УДК 533.6.011.55

Построение цилиндрических воздухозаборников для высоких скоростей полета из комбинации плоских течений

Д.А. Внучков, В.И. Звегинцев, Д.Г. Наливайченко

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: vnuchkov@itam.nsc.ru

Рассматривается способ построения цилиндрических воздухозаборников для высоких скоростей полета с использованием V-образных тел, формирующих плоское течение с начальным косым скачком уплотнения. На расчетном режиме характеристики таких воздухозаборников можно получить путем простых расчетов в широком диапазоне определяющих параметров. Различия в характеристиках типичного цилиндрического воздухозаборника на расчетных и нерасчетных режимах обтекания определены при помощи трехмерных численных расчетов.

Ключевые слова: воздухозаборник, V-образные тела, гиперзвуковое течение, параметрические расчеты.

Введение

Задачей воздухозаборника воздушно-реактивного двигателя является повышение статического давления за счет торможения газового потока для получения максимально возможного значения термического КПД при подводе тепла в камере сгорания. Несмотря на то, что известны различные способы торможения сверхзвукового потока, на практике применяется только один из них — с помощью геометрического воздействия. Более того, из всех возможных геометрических воздействий для построения конфигураций воздухо-заборников до сих пор используются только двумерные (плоские и осесимметричные) течения.

Начиная с 70-х годов, в ИТПМ СО РАН разрабатывается направление газодинамического конструирования трехмерных воздухозаборников на основе комбинирования известных двумерных течений [1–5]. Характеристики рассматриваемых воздухозаборников на расчетном режиме обтекания могут быть получены простыми аналитическими методами. Это обстоятельство существенно упрощает процесс конструирования и предварительный анализ эффективности новых трехмерных воздухозаборников. Однако на нерасчетных режимах их обтекание носит общий пространственный характер и требует применения трехмерного численного анализа.

Одним из рассматриваемых в ИТПМ СО РАН направлений являлось построение цилиндрических воздухозаборников на основе осесимметричного течения Буземана [6, 7]. Как выяснилось, основным недостатком таких воздухозаборников являлась их значительная длина.

© Внучков Д.А., Звегинцев В.И., Наливайченко Д.Г., 2013

Внучков Д.А., Звегинцев В.И., Наливайченко Д.Г.

Другим направлением являлось построение воздухозаборников на основе плоских течений с начальным скачком уплотнения. В качестве аналога рассматривались V-образные крылья Нонвейлера [8], характеристики обтекания которых на расчетных режимах хорошо известны. В работе [9] с использованием комбинаций V-образных тел построены звездообразные тела, обладающие меньшим волновым сопротивлением по сравнению с эквивалентным круговым конусом. Комбинируя V-образные тела, можно также построить многоугольные воздухозаборники, характеристики которых на расчетном режиме легко определяются. Такие многоугольные конфигурации с косыми скачками уплотнения рассматривались в работе [10] с точки зрения оценки их волнового сопротивления.

В работах [11–14] метод газодинамического конструирования использовался для построения пространственных сверхзвуковых воздухозаборников в виде V-образных тел, в которых в потоке за начальным плоским скачком уплотнения формируется дополнительное плоское изоэнтропическое течение сжатия. Рассматриваемые воздухозаборники обеспечивают меньшие потери полного давления при сжатии захватываемого потока по сравнению с обычными плоскими воздухозаборниками.

Важным результатом в этом направлении явилось создание так называемых конвергентных воздухозаборников, в которых сжатие высокоскоростного потока осуществляется по сходящимся в пространстве направлениям. Наибольший интерес вызывают конвергентные воздухозаборники [4, 5], полученные комбинацией плоских течений, образующихся при обтекании стреловидных клиньев, и V-образных тел сжатия, а также конвергентные лотковые воздухозаборники типа [15–18], конструируемые с использованием сверхзвуковых осесимметричных течений сжатия.

Конвергентные воздухозаборники позволяют получить более высокую степень внешнего сжатия, например, при тех же углах наклона поверхностей, что и у плоских воздухозаборников, что было подтверждено экспериментально [16–19]. Компактность сечения канала и относительно малая смачиваемая площадь его поверхности позволяют уменьшить суммарные тепловые потоки и, следовательно, облегчить теплозащиту и вес конструкции силовой установки [20].

В настоящей работе рассматривается способ построения цилиндрических (правильный многоугольник при виде спереди) воздухозаборников для больших скоростей полета методом газодинамического конструирования из комбинации V-образных тел. Методами численного моделирования выполнено исследование характеристик предлагаемых воздухозаборников как на расчетных, так и на нерасчетных режимах обтекания.

