pi h_1/u; Y_2(t)$ — окружная составляющая силы на профиле; Y_2^0 — ее среднее значение.

Рис. 4. Зависимость уровня возбуждающих сил от осевого зазора при большом угле выноса первой решетки ($N_1 = N_2 = 1$, $\tau_1 = \tau_2 = 1$, $\zeta_{\rm np} = 0.03$, $q = u/V_{-\infty} = 3.595$):

сплошная кривая — расчет по предлагаемой модели, штриховая — расчет по модели квазистационарного обтекания [6]

Из анализа кривых на рис. 3 следует, что нестационарные вихревые следы вносят существенный вклад в уровень нестационарных возбуждающих сил на профилях решеток. Сравнивая результаты расчета и эксперимента [11], отметим, что на рис. 3,*a* для разных значений скорости вращения вала n_1 данные эксперимента достаточно сильно различаются, расчеты по предлагаемой модели хорошо согласуются с экспериментом лишь при $n_1 = 23,34 \text{ c}^{-1}$. На рис. 3,*б* результаты измерений для различных значений n_1 практически совпадают. Расчеты по предлагаемой модели количественно лучше согласуются с экспериментом, чем расчеты по модели квазистационарного обтекания [6], в области средних осевых зазоров ($\Delta/h_1 \approx 0,1 \div 0,3$), а в области малых зазоров ($\Delta/h_1 < 0,1$) расчеты "отслеживают" качественное поведение нестационарной силы, хотя и на другом количественном уровне. Отметим, что экспериментальные данные о нестационарных силах на лопатках венцов, движущихся относительно друг друга, в литературе отсутствуют, за исключением работы [11].

Одной из важных особенностей поведения нестационарных сил при взаимодействии решеток является наблюдаемая в экспериментах немонотонная зависимость значений λ_{2y} от осевого зазора при больших углах выноса первой решетки. В работе [12] с использованием модели квазистационарного обтекания решеток это явление объясняется наложением потенциального и вихревого (от стационарных вихревых следов J) возмущений течения. Поскольку в рассматриваемой модели нестационарного обтекания зоны возмущенной скорости от стационарных J и нестационарных J₁ вихревых следов практически совпадают, зависимость λ_{2u} от осевого зазора должна быть немонотонной в тех же случаях, что и в модели квазистационарного обтекания решеток. Из сравнения кривых на рис. 4 следует, что область значений осевого зазора Δ , где уровень возбуждающих сил λ_{2y} немонотонный, практически одна и та же в расчетах по предлагаемой модели и модели квазистационарного обтекания. Количественное различие объясняется тем, что в квазистационарной модели при расчете давления не учитывается член $\partial \varphi / \partial t$, который в данном варианте расчета вносит существенный вклад из-за большого угла выноса решетки 1 ($q = u/V_{-\infty} = 3,595$ и число Струхаля Sh = $\omega L/V_{-\infty} = 2\pi q$, характеризующее уровень нестационарности, велико).

Основным результатом данной работы является создание программы, учитывающей диффузию нестационарных вихревых следов за профилями решеток и позволяющей проводить серийные расчеты аэродинамических характеристик профилей на персональных компьютерах. В дальнейшем предполагается использование программы для расчета системы трех решеток статор — ротор — статор и сравнения полей давления и скорости в потоке с экспериментом [8].

Автор выражает благодарность В. Э. Сарену за предложенную идею решения задачи в данной постановке и постоянное внимание к работе.

ЛИТЕРАТУРА

- Cizmas P., Subramanya R. Parallel computation of rotor stator interaction // Unsteady aerodynamics and aeroelastisity of turbomachines: Proc. of the 8th Intern. symp., Stockholm, Sweden, 14–18 Sept., 1997. Dordrecht etc.: Kluwer Acad. Publ., 1998. P. 633–645.
- Gnesin V., Rzadkowski R. The 3D unsteady aerodynamic forces: The forced vibration of blades discs // Ibid. P. 613–632.
- 3. Rai M. M. Navier Stokes simulation of rotor stator interaction using patched and overlaid grids. Cincinatti (Ohio), 1995. (Paper / AIAA; N 85-1519).
- Saren V. E., Savin N. M., Dorney D. J., Zacharias R. M. Experimental and numerical investigation of unsteady rotor — stator interaction influence on axial compressor stage (with IGV) performance // Unsteady aerodynamics and aeroelastisity of turbomachines: Proc. of the 8th Intern. symp., Stockholm, Sweden, 14–18 Sept., 1997. Dordrecht etc.: Kluwer Acad. Publ., 1998. P. 407–426.
- 5. Сарен В. Э. О гидродинамическом взаимодействии решеток профилей в потенциальном потоке // Изв. АН СССР. Механика жидкости и газа. 1971. № 4. С. 75–84.
- 6. Юдин В. А. Расчет гидродинамического взаимодействия решеток профилей с учетом закромочных следов // Тр. Центр. ин-та авиац. моторостроения. 1981. № 953. С. 52–67.
- 7. Юдин В. А. Расчет взаимодействия решеток с учетом закромочных следов в идеальной несжимаемой жидкости // Тр. Центр. ин-та авиац. моторостроения. 1985. № 1127. С. 245–248.
- Савин Н. М., Сарен В. Э. Гидродинамическое взаимодействие венцов в системе статор ротор — статор осевой турбомашины // Изв. РАН. Механика жидкости и газа. 2000. № 3. С. 145–158.
- 9. **Ламб Г.** Гидродинамика. М.: ОГИЗ, 1947.
- 10. Горелов Д. Н., Курзин В. Б., Сарен В. Э. Аэродинамика решеток в нестационарном потоке. Новосибирск: Наука. Сиб. отд-ние, 1974.
- Adachi T., Fukusado K., Takahasi N., Nakamoto Y. Study of the interference between moving and stationary blade rows in axial flow blower // Bull. JSME. 1974. V. 17, N 109. P. 904–911.
- 12. Сарен В. Э., Юдин В. А. Влияние осевого зазора на возбуждающие силы в решетках профилей // Аэроупругость турбомашин: Сб. ст. Новосибирск: Ин-т гидродинамики СО АН СССР, 1984. С. 33–42.

Поступила в редакцию 13/XII 2000 г., в окончательном варианте — 23/II 2001 г.