УДК 532. 529

ОБРАЗОВАНИЕ ВТОРИЧНЫХ КАПЕЛЬ ПРИ УДАРНОМ ВЗАИМОДЕЙСТВИИ КАПЛИ С ПОВЕРХНОСТЬЮ ЖИДКОСТИ

В. А. Архипов, В. Ф. Трофимов

Научно-исследовательский институт прикладной математики и механики при Томском государственном университете, 634050 Томск E-mail: leva@niipmm.tsu.ru

Представлены результаты экспериментального исследования процесса образования вторичных капель при ударном взаимодействии капли с поверхностью жидкости. Экспериментальные данные проанализированы совместно с аналитическими оценками параметров образующихся при этом каверны и столбика Рэлея.

Ключевые слова: поверхность жидкости, капля, вторичные капли.

Взаимодействие падающей капли с поверхностью жидкости является одной из классических задач гидродинамики, которая в течение многих лет привлекает внимание исследователей [1–9]. Обзоры по данной проблеме представлены в [5, 8]. Основная часть опубликованных работ связана с экспериментальным исследованием качественной картины процесса взаимодействия [1–7], результаты численного решения задачи о схлопывании каверны в рамках модели идеальной жидкости рассмотрены в [8, 9].

Физика процесса ударного взаимодействия капли с поверхностью жидкости представляет интерес при решении ряда прикладных задач, таких как оценка глубины кратера, образующегося за счет кумулятивного эффекта при столкновении микрометеоритов с корпусом космического аппарата [6, 10], определение параметров акустических подводных шумов при падении дождевых капель на морскую поверхность [7, 9] и т. д. В частности, одной из важных экологических задач является прогнозирование топологии и динамики распространения капель токсичных компонентов, образующихся при выпадении атмосферных осадков на поверхность бассейнов-отстойников, расположенных на ряде предприятий химической, атомной и других отраслей промышленности [11]. Для решения этой задачи необходимо знать количественные характеристики массообмена и параметры вторичных капель, образующихся при соударении капель осадков с поверхностью жидкости.

В настоящей работе представлены результаты экспериментального исследования и аналитические оценки количественных характеристик массообмена при образовании вторичных капель разной дисперсности в результате ударного взаимодействия капли с поверхностью жидкости.

Экспериментальная установка и методика исследования. Исследование проводилось на установке, состоящей из генератора монодисперсных капель, системы визуализации процесса взаимодействия падающей капли с поверхностью жидкости, а также системы измерения параметров падающей капли перед соударением [12]. Блок-схема экспериментальной установки представлена на рис. 1.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 02-01-01246) и Министерства образования РФ (код проекта E02-12.3-108).

Рис. 1. Блок-схема экспериментальной установки по исследованию процесса соударения капель с поверхностью жидкости

Жидкость из напорного резервуара 1 подается в капилляр 2 через микрометрический регулятор расхода 3, который позволяет изменять скорость каплеобразования. Напорный резервуар, регулятор расхода и капилляр укреплены на штативе, регулирующем высоту падения капель в диапазоне $h = 0.07 \div 2.5$ м. Капля, образующаяся на полированном торце капилляра, падает в резервуар 4 размером $0.1 \times 0.1 \times 0.07$ м, склеенный из оптических плоскопараллельных пластин. Оптическая прозрачность стенок резервуара позволяет визуализировать и регистрировать процесс взаимодействия падающей капли с поверхностью и объемом жидкости, находящейся в резервуаре 4. Процесс взаимодействия регистрируется цифровой видеокамерой "NV-DA1EG" либо зеркальным фотоаппаратом "Зенит – TTL" 5, снабженным электроспуском 6. Электроспуск приводится в действие от сигнала, поступающего с усилителя 7. Сигнал управления электроспуском образуется при пересечении падающей каплей верхнего луча лазера 8, направленного на фотоприемник 9, затем сигнал проходит блок задержки 10, позволяющий синхронизировать процесс взаимодействия капли с жидкостью с моментом открытия затвора фотоаппарата. Варьирование времени задержки срабатывания затвора в диапазоне 0,1 ÷ 1000 мс позволяет регистрировать различные стадии процесса взаимодействия. Съемка проводилась в лучах проходящего света от источника 11, в качестве которого использовалась лампа-вспышка либо фотолампа непрерывного действия. Свет от источника 11 рассеивается на матовом экране 12, который позволяет менять интенсивность подсветки. При юстировке оптической системы установки ось видеокамеры или фотоаппарата находилась в плоскости поверхности жидкости, что обеспечивало возможность регистрации процессов, происходящих как ниже поверхности жидкости, так и выше ее.

