CRYSTAL STRUCTURES OF 2-FERROCENYLMETHYLIDENEHYDRAZONO-1,3-DITHIANE AND 2-FERROCENYLMETHYLIDENEHYDRAZONO-1,3-DITHIEPANE

P. Wu
Department of Chemistry, Dezhou College, Shandong; Key Laboratory of Coordination Chemistry and Functional Materials at Universities of Shandong P. R. China
E-mail: Pingwu.dzu@gmail.com

Received November, 29, 2012
Revised January, 18, 2013

Abstract

Two compounds of 2-ferrocenylmethylidenehydrazono-1,3-dithiane (1) and 2-ferrocenylmethyl-idenehydrazono-1,3-dithiepane (2) are synthesized and their single crystal structures are determined by the X-ray diffraction method. Compound 1 belongs to the orthorhombic $P c a 2_{1}$ space group with the cell parameters: $a=13.989(4) \AA, b=5.785(2) \AA, c=18.231(5) \AA$, $V=1475.4(7) \AA^{3}$; while compound $\mathbf{2}$ crystallizes in a monoclinic symmetry, $P 2_{1} / c$ space group with $a=15.320(2) \AA, b=5.8028(6) \AA, c=36.584(4) \AA, \beta=91.932(1)^{\circ}$ and $V=3250.4(6) \AA^{3}$.

Keywords: X-ray diffraction, dithiane, dithiepane, ferrocenyl.
Ferrocene and its derivatives have attracted vast interest in pharmaceutical, materials and coordination chemistries [1-5]. A ferrocenyl version of tamoxifen was synthesized in 2003, and it can bind to the estrogen binding sites, resulting in a cytotoxicity effect [$1-3$]. The decomposition of ferrocene into iron nanoparticles allows it to be used as a catalyst for the production of carbon nanotubes [4]. Chiral ferrocenyl phosphines are often employed as ligands for metal-catalyzed reactions: a typical example is $1,1^{\prime}$-bis(diphenylphosphino)ferrocene for Pd-coupling reactions [5]. Besides, 2-hydra-zono-1,3-dithiolcycloalkanes are also found to be biologically active compounds. An example for its Schiff base is Yekuline that has biological activities on E. coli and streptococcus [6]. Since we have continuous interest in ferrocene chemistry [7], 2-hydrazono-1,3-dithiane and 2-hydrazono-1,3dithiepane is used to react with ferrocenecarboxaldehyde, giving 2 -ferrocenylmethylidenehydrazono1,3 -dithiane and 2 -ferrocenylmethylidenehydrazono-1,3-dithiepane respectively. The single crystals of both compounds are obtained and their X-ray crystal structures are revealed.

EXPERIMENTAL

2-hydrazono-1,3-dithiane and 2-hydrazono-1,3-dithiepane are synthesized according to the previously reported methods [8]. The reaction of 2-hydrazono-1,3-dithiane or 2-hydrazono-1,3-dithiepane with ferrocenecarboxaldehyde gives 2 -ferrocenylmethylidenehydrazono-1,3-dithiane and 2-ferrocenyl-methylidenehydrazono-1,3-dithiepane, as shown below.

To a solution of ferrocenecarboxaldehyde (5.0 mmol) with 2-hydrazono-1,3-dithiane (5.0 mmol) or 2-hydrazono-1,3-dithiepane (5.0 mmol) in 30 ml of ethanol, a few drops of HCl (conc.) were added. This solution was stirred at room temperature overnight before refluxing for 6 h with the formation of precipitates. This solution was concentrated to its half volume and cooled in a freezer overnight. The dark red crude product was obtained by filtration, which was recrystallized from ethanol to give pure orange solids. Dichloromethane was used to dissolve the pure products, which were slowly evaporated