Методика построения воздухозаборника

Методика построения воздухозаборника заключается в последовательном выполнении следующих действий.

В качестве первого шага рассматривается процедура построения плоского односкачкового воздухозаборника (см. рис. 1). Исходный сверхзвуковой поток с числом Маха М, полным давлением набегающего потока P_0 , статическим давлением P и плотностью ρ набегает на конструируемый воздухозаборник. Исходным параметром для построения является угол клина θ , который определяет наклон поверхности сжатия к вектору скорости набегающего потока.

При заданном значении числа Маха клин 1 создает скачок уплотнения 3, наклоненный под углом θ 1 к вектору скорости набегающего потока, который отклоняет поток на угол θ . Число Маха потока после скачка уменьшается до определенного значения M₁.

На расстоянии *H* по вертикали от передней кромки воздухозаборника располагается обечайка 2, передняя кромка которой начинается от скачка уплотнения. В этом случае величина *H* определяет вертикальный размер трубки тока, вырезаемой воздухозаборником из набегающего потока воздуха, и, соответственно, расход воздуха.

Поток, параллельный поверхности сжатия клина, набегает на внутреннюю поверхность обечайки и создает второй скачок уплотнения 4, в котором разворачивается обратно на тот же угол θ . Угол наклона скачка относительно вектора скорости набегающего на

Рис. 1. Построение плоского воздухозаборника. *I* — клин, *2* — обечайка, *3* — скачок уплотнения от клина, *4* — скачок уплотнения от обечайки, *5* — канал.

обечайку потока вычисляется по новому значению числа Маха M_1 и составляет θ_2 , а относительно горизонтали составляет ($\theta_2 - \theta$). После второго скачка направление потока в канале 5 воздухозаборника высотой *h* совпадает с направлением исходного течения, но число Маха после прохождения скачков уменьшается до M_2 , а давление потока и его плотность возрастает до значений P_2 и ρ_2 . Следует обратить внимание на то, что на расчетном режиме, когда второй скачок 4 падает на излом центрального клина, поток в канале направлен параллельно стенкам, поэтому здесь не возникают дополнительные волны сжатия или разрежения. В данном случае поток на выходе из канала воздухозаборника можно считать одномерным, что может представлять интерес для согласования с одномерными схемами расчета дальнейшего течения в камере сгорания.

В рассмотренном случае поток после второго скачка остается сверхзвуковым $(M_2 > 1)$ и течение можно рассматривать как течение в канале гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД). В случае, если в горле возникает дополнительный прямой скачок уплотнения (псевдоскачок), в котором поток тормозится до дозвуковых скоростей ($M_3 < 1$), течение соответствует течению в канале прямоточного воздушно-реактивного двигателя (ПВРД).

В качестве второго шага рассмотрим построение пространственного V-образного воздухозаборника из описанного выше плоского воздухозаборника (см. рис. 2). Носовой частью такого воздухозаборника является крыло Нонвейлера, представляющее собой

Рис. 2. Построение секторного воздухозаборника.

Рис. 3. Построение цилиндрического воздухозаборника.

«вырезку» из известного плоского течения за косым скачком уплотнения. Для этого через линию тока AC, лежащую на поверхности сжатия, проводятся две плоскости, расположенные симметрично под углом φ_2 относительно вертикали.

Треугольники ABC и AB_1C , вырезанные плоскостями из исходного течения, являются боковыми щеками V-образного воздухозаборника, ограничивающими захватываемую струю воздуха. Обечайка V-образного воздухозаборника располагается на исходном плоском скачке уплотнения и представляет собой прямоугольник B_1BDD_1 шириной $B_1B = 2b$. Длина обечайки, как и длина канала воздухозаборника, определяются из конструктивных соображений. Передняя кромка обечайки создает второй косой скачок B_1BC , причем точка C совпадает с точкой излома исходной линии тока. Две плоскости BCED и B_1CED_1 совместно с обечайкой B_1BDD_1 образуют стенки треугольного канала воздухозаборника и течение в нем определяется с использованием простых решений для скачков уплотнения. Лобовая площадь F_0 воздухозаборника, определяющая захватываемую в набегающем потоке струю воздуха на расчетном режиме, в данном случае есть проекция треугольника ABB_1 на плоскость, перпендикулярную вектору набегающего потока.

Из построений понятно, что в случае невязкого обтекания параметры потока на выходе из V-образного воздухозаборника на расчетном режиме в точности совпадают с параметрами потока на выходе из рассмотренного выше плоского воздухозаборника.

На третьем шаге *n* секторных V-образных воздухозаборников соединяются вместе и образуют цилиндрический воздухозаборник с призматической обечайкой, который при виде спереди образует правильный многоугольник (см. рис. 3).