Для определения количества и параметров движущихся над поверхностью жидкости вторичных осколков, образующихся при падении первичной капли под углом 45° к плоскости поверхности жидкости, устанавливалась вторая аналоговая видеокамера типа "Panasonik RX3" (на рисунке не показана), позволяющая регистрировать в поле съемки все пространство над точкой соударения капли с поверхностью и восстанавливать пространственную картину взаимодействия.

Скорость падения капли измерялась времяпролетным методом. Система измерения скорости капли состоит из лазера непрерывного излучения 8 типа ЛГ-76, светоделительных пластин 15, фотоприемников 9, усилителя-формирователя сигнала 13 и двухлучевого запоминающего осциллографа типа C8-17 (14). Пластины 15 делят лазерный луч, образуя

_				
$d, \ mm$	Расчет	Весовой метод	Визуальный метод	k
$3,\!55$	$5,\!4$	5,03	$5,\!0$	0,81
2,20	4,6	$4,\!32$	$4,\!3$	0,83
$1,\!60$	4,1	3,94	4,0	0,86
1,05	3,6	$3,\!66$	3,7	1,05

при этом изменяемое базовое расстояние, необходимое для измерения скорости падения капли. Пересечение падающей каплей лазерных лучей дает два сигнала, первый из которых запускает электроспуск фотоаппарата и систему запоминания осциллографа. Зная расстояние между лазерными лучами и определяя по осциллографу время между двумя сигналами, можно определить скорость падения капли с относительной погрешностью 5 %.

В экспериментах использовался генератор монодисперсных капель с четырьмя сменными капиллярами из нержавеющей стали с полированными торцами. Размер генерируемых капель определялся весовым и визуальным методами. В весовом методе на аналитических весах определялась масса 100 капель с дальнейшим расчетом их диаметра. В визуальном методе для определения линейных размеров падающей капли, а также геометрических масштабов протекающих процессов в поле съемки в плоскости падения капли устанавливался репер (стальной шарик диаметром 4 мм). Измерение размеров падающей капли и других линейных размеров процесса определялось относительно размера репера с фильмоносителя либо с экрана телевизора. Погрешность весового метода составляла 0,5 %, а погрешность визуального метода — 5 %, темп съемки — 24 кадр/с.

Для приближенной оценки размера исходных капель использовалась формула, выведенная из условия баланса сил тяжести и поверхностного натяжения в момент отрыва капли от капилляра,

$$D = \left(\frac{\sigma kd}{\rho g}\right)^{1/3}.$$
(1)

Здесь D — диаметр образующейся капли; σ — коэффициент поверхностного натяжения жидкости; d — диаметр капилляра; ρ — плотность жидкости; g — ускорение свободного падения; k — коэффициент, учитывающий сужение перешейка при образовании капли.

Размеры капилляров и образующихся капель дистиллированной воды ($\rho = 10^3 \text{ кг/м}^3$; $\sigma = 72,53 \cdot 10^{-3} \text{ H/M}$) приведены в табл. 1. При $k = (D_{3\text{ксп}}/D_{\text{расч}})^3$ погрешность определения диаметра капель по формуле (1) не превышает 3 %.