Scheme 1. Synthesis of 2-ferrocenylmethylidenehydrazono-1,3-dithiane (1) and
2-ferrocenylmethylidenehydrazono-1,3-dithiepane (2)
at room temperature to form the desired single crystals solid in whole. Characteristic data for compound 1: IR (KBr): $3075 \mathrm{~cm}^{-1}, 1568 \mathrm{~cm}^{-1}, 1456 \mathrm{~cm}^{-1}, 1089 \mathrm{~cm}^{-1}, 1008 \mathrm{~cm}^{-1}, 900 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FeN}_{2} \mathrm{~S}_{2}$: C, 52.33; H, 4.68; N, 8.14. Found: C, $52.42 ; \mathrm{H}, 4.65 ; \mathrm{N}, 8.12$. For compound 2 IR (KBr): $3080 \mathrm{~cm}^{-1}, 1589 \mathrm{~cm}^{-1}, 1469 \mathrm{~cm}^{-1}, 1102 \mathrm{~cm}^{-1}, 995 \mathrm{~cm}^{-1}, 886 \mathrm{~cm}^{-1}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{FeN}_{2} \mathrm{~S}_{2}$: C, 53.63; H, 5.06; N, 7.82. Found: C, 53.70; H, 5.02; N, 7.79.

Table 1
Crystal data and structure refinement for both compounds

Formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FeN}_{2} \mathrm{~S}_{2}$ (1)	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{~S}_{4}(\mathbf{2})$
M_{r}	344.27	716.59
Crystal system	Orthorhombic	Monoclinic
Space group	Pca 2_{1}	$P 21 / c$
a, b, c, \AA	13.989(4), 5.785(2), 18.231(5)	15.320(2), 5.8028(6), 36.584(4)
α, β, γ, deg.	90, 90, 90	90, 91.932(1), 90
$T, \mathrm{~K}$	296(2)	293(2)
V, \AA^{3}	1475.4(7)	3250.4(6)
Z	4	4
$\rho_{\text {calc, }}, \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.550	1.464
μ, mm^{-1}	1.295	1.179
$F(000)$	712	1488
θ range, deg.	2.23-25.00	1.76-25.10
Radiation type λ, \AA	0.71073	0.71073
Index ranges h, k, l	-16/16, -6/6, -21/21	-18/18, -6/6, -43/39
$R_{\text {int }}$	0.0835	0.0362
Parameter refined	2586	5763
Refinement parameters / restrictions	181 / 1	426 / 12
Reflections with $I>2 \sigma(I)$	2229	4620
GOOF	1.032	1.040
Final R factor [$I>2 \sigma(I)$]	$R_{1}=0.0432, w R_{2}=0.1083$	$R_{1}=0.0426, w R_{2}=0.0979$
R factor (all data)	$R_{1}=0.0533, w R_{2}=0.1144$	$R_{1}=0.0561, w R_{2}=0.1058$
$\Delta \rho_{\text {max }} / \Delta \rho_{\text {min }}, \mathrm{e} / \AA^{3}$	0.447 / -0.335	0.874 / -0.409

[^0]Table 2

Selected geometric parameters (\AA, deg.)
for compound 1

C6-N1	$1.258(6)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 14$	$113.6(4)$
$\mathrm{C} 14-\mathrm{S} 1$	$1.760(6)$	$\mathrm{S} 1-\mathrm{C} 14-\mathrm{S} 2$	$123.4(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.412(6)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{N} 2$	$111.4(4)$
$\mathrm{C} 14-\mathrm{S} 2$	$1.761(6)$	$\mathrm{N} 2-\mathrm{C} 14-\mathrm{S} 2$	$122.4(4)$
$\mathrm{N} 2-\mathrm{C} 14$	$1.285(7)$	$\mathrm{C} 11-\mathrm{C} 6-\mathrm{N} 1$	$123.9(5)$
		$\mathrm{N} 2-\mathrm{C} 14-\mathrm{S} 1$	$113.6(4)$
		$\mathrm{C} 14-\mathrm{S} 2-\mathrm{C} 5$	$107.6(3)$

2
Selected geometric parameters (\AA, deg.)

C26-C27	1.453(5)	C27-N3-N4	114.0(3)
N4-C28	1.281(4)	N4-C28-S4	121.5(3)
S3-C32	1.802(4)	N3-N4-C28	113.9(3)
C27-N3	1.267(4)	S3-C28-S4	122.8(2)
C28-S3	1.758(3)	C26-C27-N3	121.9(3)
S4-C29	1.798(4)	N4-C28-S3	115.5(3)
N3-N4	1.409(4)		
C28-S4	1.750(3)		

IR and elemental analysis. FT-IR spectra were recorded in the range $400-4000 \mathrm{~cm}^{-1}$ on a Bruker Vector22 FT-IR spectrophotometer using KBr pellets. Elemental analyses for C, H and N were performed on a Perkin-Elmer 240C Elemental Analyzer.

