УДК 532.525.3

## Применение метода малоуглового рассеяния лазерного излучения при исследовании импульсного распыления жидкостей

### А.Н. Ишматов, И.Р. Ахмадеев\*

Институт проблем химико-энергетических технологий СО РАН 659322, Алтайский край, г. Бийск, ул. Социалистическая, 1

Поступила в редакцию 10.09.2012 г.

Рассмотрены особенности применения метода малоуглового рассеяния лазерного излучения для изучения импульсного формирования аэрозольных сред. Предложена модификация измерительной установки, которая позволяет вести исследования развития облака, смоделированного в лабораторных условиях, практически с момента после его образования.

*Ключевые слова*: метод малоуглового рассеяния лазерного излучения, измерительная установка, импульсное формирование аэрозоля, распыление жидкости; low-angle laser light scattering, measuring system, impulse aerosol formation, liquid atomization.

#### Введение

Изучение формирования аэрозольных сред в результате импульсного воздействия является актуальной задачей и требует использования высокоточных и быстродействующих методов. Все более важным и практически необходимым становится знание динамики рабочих процессов, которые происходят вследствие комплекса воздействующих факторов в условиях высокоскоростного импульсного распыления жидкостей.

Использование метода малоуглового рассеяния лазерного излучения (LALLS) для исследования дисперсных параметров аэрозольных сред при импульсном формировании имеет ряд преимуществ, к которым относятся [1, 2]: широкий диапазон измеряемых значений (при анализе с помощью теории Ми – от 100 нм), высокое быстродействие, слабая чувствительность к показателю преломления материала частиц и возможность динамических измерений. В то же время высокая чувствительность налагает серьезные требования на качество исследуемого образца и вызывает необходимость тщательной калибровки оборудования. Также при прохождении зондирующего лазерного излучения в исследуемом объеме из-за высокой концентрации частиц на начальных этапах импульсного формирования аэрозолей может возникать эффект многократного рассеяния света частицами [1, 3], что приводит к невозможности получения точных данных измерениях.

Цель настоящей работы — оценка возможностей применения метода LALLS для изучения процессов импульсного формирования жидкокапельных сред.

#### Экспериментальная оценка

При проведении натурных экспериментов процесс импульсного распыления моделировался в лабораторных условиях при использовании устройства в виде модифицированной гидродинамической трубки (рис. 1) для распыления малых объемов, также применявшегося в работах [4, 5].



Рис. 1. Схема распылителя [5]: 1 — ограничитель; 2 — выходное отверстие; 3 — жидкость; 4 — корпус; 5 — пиротехнический заряд

В распылителе пиротехнический заряд отделен от жидкости непромокаемой мембраной. За счет резкого скачка давления при сгорании заряда происходит кавитирование жидкости, а сгенерированный газ под давлением поступает в жидкость, газифицируя и вспенивая ее. Далее «подготовленная» жидкость

<sup>\*</sup> Александр Николаевич Ишматов (ishmatoff@rambler. ru); Игорь Радикович Ахмадеев (admin@ipcet.ru).

<sup>©</sup> Ишматов А.Н., Ахмадеев И.Р., 2013

<sup>11.</sup> Оптика атмосферы и океана, № 1.

при высоких скоростях истекает через выходное отверстие. Ограничитель служит для возможности регулирования формы факела распыла и площади выходного сечения [4—6]. Для распыления использовалась дистиллированная вода, масса жидкости для однократного распыла ~ 10 г.

Эксперименты проводились при температуре окружающего воздуха 293 К и относительной влажности 50%. В соответствии с оптимальными условиями [4, 6] распыление проводилось при рабочих давлениях в устройстве ~ 12 МПа и угле раскрытия факела, равном 90°. Скоростная видеосъемка импульсного распыления показала (рис. 2), что факел распыла имеет конусообразную симметричную форму, выброс жидкости из распылителя заканчивается через 3 мс, скорость выброса соответствует ~ 200 м/с, формирование облака происходит за 8 мс.



Рис. 2. Визуализация распыления

Импульсный дисперсный поток можно рассматривать как конусообразное тело вращения, условно разделенное на зоны (рис. 3).