Результаты исследования. Анализ размерностей показывает, что рассматриваемая задача (в случае сферической первичной капли) полностью характеризуется тремя критериями подобия — числами Рейнольдса, Вебера и Фруда:

$$\operatorname{Re} = \frac{\rho u D}{\mu}, \qquad \operatorname{We} = \frac{\rho u^2 D}{\sigma}, \qquad \operatorname{Fr} = \frac{u^2}{gD},$$

где *u* — скорость взаимодействия (скорость капли в момент столкновения с поверхностью жидкости); *µ* — вязкость жидкости; *ρ* — плотность жидкости.

В настоящей работе в качестве модельной жидкости использовалась дистиллированная вода ($\mu = 10^{-3} \text{ Па} \cdot \text{с}$), поэтому влияние числа Рейнольдса несущественно ($\text{Re} \approx 10^4$). В зависимости от значений критериев We и Fr можно выделить три качественно различных сценария процесса [6]. В координатах We, Fr границы, разделяющие эти режимы,

T	1
гаолица	1

Рис. 2. Границы, разделяющие области режимов взаимодействия капли с поверхностью жидкости

можно представить в виде критериальных соотношений [8], полученных обработкой экспериментальных данных [6]:

$$We_1 = 48.3 \cdot Fr^{0,247}$$
 для верхней границы,
 $We_2 = 41.3 \cdot Fr^{0,179}$ для нижней границы. (2)

В координатах u, D области с разным режимом взаимодействия иллюстрируются графиком (рис. 2), где 1 — зависимость максимальной (установившейся) скорости гравитационного осаждения капли воды в воздухе от ее диаметра; 2, 3 — верхняя и нижняя границы, соответствующие соотношениям (2).

При малых скоростях взаимодействия (область A) происходит слияние падающей капли с жидкостью без образования вторичных капель. В пределах области B (которая достаточно узка́) происходит вовлечение пузыря в жидкость. Отметим, что эта область характеризуется интенсивным захватом пузырьков воздуха жидкостью на дне каверны, что ведет к повышенному акустическому подводному шуму [6, 8]. В области C энергия образующейся каверны достаточно велика и процесс идет с образованием вторичных капель. Зависимость u(D) получена из решения уравнения гравитационного осаждения капли

$$m\frac{du}{dt} = mg - C_D S \frac{\rho u^2}{2},\tag{3}$$

где $S = \pi D^2/4$ — площадь миделева сечения капли; $m = \pi D^3 \rho/6$ — масса капли; C_D — коэффициент сопротивления. Для определения C_D использовалась зависимость Клячко [13]

$$C_D = 24/\operatorname{Re} + 4/\sqrt[3]{\operatorname{Re}}$$

Поскольку наибольший выброс вторичных капель реализуется при больших скоростях взаимодействия, в настоящей работе исследованы характеристики процесса при значениях We > We₁. В экспериментах варьировались размеры исходных диаметров капель $D = 2,8 \div 5,0$ мм, высота падения $h = 0,45 \div 1,73$ м. При этом скорость взаимодействия изменялась в диапазоне $u = 2,8 \div 5,4$ м/с, т. е. значения параметров находились в области С.

Результаты наблюдений показывают, что диаметр дождевых капель может изменяться в пределах от 0,2 до 7 мм [14]. Более крупные капли деформируются и дробятся под действием аэродинамических сил. В табл. 2 приведены экспериментальные и рассчитанные по уравнению (3) значения установившейся скорости падения капель воды в воздухе при атмосферном давлении и температуре 20 °C [14]. Сравнение скоростей взаимодействия,

Таблица 2	2
-----------	---

,	<i>D</i> , мм								
и, м/с	0,1	0,2	0,4	$1,\!0$	2,0	$_{3,0}$	4,0	5,0	6,0
Экспериментальная	0,27	0,72	$1,\!62$	4,03	$4,\!69$	8,06	8,83	9,09	9,18
Расчетная	0,24	$0,\!69$	$1,\!59$	3,88	7,08	8,60	9,93	11,10	$12,\!16$

Таблица З

		H,	MM	2R,	MM	h_p , мм		
<i>h</i> , м	и, м/с	эксп.	расч.	эксп.	расч.	эксп.	расч.	
0,45	$2,\!8$	9	13	23	26	27	46	
0,70	3,6	13	15	22	32	23	61	
0,95	4,1	13	16	26	32	32	70	
1,27	4,6	13	17	28	34	32	81	
1,73	5,4	13	18	31	36	30	93	

приведенных в табл. 3, 4, со скоростями стационарного падения капель соответствующих размеров (см. табл. 2) показывает, что в проведенных экспериментах капли не достигают стационарной скорости и движутся с ускорением.