X-ray crystallography. The crystallographic data were collected on a Bruker Smart Apex II CCD area-detector diffractometer with graphite-monochromated $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA$ A $)$ at 293(2) K and 296(2) K using the ω-scan technique. The diffraction data were integrated using the SAINT program [9], which was also used for the intensity corrections for the Lorentz and polarization effects. Semi-empirical absorption correction was applied using the SADABS program [10]. The structures were solved by direct methods and all the non-hydrogen atoms were refined anisotropically on F^{2} by the full-matrix least-squares technique using the SHELXL-97 crystallographic software package [11]. The $\mathrm{N} 2, \mathrm{C} 12, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14, \mathrm{C} 15$, and C 16 atoms in compound 2 are disordered over two positions. The site occupancy factor of N 2 is 0.46 and 0.54 , those of $\mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14$, $\mathrm{C} 15, \mathrm{~S} 1$, and S 2 are 0.5 and 0.5 , and of C 16 are 0.62 and 0.38 respectively. Hydrogen atoms were generated geometrically. Details of the crystal parameters are summarized in Table 1. Selected bond lengths and angles are listed in Tables 2 and 3 respectively.

RESULTS AND DISCUSSION

As displayed in Fig. 1, titled compound 1 crystallized in the orthorhombic crystal system and a $P c a 2_{1}$ space group.

For the ferrocenyl moiety, the distance from $\mathrm{Fe}(\mathrm{II})$ to the center of the substituted cyclopentadiene ring $\left(C_{p s}\right)$ is $1.654(5) \AA$, while the distance of $1.376(2) \AA$ is for the unsubstituted one $\left(C_{p}\right)$. The $C_{p s}-\mathrm{Fe}-\mathrm{C}_{p}$ bond angle is $173.65(8) \AA$, which means that central $\mathrm{Fe}(\mathrm{II})$ locates almost in the middle of the two cyclopentadiene rings. Besides, two cyclopentadiene rings are not parallel to each other with a slight dihedral angle to be only $1.37(3) \AA$.

The C6-N1, N1-N2, and C14-N2 bond distances are measured to be $1.258(6) \AA, 1.412(6) \AA$ and $1.285(7) \AA$, indicating that $\mathrm{C} 6=\mathrm{N} 1$ and $\mathrm{C} 14=\mathrm{N} 2$ are double bonds while $\mathrm{N} 1-\mathrm{N} 2$ is a single bond.

Fig. 1. Molecular structure of compound $\mathbf{1}$ with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Table 4
Hydrogen bonding geometry for compound $\mathbf{1}(\AA$, deg.)

Entry	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	Symmetry Codes
1	$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{~S} 1^{\prime}$	0.98	2.99	$3.827(2)$	142	
2	$\mathrm{C} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~N} 2^{\prime}$	0.97	2.56	$3.501(9)$	164	$x, 1+y, z$
3	$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{~S} 1^{\prime}$	0.98	2.87	$3.762(6)$	152	$3 / 2-x, y,-1 / 2+z$

Although no intramolecular hydrogen bonds are revealed for compound 1, three intermolecular hydrogen bonds are found, as collected in Table 4. A one-dimesional zigzag chain can be constructed by $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~S} 1^{\prime}$, as shown in Fig. 2. The $\mathrm{C} 4-\mathrm{H} 4, \mathrm{H} 4 \cdots \mathrm{~S} 1^{\prime}$, and $\mathrm{C} 4 \cdots \mathrm{~S} 1^{\prime}$ bond lengths are $0.98 \AA$, $2.99 \AA$, and $3.827(2) \AA$ respectively, while the bond angle is 142°. The other two intermolecular hydrogen bonds $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~N} 2^{\prime}$ and $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~S} 1^{\prime}$ are used to form a two-dimensional network, as drawn in Fig. 2. The corresponding bond distances for $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}, \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~N} 2^{\prime}, \mathrm{C} 5 \cdots \mathrm{~N} 2^{\prime}$ and $\mathrm{C} 9-\mathrm{H} 9$, $\mathrm{H} 9 \cdots \mathrm{~S} 1^{\prime}, \mathrm{C} 9 \cdots \mathrm{~S} 1^{\prime}$ are found to be $0.97 \AA, 2.56 \AA, 3.501(9) \AA$ and $0.98 \AA, 2.87 \AA, 3.762(6) \AA$. The bond angles are 164° and 152° respectively.