Независимо от количества составляющих V-образных секторов все газодинамические параметры течения и характеристики цилиндрических воздухозаборников на расчетном режиме под нулевым углом атаки совпадают с характеристиками секторных и плоских воздухозаборников, рассмотренных ранее.

Параметрические расчеты характеристик воздухозаборников на расчетном режиме

Все характеристики потока в описанных выше воздухозаборниках на расчетных режимах легко рассчитываются с помощью простых аналитических соотношений и они соответствуют решениям за системой из двух косых или из двух косых и одного прямого скачков уплотнения. В настоящей работе параметрические расчеты выполнены для значений угла клина от $\theta = 0^{\circ}$ до 30° в диапазоне чисел Маха набегающего потока от M = 2 до 10. Основные результаты расчетов представлены на рис. 4–7.

На рис. 4 показаны зависимости коэффициента восстановления полного давления в горле воздухозаборника $\sigma_2 = P_{02}/P_0$ и $\sigma_3 = P_{03}/P_0$ в зависимости от величины угла начального клина, где P_0 — полное давление в набегающего потока. Цифрами обозначено число Маха набегающего потока. Видно, что увеличение угла клина для сверхзвукового течения в горле приводит к непрерывному уменьшению полного давления (режим ГПВРД на рис. 4, *a*). В то же время зависимость полного давления от угла клина для дозвукового потока с прямым скачком уплотнения в канале (режим ПВРД на рис. 4, *b*) имеет

максимум в районе $\theta = 15-20^{\circ}$ для диапазона чисел Маха набегающего потока M = 3 ÷ 10. Заметим, что здесь при $\theta = 0$ величины потерь полного давления соответствуют значениям потерь за одним прямым скачком при заданном числе Маха.

На рис. 5 показаны зависимости для степени повышения статического давления в канале воздухозаборника от угла начального клина. Увеличение угла первого клина приводит к непрерывному увеличению статического давления при сверхзвуковых скоростях потока в канале. В случае дозвукового потока с прямым скачком уплотнения в канале (режим ПВРД на рис. 5, *b*) изменение статического давления имеет максимум в районе $\theta = 10 \div 15^{\circ}$ для диапазона чисел Маха набегающего потока M = 3 ÷ 10.

На рис. 6 показана степень геометрического сжатия захватываемой струи в набегающем потоке, определяющаяся как отношение лобовой площади F_0 и площади сечения канала F_2 . Заметим, что в рассматриваемом случае секторного V-образного воздухозаборника величина F_0/F_2 не зависит от угла раскрытия φ_2 и для обоих типов воздухозаборников определяется как $F_0/F_2 = H/h$. Видно, что максимальное геометрическое сжатие (минимальная площадь поперечного сечения канала) достигается при углах начального клина в диапазоне 20 ÷ 23°. Дальнейшее увеличение угла клина приводит к увеличению поперечного сечения канала воздухозаборников, построенных по предлагаемой методике.

Рис. 5. Степень повышения статического давления. *а* — для ГПВРД, *b* — для ПВРД.

На рис. 7 показаны значения числа Маха сверхзвукового потока в канале при различных значениях угла начального клина. Из рисунка можно видеть предельные значения угла начального клина, когда число Маха потока в канале достигает критического значения $M_2 = 1$.

Численные расчеты течения в воздухозаборниках на нерасчетных режимах

Расчеты выполнялись с помощью комплексного программного продукта SolidWorks+ANSYS. Подготовка 3D-модели воздухозаборного устройства осуществлялась в программе SolidWorks, затем модель импортировалась в вычислительный модуль ANSYS, где производился газодинамический расчет.

Указанный вычислительный пакет при решении задач использует метод конечных объемов и стационарные уравнения Навье–Стокса. Программа автоматически анализирует геометрию тела и формирует расчетную сетку на поверхности тела и в выделяемой области вычисления. В процессе решения в зонах больших градиентов сетка оптимизируется.

Расчеты проводились при параметрах набегающего потока, соответствующих стандартной атмосфере у поверхности Земли (давление P = 101325 Па, температура T = 293 K). Предполагалось, что пограничный слой на стенках воздухозаборника находится в турбулентном состоянии. При расчетах использовалась *к*- ε модель турбулентности.

Конфигурации воздухозаборников для численного моделирования строятся на основе аналитических расчетов с помощью известных газодинамических соотношений. Рассматривается базовый воздухозаборник с начальным углом $\theta = 10^{\circ}$ и расчетным числом Маха M = 4. Геометрические параметры определяются при заданной высоте H = 17,3 мм, что соответствует диаметру описанной окружности — 40 мм. Полагается, что горло воздухозаборника (сечение 2) расположено на расстоянии 2h от излома поверхности сжатия и для него в дальнейшем приводятся параметры течения.