Анализ результатов экспериментального исследования показывает, что качественная картина процесса существенно зависит от скорости взаимодействия и в некоторых случаях может значительно отличаться от известных сценариев [1–9]. Рассмотрим, в частности, процесс взаимодействия капли диаметром D = 5 мм (см. табл. 3).

Экспериментальные характеристики (глубина каверны H, диаметр 2R, измеренный на уровне поверхности жидкости, высота столбика Рэлея h_p) получены осреднением по десяти идентичным опытам. При значении доверительной вероятности 0,95 относительная погрешность (разброс данных) определения всех линейных размеров процессов, происходящих в воздухе и в объеме воды, не превышает 12–15 % и 5–7 % соответственно.

При падении капли с высоты 0,45 м на поверхности жидкости наблюдается образование небольшого кратера и валика жидкости, которые за время $t \approx 150$ мс преобразуются в столбик Рэлея диаметром $d_p \approx 4$ мм и высотой $h_p \approx 30$ мм. Максимальное отношение высоты столбика к его диаметру $h_p/d_p \approx 7$. При этом за время существования столбика ($t \approx 200$ мс) на его вершине окончательно формируется крупная сферическая капля диаметром $D \approx 6$ мм, которая, отделившись от основания, падает вслед за оседающим столбиком. Дальнейшее развитие, т. е. образование новых каверны и столбика Рэлея, прекращается с падением в каверну этой капли.

При падении капли с высоты h = 1,27 м образуются сферическая каверна диаметром $2R = 27 \div 29$ мм и глубиной $H = 12 \div 14$ мм и корона со стенками, вертикально исходящими из стенок кратера; диаметр короны $d_{\rm k} \approx 30$ мм, ее высота $h_{\rm k} \approx 14$ мм. Верх короны образуют 10–15 вторичных капель диаметром $D \approx 0.5 \div 2$ мм, причем некоторые из них отрываются от короны. Дальнейшее развитие процесса приводит к исчезновению каверны и короны и образованию столбика Рэлея диаметром $d_p = 6 \div 7$ мм и высотой $h_p \approx 30$ мм. Время образования столбика Рэлея составляет $t \approx 80 \div 100$ мс, а время его существования $t \approx 250$ мс. В данном случае, как видно из кинограмм процесса, столбик не успевает разрушиться, происходит его оседание, образованию вторичного столбика Рэлея диаметром $d_p = 1.5 \div 2$ мм и высотой $h_p = 20 \div 30$ мм с последующим распадом его на 3–4 капли диаметром 2–3 мм, т. е. только вторичный столбик Рэлея приводит к образованию вторичных капель.

Таблица 4

D, MM	<i>h</i> , м	и, м/с	H, mm	h_p , мм
2,8	$0,\!45$	2,8	7	23
3,7	$0,\!45$	2,8	8	24
4,0	$0,\!45$	2,8	9	24
4,3	$0,\!45$	2,7	9	24
5,0	$0,\!45$	2,8	9	27
$2,\!8$	$0,\!95$	4,0	9	28
3,7	0,95	4,0	9	29
4,0	$0,\!95$	4,1	10	31
4,3	$0,\!95$	4,0	11	32
5,0	0,95	4,1	13	32

 $\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \left[\end{array} \\ \left[\begin{array}{c} \end{array} \\ \end{array} \\ \left[\end{array} \\$

Рис. 3. Кинограмма процесса соударения капли с поверхностью жидкости (D = 5 мм, h = 1.73 м, u = 5.4 м/с)