As for compound 2, Fig. 3 gives the crystallized structure with a monoclinic crystal system and a $P 2_{1} / c$ space group. Similar values were found for the ferrocenyl moiety; $C_{p s}-\mathrm{Fe}$ and $C_{p}-\mathrm{Fe}$ are $1.650 \AA$ and $1.651 \AA$ respectively. The $C_{p s}-\mathrm{Fe}-\mathrm{C}_{p}$ bond angle is $178.72(1)^{\circ}$, and the dihedral angle

Fig. 2. Two-dimensional network of compound 1 organized by two intermolecular C5-H5A $\cdots \mathrm{N} 2^{\prime}$ and $\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~S} 1^{\prime}$ hydrogen bonds

Fig. 3. Molecular structure of compound 2 with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
between two cyclopentadienes is $2.10(6)^{\circ}$. Due to the disorders of compound 2, the one-dimensional zigzag chain and a two-dimensional network cannot be constructed.

Supplementary material. CIF file containing complete information on the studied structure was deposited with CCDC, deposition numbers 910724 and 910725 , and is freely available upon request from the following web site: http://www.ccdc.cam.ac.uk/data_request/cif.

We thank the Natural Science Foundation of Shandong Province of China (No. ZR2009BL004) for their financial support.

REFERENCES

1. Top S., Vessières A., Leclercq G., Quivy J., Tang J., Vaissermann J., Huché M., Jaouen G. // Chem. - Eur. J. - 2003. - 9. - P. 5223.
2. Dagani R. C\&EN. - 2002. - 80. - P. 23.
3. Top S., Dauer B., Vaissermann J., Jaouen G. // J. Organomet. Chem. - 1997. - 541. - P. 355.
4. Conroya D., Moisalab A., Cardosoa S., Windleb A., Davidson J. // Chem. Eng. Sci. - 2010. - 65. - P. 2965.
5. Nataro C., Fosbenner S.M. // J. Chem. Ed. - 2009. - 86. - P. 1412.
6. (a) Addor R.W. // J. Org. Chem. - 1964. - 29. - P. 738. (b) Chen H.C., Luo J., Cao H.M., Gu J.D. // Pesticides. - 2002. - 43. - P. 10. (c) Li F.-X., Liu T.X., Huang Y.-S., Wand G.-W. // J. Org. Chem. - 2009. - 74. - P. 7743. (d) Huang Y.-S., Taylor L., Chen X., Ayres N. // J. Polym. Sci. A Polym. Chem. - 2013. - 51. - P. 5230. (e) Yang X., Li J., Wen T., Ren X., Huang Y., Wang X. // Colloids Surf. A Physicochem. Eng. Asp. - 2013. - 422. - P. 118.
7. (a) $W u P$. // J. Struct. Chem. - 2013. - 54. - P. 983. (b) $W u P . / / ~ J . ~ S t r u c t . ~ C h e m . ~-~ 2014 . ~-~ 55 . ~-~ P . ~ C 143 . ~$ (c) Wu P., Truong J., Huang Y., Li J. // J. Theor. Comput. Chem. - 2013. - 12. - P. 1350064. (d) Wu P., Chen X., Li J., Huang Y. // Comput. Theor. Chem. - 2014. - 1030. - P. 67.
8. (a) Sato M., Kono H., Shiga M., Motoyama I. // Bull. Chem. Soc. Jpn. - 1968. - 41. - P. 252. (b) Chen H.C., Pu J., Wang Y., Gong Q.X. // Pesticides. - 2000. - 39. - P. 18.
9. SAINT, version 6.02a; Bruker AXS Inc.: Madison, WI, 2002.
10. Sheldrick G.M. SADABS, Program for Bruker Area Detector Absorption Correction. - Germany, University of Göttingen, 1997.
11. (a) Sheldrick G.M. SHELXS-97, Program for Crystal Structure Solution. - Germany, University of Göttingen, 1997. (b) Sheldrick G.M. SHELXL-97, Program for Crystal Structure Refinement. - Germany, University of Göttingen, 1997.

[^0]: ${ }^{a} R_{1}=\sum| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{0}\right|$.
 ${ }^{b} w R_{2}=\left|\sum w\left(\left|F_{0}\right|^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)\right| / \sum\left|w\left(F_{0}\right)^{2}\right|^{1 / 2}$, where $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right] . \quad P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$.