Рис. З. Схема деления потока

С точки зрения конечного результата процесс формирования капель вследствие первичного и вторичного распыления логично рассматривать в одной зоне («дробление») до 0,1 м, поскольку в сильно турбулизованных потоках на расстояниях, превышающих 0,1 м, возникает кризис сопротивления движению частиц дисперсной фазы (сопротивление движению капель в потоке оказывается меньше в 4—7 раз, чем для отдельной капли) [7, 8]. Таким образом, очевидно, что диспергирование жидкости происходит на небольшом расстоянии от сопла.

Проводить исследование дисперсности капель в области «дробление» на данном этапе не имеет смысла, так как в этой области ввиду большой плотности потока не исключена коагуляция капель, их форма может отличаться от сферической, к тому же в потоке могут присутствовать жидкостные структуры, которые продолжают дробиться. Для исследования измерительной установкой [2] по методу LALLS выбиралась область «формирование» (расстояние от сопла 0,15 м) и область «эволюция» (расстояние от сопла 0,3 м).

Установка позволяет вести непрерывные дистанционные бесконтактные измерения дисперсности и концентрации частиц непосредственно в дисперсном потоке [9]. Длина волны излучения лазера составляет 631 нм, диаметр лазерного луча ~ 1,5 мм, мощность лазера ~ 5 мВт. Регистрация интенсивности рассеянного на аэрозольных частицах излучения (индикатрисы рассеяния) проводилась под углами от 0,3 до 20° в плоскости, перпендикулярной лучу лазера, фотодиодной линейкой из 8 элементов, чувствительная площадка каждого из которых составляет 50 мм<sup>2</sup>. Частота записи измеренных данных составляла 100 кГц. Ошибка измерения индикатрисы рассеяния не превышала ± 5% от истинного значения. Длина оптического пути — 1 м.

Зарегистрированный фотодиодами сигнал рассеянного излучения обрабатывался с помощью карты АЦП, установленной в ЭВМ. Далее, путем численного решения серии прямых задач оптики аэрозоля и сравнения экспериментальной индикатрисы рассеяния с расчетными восстанавливалась функция распределения частиц по размерам. В качестве базисной функции выбиралось гамма-распределение [2]:

$$f(D) = aD^{\alpha}\exp(-bD),$$

где a > 0 — нормирующий множитель;  $\alpha$ , b — параметры распределения; D — диаметр частиц.

Применение гамма-распределения для описания дисперсности частиц в потоке вполне оправданно, поскольку экспериментально показано [10], что такое распределение соответствует аэрозолям, получаемым при распылении жидкостей под высоким давлением.

На начальных этапах импульсного формирования аэрозолей из-за высокой оптической плотности на результаты измерения может существенно влиять эффект многократного рассеяния света частицами. Этот эффект при восстановлении функции распределения можно не учитывать в случае выполнения условия для оптической плотности дисперсной среды  $\tau < 1,5$  [1]:

$$\tau = \ln(I_0/I) = kl_S,$$

Ишматов А.Н., Ахмадеев И.Р.

где I — интенсивность излучения после прохождения рассеивающего объема,  $I_0$  — интенсивность излучения в отсутствие частиц в объеме; k — показатель ослабления среды;  $l_S$  — длина оптического пути.

Для уменьшения влияния многократного рассеяния в экспериментах предлагается использовать устройство в виде защитной трубки, уменьшающей длину оптического пути вдвое, как показано на рис. 4. Защитная трубка располагается так, чтобы изолировать зондирующий луч лазера на половине дисперсного потока.



б

Рис. 4. Схема (*a*) и общий вид (*б*) экспериментальной установки: L – лазер; 1 – защитная трубка; 2 – границы аэрозольного облака; dS – площадка, на которую приходит рассеянное под различными углами излучение;  $l_S$  – длина оптического пути без использования защитной трубки;  $l'_S$  – длина оптического пути с использованием защитной трубки

Проведение измерений без потери информации о потоке в этом случае возможно при его симметричности. Из рис. 4, *б* видно, что исходящий поток представляет собой пустотелый, относительно, симметричный конус. Влияние уменьшения оптического пути на результаты измерения учитывается численными методами при обработке измерительных данных [9].

#### Результаты и обсуждение

Экспериментальное исследование показало, что для приведенных условий проводить измерения по методике с применением защитной трубки без учета влияния многократного рассеяния света на частицах аэрозоля можно начиная с 8 мс, тогда как без использования защитной трубки — с 50 мс (рис. 5).