Выполнена серия расчетов двухмерного (плоского) односкачкового воздухозаборника (рис. 1), а также трехмерных воздухозаборников в виде V-образного сектора (рис. 2) и в виде комбинации из шести V-образных секторов (рис. 3). Все вычисления на расчетных режимах выполнялись для идеального газа (воздуха) с учетом и без учета вязкости. На нерасчетных режимах результаты были получены только для невязкого газа. Варианты условий расчета сведены в табл. 1.

Таблица 1

Номер варианта	Описание варианта расчета
1	Расчет невязкого плоского течения по соотношениям для клина при M = 4
2	То же при М = 3
3	» при М = 6
4	Численный расчет невязкого плоского течения при M = 4
5	То же для вязкого
6	Численный расчет трехмерного невязкого течения в V-образной секторной вырезке при M = 4
7	То же для вязкого
8	Численный расчет трехмерного невязкого течения в воздухозаборнике, составленном из шести V-образных секторов при M = 4
9	То же для вязкого
10	Численный расчет трехмерного невязкого течения в воздухозаборнике, составленном из шести V-образных секторов при M = 3
11	То же при M = 6
12	То же при М = 4 под углом атаки 5°
13	То же при М = 4 под углом атаки 10°

Для оценки трудоемкости вычислений в табл. 2 приведены сведения о размерах расчетной сетки и характерных временах вычислений для типичных ситуаций.

Результаты выполненных расчетов приведены в табл. 3–6. Здесь показаны основные размерные и относительные параметры потока в двух сечениях — в набегающем невозмущенном потоке (0) и в горле воздухозаборника (2) (далее показано линиями на рис. 8–10). В скобках (табл. 4–6) приведено отличие (в процентах) результатов численных расчетов от соответствующих значений, полученных при помощи аналитических оценок (вариант 1). В случае численных расчетов в таблицах приведены осредненные по площади значения параметров в соответствующих сечениях. Результаты, полученные для базового воздухозаборника с расчетным числом Маха M = 4, в условиях обтекания потоком с числом Маха M = 3 (вариант 10) сравниваются с результатами аналитических оценок для воздухозаборника с расчетным числом Маха M = 3 (вариант 2). Результаты, полученные для базового воздухозаборника, в условиях обтекания потоком с числом Маха M = 6 (вариант 11) сравниваются с результатами для воздухозаборника с расчетным числом Маха M = 6 (вариант 3).

Анализ численных результатов

Результаты численного расчета невязкого двухскачкового течения по варианту 4 хорошо согласуются с результатами аналитических оценок. Максимальное расхождение составляет 1,4 % по величине полного давления. Результаты невязких расчетов для

Таблица	2	
---------	---	--

Расчет	Количество ячеек	Время, ч
Двумерный	25 000 ÷ 30 000	3–4
Трехмерный (сектор)	120 000 ÷ 150 000	10-12
Трехмерный (комплексная модель)	450 000 ÷ 550 000	25-30

Характерное количество ячеек расчетной сетки и время расчета

73

Таблица З

Результаты расчета невязкого плоского течения при M = 4, 3, 6; начальный угол сжатия θ = 10°

Вариант расчета		1	2	2	3		
Объект	М	= 4	М	= 3	М	= 6	
Номер сечения	0	2	0	2	0	2	
Площадь сечения Р, МПа	3,46E-05	1,21E-05	3,46E-05	1,59E-05	3,46E-05	7,77E-06	
Статическое давление Р, МПа	0,1013	0,5522	0,1013	0,3884	0,1013	1,0571	
Температура Т, К	293,2	493,2	293,2	438,1	293,2	620,3	
Плотность, кг/м ³	1,204	3,901	1,204	3,089	1,204	5,853	
Давление торможения P ₀ , МПа	15,38	13,58	3,72	3,50	159,98	115,25	
Температура Т, К	1,135	2,893	0,638	1,187	2,553	10,436	
Скоростной напор, МПа	1372,9	1217,9	1029,7	877,0	2059,4	1888,4	
Скорость, м/с	4,00 2,74		3,00	2,09	6,00	3,76	
Массовый расход G, кг/с	0,0573 0,0573		0,0429	0,0429	0,0859	0,0859	
F_2/F_0	0,348		0,458		0,224		
P_{2}/P_{0}	5,449		3,833		10,433		
T_{2}/T_{0}	1,682		1,494		2,146		
P_{02}/P_{0}	0,883		0,940		0,720		
G_2/G_0	0,9	999	1,0	000	1,0	000	
M ₂	2,736		2,0)90	3,7	3,755	

единичного V-образного сектора и для комбинации из шести секторов по вариантам 6 и 8 показывают увеличение разницы в полном давлении до 5–6 % из-за увеличения размеров рассчитываемой области. Разница по расходу в вариантах 4, 6, 8 не превышала 2,4 %. Разница по степени повышения статического давления не превышала 3 %. Таким образом, сравнение невязких численных расчетов с точными решениями дает оценку погрешностей вычислительной технологии.