При падении капли с высоты 1,73 м (рис. 3) за время $80 \div 100$ мс образуются сферическая каверна диаметром $2R \approx 30$ мм и глубиной $H \approx 13 \div 14$ мм и корона, стремящаяся образовать купол над каверной диаметром $2R \approx 30$ мм и высотой $h \approx 14$ мм с дальнейшим образованием 10–15 вторичных капель диаметром 0,5–2 мм. В некоторых экспериментах купол замыкается, образуя пузырь с высотой купола H. Динамика его развития и исчезновения на данном этапе работ не исследовалась. Дальнейшее развитие процесса приводит к картине, описанной выше (образование каверны и столбика Рэлея и распад последнего).

Результаты экспериментов для капель других размеров и разных высот падения представлены в табл. 4. Отметим, что на начальной стадии процесса в определенном диапазоне изменения критериев подобия происходит формирование воздушного пузыря. При его разрушении образуется большое количество мелкодисперсных капель водного аэрозоля (см., например, рис. 3, моменты времени 22 и 63 мс). Суммарная масса этих капель невелика, однако их вклад в загрязнение окрестности бассейнов-отстойников может быть существенным за счет процессов аэродинамического выноса и турбулентной диффузии. Для оценки дисперсности этих капель целесообразно использовать оптические методы, основанные на решении обратных задач оптики аэрозолей (метод малых углов индикатрисы рассеяния, метод спектральной прозрачности) [15].

Анализ результатов. Для анализа полученных результатов проведем оценку основных характеристик процесса — радиуса каверны R и высоты столбика Рэлея h_p . Предположим, что энергия падающей капли полностью расходуется только на образование в жидкости полусферической каверны радиусом R, которая, в свою очередь, полностью передает полученную от капли энергию на образование столбика Рэлея [3, 7].

Полная энергия капли состоит из кинетической энергии и энергии поверхностного натяжения:

$$E = \pi D^3 \rho u^2 / 12 + \pi D^2 \sigma.$$
 (4)

Работа образования в жидкости полусферической каверны состоит из работы образования ее поверхности и работы по перемещению жидкости в гравитационном поле (против сил Архимеда)

$$A_1 = \pi \sigma R^2 + \pi \rho g R^4 / 4. \tag{5}$$

Приравнивая (4) и (5), получим биквадратное уравнение для R, решение которого дает формулу для расчета радиуса каверны:

$$R = \sqrt{\frac{2}{\rho g}} \left\{ \left[\sigma^2 + \rho g D^2 \left(\sigma + \frac{\rho D u^2}{12} \right) \right]^{1/2} - \sigma \right\}^{1/2}.$$
 (6)

Работа образования столбика Рэлея состоит из работы образования его поверхности и работы по подъему жидкости в гравитационном поле

$$A_2 = \pi d_p h_p \sigma + 0.125 \pi \rho g d_p^2 h_p^2.$$
⁽⁷⁾

Приравнивая (5) и (7), получим квадратное уравнение для произведения $(d_p h_p)$. Решая это уравнение и предполагая, как это следует из проведенных экспериментов, $d_p \approx D/2$, получим формулу для расчета высоты столбика Рэлея

$$h_p = \frac{4}{\rho g D} \Big\{ \Big[\sigma^2 + \frac{\rho g D^2}{2} \Big(\sigma + \frac{\rho D u^2}{12} \Big) \Big]^{1/2} - \sigma \Big\}.$$
 (8)

Результаты расчета R, h_p по формулам (6), (8) для условий проведенных экспериментов представлены в табл. 3. Как следует из результатов измерений, геометрические характеристики каверны и столбика Рэлея изменяются немонотонно с ростом скорости.

С увеличением размеров капель и скорости взаимодействия глубина каверны и высота столбика Рэлея монотонно увеличиваются в рассматриваемом диапазоне изменения параметров (см. табл. 4). При этом $d_p = (0,8 \div 1,2)D$. Из приведенных результатов видно, что расчетные значения H, 2R, h_p довольно значительно отличаются от экспериментальных, так как в расчетах не учитывался расход энергии на образование волн и мелкодисперсных вторичных капель, образующихся в момент разрушения короны. При теоретическом рассмотрении форма каверны считалась полусферической, но на практике она имеет такую форму только в некоторый момент времени, а далее ее форма изменяется.