С учетом указанной погрешности вычислений можно полагать, что различие в характеристиках для остальных вариантов расчета демонстрирует влияние нерасчетных режимов, которые рассмотрены ниже.

Влияние вязкости проявляется при сравнении невязких расчетов (варианты 4, 6, 8) и расчетов с учетом вязкости (варианты 5, 7, 9). Наличие пограничного слоя в рассматриваемом конкретном случае вызывает уменьшение числа Маха в горле воздухозаборника на 9–12 % и уменьшение полного давления на 20–26 %. При этом влияние вязкости на коэффициент расхода $\varphi = G_2/G_0$ (здесь G_0 — расход воздуха, определяемый лобовой площадью F_0) незначительное (уменьшается на 1–2 %).

Уменьшение числа Маха приводит к повышению статического давления на 14-21% (несмотря на уменьшение абсолютной величины полного давления) и к повышению статической температуры на 11-16%. Различие картины течения для вязкого и невязкого потока в плоскости симметрии демонстрируется на рис. 8 в виде распределений линий равных плотностей (изохор). Можно отметить, что в обоих случаях скачок уплотнения от обечайки не попадает в точку излома контура и отражается от поверхности.

Вариант расчета								
	4		0		Ð			
Объект		Кли	Н			Сект	do	
	Невяз	кий	Basi	сий	Невя	зкий	Вязь	кий
Номер сечения	0	2	0	2	0	2	0	2
щадь сечения F_0, m^2	3,46E-05	1,21E-05	3,46E-05	1,29E-05	1,73E-04	6,03E-05	1,73E-04	6,03E-05
тическое давление P, МПа	0,1013	0,5550	0,1013	0,6319	0,1013	0,5485	0,1013	0,6307
ипература T, K	293,2	495,7	293,2	547,7	293,2	497,9	293,2	550,0
JTHOCTb, ΚΓ/M ³	1,204	3,900	1,204	4,021	1,204	3,825	1,204	4,006
ление торможения P_0 , МПа	15,38	13,40	15,38	10,80	15,38	12,90	15,38	10,80
ростной напор, МПа	1,13	2,88	1,13	2,76	1,13	2,81	1,13	2,74
рость, м/с	1372,9	1214,9	1372,9	1170,4	1372,9	1213,0	1372,9	1168,2
uo Maxa, M	4,00	2,72	4,00	2,50	4,00	2,72	4,00	2,49
ссовый расход G , кг/с	0,0573	0,0571	0,0573	0,0567	0,2865	0,2796	0,2865	0,2827
F_2/F_0	0,348 (0	(% 0,0	0,372 (+	-7,0 %)	0,348 (i	0,0 %)	0,348 (1	0,0 %)
P_2/P_0	5,477 (+(0,5 %)	6,236 (+	14,4 %)	5,413 (-	0,7 %)	6,225 (+	14,2 %)
T_2/T_0	1,691 (+(0,5 %)	1,868 (+	11,1 %)	1,698 (+	-0,9 %)	1,876 (+	11,5 %)
P_{02}/P_0	0,871 (-	1,4 %)	0,702 (20,5 %)	0,839 (-	-5,0 %)	0,702 (:	20,5 %)
G_2/G_0	0,997 (–(0,3 %)	-) 066'0	-1,0 %)	0,976 (-	-2,4 %)	0,987 (-	-1,3 %)
M_2	2,723 (–(0,5 %)	2,497 (-	-8,7 %)	2,716 (-	-0,7 %)	2,489 (-	-9,0 %)

Результаты численного расчета при M = 4; начальный угол сжатия heta = 10°

Таблица 4

S
S
Ħ
И
5
Ú.
S
Ē
-

Вариант расчета	8	~	5		10	(1	1
Объект		Воздухоз	аборник		= M	- 3	- M	- e
	Невя	зкий	Bas	кий	- MI	0	- TAT	0
Номер сечения	0	2	0	2	0	2	0	2
Площадь сечения F_0 , м ²	1,04E-03	3,62E-04	1,04E-03	3,62E-04	1,04E-03	3,62E-04	1,04E-03	3,62E-04
Статическое давление Р, МПа	0,1013	0,5690	0,1013	0,6706	0,1013	0,6093	0,1013	0,6219
Температура Т, К	293,2	506,7	293,2	571,1	293,2	513,9	293,2	551,0
Плотность, кг/м ³	1,204	3,912	1,204	4,096	1,204	4,064	1,204	3,775
Давление торможения P_0 , МПа	15,38	12,80	15,38	10,10	3,72	3,10	159,98	99,40
Скоростной напор, МПа	1,13	2,84	1,13	2,72	0,64	1,22	2,55	6,91
Скорость, м/с	1372,9	1205,9	1372,9	1150,1	1029,5	783,8	2059,4	1924,7
Число Маха, М	4,00	2,67	4,00	2,41	3,00	1,74	6,00	4,14
Массовый расход G , кг/с	1,7178	1,7056	1,7178	1,7039	1,2878	1,1325	2,5768	2,6036
F_2/F_0	0,348 (0,0 %)	0,348 (0,0 %)	0,348 (-2	24,0 %)	0,3479 (-	+55,1 %)
P_2/P_0	5,616 (-	+3,1 %)	6,618 (+	21,4 %)	6,013 (+5	56,9 %)	6,1379 (-41,2 %)
T_2/T_0	1,728 (-	+2,7 %)	1,948 (+	15, 8 %)	1,753 (+1	17,3 %)	1,879 (-	12,4 %)
P_{02}/P_0	0,832 (-	-5,8 %)	0,657 (-:	25,6 %)	0,833 (-1	(1,3 %)	0,621 (-	13,8 %)
G_2/G_0	0,993 (.	-0,7 %)	0,992 (-	(% 8 %)	0,879 (-1	(2,1 %)	1,010 (-	+1,0 %)
Μ,	2.674 (-2.3 %)	2.408 (-	12.0 %)	1.738 (-1	(0%)	4.141 (+	10.3 %)

Результаты численного расчета трехмерного течения в воздухозаборнике; начальный угол сжатия θ = 10°; n = 6

Таблица б

Результаты численного расчета трехмерного невязкого течения в воздухозаборнике при M = 4 и углах атаки 5 и 10°; начальный угол сжатия $\theta = 10^\circ$; n = 6

Вариант расчета	12			13			
Объект	Угол атаки						
OUBERT	5°				10°		
Номер сечения	0	2	верх/низ	0	2	верх/низ	
Площадь сечения F_0 , м ²	-	3,60E-04	-	-	3,59E-04	-	
Статическое давление Р, МПа	0,1013		-33%/+39 %	0,1013	0,7371	-57%/+79 %	
Температура Т, К	293,2	545,7	-10%/+12 %	293,2	605,9	-21%/+19 %	
Плотность, кг/м ³	1,204	4,064	-24%/+25 %	1,204	4,2703	-46%/+48 %	
Давление торможения P ₀ , МПа	15,38	11,00	+2%/-7%	15,38	9,32	-1%/-8%	
Скоростной напор, МПа	1,13	2,77	-17%/+13 %	1,13	2,69	-36%/+20 %	
Скорость, м/с	1372,9	1167,0	+4%/-5%	1372,9	1123,1	+9%/-10 %	
Число Маха, М	4,00 2,51		+9%/-11%	4,00	2,37	+18%/-20 %	
Массовый расход G, кг/с	1,7113	1,6925	-20%/+20%	1,6918	1,6271	-37%/+40 %	
F_2/F_0	_				-		
P_{2}/P_{0}	6,3953(+13,9 %)			7,2768(+29,5 %)			
T_{2}/T_{0}	1,861(+10,7 %)			2,066(+22,9 %)			
P_{02}/P_{0}	0,715(-14,1 %)			0,606(-27,2 %)			
G_2/G_0	0,9923(-0,8 %)			0,954(-4,6 %)			
M ₂	2,514(-5,8 %)			2,368(2,368(-11,3 %)		

Влияние изменения числа Маха. Рассматривается изменение характеристик базового воздухозаборника из шести V-образных секторов, геометрия которого рассчитана на число Маха набегающего потока M = 4, при его обтекании потоком с меньшим значением числа Маха (вариант 10, M = 3) и с большим значением числа Маха (вариант 11, M = 6). В обоих случаях сравнение производится также с характеристиками расчетных воздухозаборников, конфигурация которых соответствует рассматриваемому значению числа Маха. Вязкость воздуха не учитывалась. Типичные картины течения по результатом расчетов показаны на рис. 9 в виде изохор. Заметим, что поскольку рассматривается угол атаки $\alpha = 0$, то представленные картины течения соответствуют каждому из шести секторов воздухозаборника.