Выводы. Разработанная методика позволяет проводить экспериментальные исследования характеристик процесса ударного взаимодействия капель с поверхностью жидкости, жидкой пленкой и твердой поверхностью. Анализ результатов исследования процесса столкновения капель с поверхностью жидкости с использованием данной методики показал, что в исследованном диапазоне определяющих параметров реализуется несколько механизмов образования вторичных капель разной дисперсности:

— распад короны с образованием 10–15 капель диаметром от 0,5 до 2 мм;

— распад столбика Рэлея с образованием одной крупной капли диаметром приблизительно 6 мм;

— распад вторичного столбика Рэлея с образованием 3–4 капель диаметром от 2 до 3 мм;

— высота подъема вторичных капель над поверхностью жидкости не превышает 40–60 мм.

ЛИТЕРАТУРА

- Worthington A. M. The splash of a drop and allied phenomena // Proc. Roy. Soc. London. 1882. V. 34. P. 217.
- Mahajan L. D. Liquid drops on the same liquid surface // Nature. 1930. V. 126, N 3185. P. 761–767.
- 3. Engel O. G. Crater depth in fluid impacts // J. Appl. Phys. 1966. V. 37, N 4. P. 1798–1808.
- Hobbs P. V., Kezweeny A. J. Splashing of a water drop // Science. 1967. V. 155, N 3766.
 P. 1112–1114.
- Соловьев А. Д. Слияние капель жидкости при соударениях // Физика облаков и искусственных воздействий: Тр. Центральной аэрологической обсерватории. М., 1969. Вып. 89. С. 3–25.
- Pumphrey H. C., Crum L. A., Bjorno L. Underwater sound produced by individual drop impacts and rainfall // J. Acoust. Soc. Amer. 1989. V. 85. P. 1518–1526.
- 7. Майер В. В. Кумулятивный эффект в простых опытах. М.: Наука, 1989.
- Oguz H. N., Prosperetti A. Bubble entrainment by the impact of drop on liquid surfaces // J. Fluid Mech. 1990. V. 219. P. 143–179.
- 9. Коротков Г. Г. Численный эксперимент в задачах идеальной несжимаемой жидкости со свободными границами: Дис. ... канд. физ.-мат. наук. Кемерово, 2002.
- Лаврентьев М. А., Шабат Б. В. Проблемы гидродинамики и их математические модели. М.: Наука, 1977.
- 11. Архипов В. А., Березиков А. П., Бирюков Ю. А. и др. Исследование загрязнения экосистем радиоактивными отходами в районе открытых бассейнов-отстойников // Тр. Междунар. конф. "Экология Сибири, Дальнего Востока и Арктики", Томск, 5-8 сент. 2001 г. Томск: Международный исследовательский центр по физике окружающей среды и экологии ТНЦ СО РАН, 2001. С. 46.
- 12. **Трофимов В. Ф., Байдюсенов Б. Б., Лим Ю. В., Тельгереков А. В.** Установка для комплексного исследования процесса взаимодействия монодисперсных капель с поверхностью жидкости // Исследования по баллистике и смежным вопросам механики: Сб. науч. тр. Томск: Изд-во Том. ун-та, 2001. Вып. 4. С. 25, 26.
- 13. Клячко Л. С. Уравнение движения пылевых частиц в пылеприемных устройствах // Отопление и вентиляция. 1934. № 4. С. 27–29.
- 14. Тверской П. Н. Курс метеорологии (физика атмосферы). Л.: Гидрометеоиздат, 1962.
- 15. **Архипов В. А.** Лазерные методы диагностики гетерогенных потоков. Томск: Изд-во Том. ун-та, 1987.

Поступила в редакцию 1/X 2003 г., в окончательном варианте — 12/V 2004 г.