Как показывают результаты расчетов, при M = 3 скачок от первого клина базового воздухозаборника проходит перед обечайкой, поэтому коэффициент расхода $\varphi = G_2/G_0$ уменьшается на 12 %. Расчетный воздухозаборник для M = 3 имеет увеличенное значение площади горла (на 24 %) и, соответственно, меньшее значение геометрического сжатия. Из-за этого число Маха в горле расчетного воздухозаборника увеличивается на 17 %, а потери полного давления уменьшаются на 11 %. Вследствие меньшего торможения

Рис. 8. Изохоры течения. Варианты: 8 (без вязкости), 9 (с учетом вязкости).

Рис. 9. Изохоры течения базового воздухозаборника. Варианты: 10 (M = 3), 8 (M = 4), 11 (M = 6).

статическое давление в расчетном воздухозаборнике на 57 % меньше, чем у базового воздухозаборника, рассчитанного на M = 4.

При M = 6 скачок от первого клина заходит под обечайку и расход в базовом (M = 4) и в расчетном (M = 6) воздухозаборниках практически одинаков. Но теперь площадь горла базового воздухозаборника на 55 % больше, чем у расчетного, поэтому число Маха здесь на 10 % больше. Вследствие этого падение полного давления в базовом воздухозаборнике на 14 % больше, а прирост статического давления на 41 % меньше, чем в расчетном воздухозаборнике для M = 6.

Влияние угла атаки. Одной из серьезных проблем для конструкции любого воздухозаборника является изменение его рабочих характеристик при изменении угла атаки летательного аппарата. В настоящей работе численно исследовались характеристики шестисекторного базового воздухозаборника под углами атаки $\alpha = 0^{\circ}$ (вариант 8), 5° (вариант 12), 10° (вариант 13) при M = 4. В этом случае в каждом из секторов формируется своя картина течения и параметры потока будут различны в каждом из секторов. Типичная картина распределения плотности в верхнем и нижнем секторе при обтекании воздухозаборника под углами атаки показана на рис. 10.

В данном случае в табл. 6 для вариантов 12 и 13 указаны параметры потока, полученные как среднее арифметическое из осредненных параметров по сечению горла каждого из секторов. Сравнение результатов расчета показывает, что при увеличении угла атаки на 5 и 10° среднее арифметическое число Маха в тракте воздухозаборника уменьшается на 8 % и 14 %, полное давление уменьшается на 18 % и 31 %, а статическое давление возрастает на 15 % и 34 % соответственно. Расход воздуха через воздухозаборник в целом уменьшается незначительно (на 1,3 % и 4,6 %).

В табл. 6 приведены также отклонения от среднего значения для верхнего и нижнего секторов относительно $\alpha = 0$, которые характеризуют равномерность параметра вследствие изменения угла атаки. Как показывают эти результаты, наблюдается существенная неравномерность распределения параметров потока по различным секторам. Например, по числу Маха имеем отклонения +18 % и -20 % соответственно в верхнем и нижнем секторах, по массовому расходу -37 % и +40 % соответственно.

Рис. 10. Изохоры течения. Варианты: 8 ($\alpha = 0^{\circ}$), 12 ($\alpha = 5^{\circ}$), 13 ($\alpha = 10^{\circ}$).

Заключение

1. Предложена методика построения цилиндрических воздухозаборников для высоких скоростей полета с использованием V-образных тел, формирующих плоское течение с начальным косым скачком уплотнения.

2. С использованием простых аналитических соотношений для косых скачков уплотнения получены характеристики V-образных воздухозаборников на расчетных режимах работы в широком диапазоне определяющих параметров: углов наклона первого клина сжатия от $\theta = 0^{\circ}$ до 30° и чисел Маха набегающего потока от M = 2 до 10.

3. Численными методами получены характеристики типичного цилиндрического воздухозаборника с углом переднего клина $\theta = 10^{\circ}$, рассчитанного на M = 4, при различных отклонениях от расчетного режима обтекания: за счет влияния вязкости течения, за счет изменения числа Маха набегающего потока, за счет изменения угла атаки.

Список литературы

- 1. Майкапар Г.И., Келдыш В.В. Газодинамическое конструирование гиперзвуковых самолетов // Изв. АН СССР. Механика жидкости и газа. 1969. № 3. С. 177–185.
- **2. Щепановский В.А., Гутов Б.И.** Газодинамическое конструирование сверхзвуковых воздухозаборников. Новосибирск: Наука, 1993. 228 с.
- **3.** Гутов Б.И., Затолока В.В. Конвергентные входные диффузоры с начальным скачком и дополни-тельным внешним сжатием // Аэрофизические исследования: сб. трудов. Новосибирск: ИТПМ СО АН СССР, 1973. Вып. 2. С. 64–66.
- 4. Гутов Б.И., Затолока В.В. О классе конвергентных воздухозаборников с плоскими стенками и стреловидностью переднего и заднего участков кромки воздухозаборников // Физическая газодинамика (Аэрофизические исследования): сб. трудов. Вып. 6. Новосибирск: ИТПМ СО АН СССР, 1976. С. 57–61.
- 5. Гунько Ю.П., Затолока В.В., Юдинцев Ю.Н. О классе форм гиперзвуковых летательных аппаратов с конвергентными воздухозаборниками, построенных из пространственных комбинаций V-образных тел // Исследования по гиперзвуковой аэродинамике: сб. трудов. Новосибирск: ИТПМ СО АН СССР, 1978. С. 68–84.
- 6. Блохин А.М., Ветлуцкая Л.М., Гутов Б.И., Долгов В.Н., Затолока В.В., Шумский В.В. Конвергентные входные диффузоры и осесимметричные сверхзвуковые конические течения Буземана // Аэрофизические исследования: сб. науч. тр. Новосибирск: ИТПМ СО АН СССР, 1976.
- 7. Molder S., Romeskie J.M. Modular hypersonic inlets with conical flow // AGARD CP. 1968. No. 30.
- 8. Nonweiler T.R. Aerodynamics problems of manned space vehicles // J. of the RAS. 1959. Vol. 63, No. 585.

- **9. Майкапар Г.И.** О волновом сопротивлении неосесимметричных тел в сверхзвуковом потоке // ПММ. 1959. Т. XXIII, вып. 2. С. 376–378.
- Келдыш В.В. Тела с протоком, обтекаемые с плоским и коническим скачком уплотнения // Инженерный журнал. 1964. Т. IV, вып. 3. С. 539–542.
- 11. Гунько Ю.П. Газодинамическое конструирование аэродинамических конфигураций с конвергентными поверхностями сжатия и воздухозаборниками // Математическое моделирование, аэродинамика и физическая газодинамика. Новосибирск: ИТПМ СО АН СССР, 1995. С. 133–142.
- 12. Пат. 2343297 РФ, МПК51 F02C7/047, B64D33/02. Сверхзвуковой воздухозаборник / Ю.П. Гунько. № 2007115507/06; заявл. 24.04.2007; опубл. 10.01.2009, Бюл. № 30. 2008. С. 470.
- Гунько Ю.П., Александров Е.А. Расчетное газодинамическое моделирование сверхзвукового трехмерного воздухозаборника // Теплофизика и аэромеханика. 2010. Т. 17. № 1. С 63–75.
- 14. Гунько Ю.П., Мажуль И.И. Построение сверхзвуковых трехмерных воздухозаборников с использованием плоского изоэнтропического течения сжатия // Теплофизика и аэромеханика. 2011. Т. 18. № 1. С. 95–108.
- 15. Гутов Б.И., Затолока В.В. Испытания модели конвергентного воздухозаборника с расчетным числом Маха 4 в диапазоне чисел Маха и углов атаки // Вопросы газодинамики (Аэрофизические исследования). Новосибирск: ИТПМ СО АН СССР, 1975. Вып. 5. С. 231–233.
- 16. Затолока В.В., Кисель Г.А. Испытания гиперзвукового конвергентного воздухозаборника при М = 1,75–6 // Вопросы газодинамики (Аэрофизические исследования). Новосибирск: ИТПМ СО АН СССР, 1975. Вып. 5. С. 236–238.
- 17. Гутов Б.И., Затолока В.В., Кисель Г.А. Испытания конвергентного входного диффузора под углами атаки 0–12° при числах Маха 8,4 и 11 // Вопросы газодинамики (Аэрофизические исследования). Новосибирск: ИТПМ СО АН СССР, 1975. Вып. 5. С. 228–230.
- 18. Гутов Б.И., Затолока В.В. Расчетное и экспериментальное исследование новых конфигураций конвергентных воздухозаборников с пространственными комбинациями течений. Новосибирск, 1983. (Препринт / ИТПМ СО АН СССР № 30–83. 53 с.)
- 19. Гольдфельд М.А. Экспериментальные исследования пространственных воздухозаборников для больших сверхзвуковых скоростей полета. Новосибирск, 1992. (Препринт / ИТПМ СО РАН. № 13-92. 56 с.)
- 20. Мажуль И.И., Щербик Д.В. Интегральные тепловые потоки к поверхностям гиперзвуковых воздухозаборников // Теплофизика и аэромеханика. 2001. Т. 8, № 2. С. 219–235.

Статья поступила в редакцию 7 февраля 2012 г.