Рис. 5. Изменение оптической плотности в эксперименте: I – область ограничения измерения с применением защитной трубки; II – область ограничения измерения без применения трубки

Измерение дисперсных характеристик в течение промежутка времени до 8 мс не представляется возможным из-за высокой оптической плотности облака.

Предложенная модификация (использование защитной трубки) позволяет вести исследования развития облака практически с момента после его образования. Уменьшение оптической плотности в эксперименте с течением времени указывает на уменьшение концентрации аэрозоля. Исследование развития дисперсности в центре облака (расстояние от сопла 0,3 м) показало, что жидкокапельный аэрозоль имеет практически постоянные характеристики с 8 мс вплоть до 1 с развития. На границе облака (расстояние от сопла 0,15 м – нижняя граница) выявлено существенное изменение дисперсности капель (для оценки дисперсности использовался среднемассовый диаметр частиц  $D_{43}$ ) уже к 0,2 с (табл. 1).

Это связано, в первую очередь, с неустоявшейся структурой облака, обусловленной циркуляцией и испарением: капли, находящиеся ближе к границе, более подвержены испарению, чем капли в центре.

Таблица 1

Изменение **D**<sub>43</sub> при распылении дистиллированной воды

| Параметр                               | Значение параметра |      |      |       |      |      |      |      |      |  |
|----------------------------------------|--------------------|------|------|-------|------|------|------|------|------|--|
| t, c                                   | 0,008              | 0,02 | 0,03 | 0,040 | 0,1  | 0,2  | 1,0  | 2,0  | 6,0  |  |
| D <sub>43</sub> , мкм, 0,15 м от сопла | 15,9               | 16,6 | 16,5 | 17,5  | 17,2 | 16,9 | 10,8 | 8,8  | 8,5  |  |
| D <sub>43</sub> , мкм, 0,3 м от сопла  | 16,8               | 16,1 | 16,5 | 16,7  | 16,5 | 17,0 | 17,3 | 14,5 | 13,8 |  |

Таблица 2

| Параметр                               | Значение параметра |      |      |       |      |      |     |     |     |  |  |
|----------------------------------------|--------------------|------|------|-------|------|------|-----|-----|-----|--|--|
| <i>t</i> , c                           | 0,008              | 0,02 | 0,03 | 0,040 | 0,1  | 0,2  | 1,0 | 2,0 | 6,0 |  |  |
| D <sub>43</sub> , мкм, 0,15 м от сопла | 13,1               | 12,1 | 13,5 | 11,2  | 12,3 | 9,4  | 8,4 | 7,1 | 7,5 |  |  |
| $D_{43}$ , мкм, 0,3 м от сопла         | 12,9               | 11,6 | 12,1 | 10,6  | 12,9 | 12,4 | 9,0 | 7,8 | 7,8 |  |  |

Изменение **D**<sub>43</sub> при распылении этилового спирта

Исследование эволюции капель в импульсном дисперсном потоке до 8 мс возможно с помощью метода «солевого остатка», описанного в работе [11].

Дополнительная серия экспериментов по распылению быстроиспаряющейся жидкости (этилового спирта) подтвердила вышеприведенные выводы. Результаты проведенных экспериментов по распылению этилового спирта приведены в табл. 2.

Результаты измерений показывают, что оптическая плотность аэрозоля, а соответственно и его концентрация, с течением времени значительно падают (см. рис. 5), но при этом полного исчезновения за счет испарения капель аэрозоля не наблюдается. Этот эффект объясняется наличием продуктов сгорания пиротехнического заряда в облаке аэрозоля.

#### Заключение

Проведенная оценка возможности применения метода малоуглового рассеяния лазерного излучения для изучения процессов импульсного формирования жидкокапельных сред выявила ограничение на применение метода, вызванное многократным рассеянием света в дисперсном потоке на начальном этапе его формирования. Предложенная модификация (использование защитной трубки) позволяет вести исследования развития облака практически с момента после его образования (начиная с 8 мс после начала процесса распыления). С помощью предложенной методики проведения экспериментов обнаружено, что в центре облака сохраняются практически постоянные дисперсные характеристики с 8 мс вплоть до 1 с развития. На границе облака выявлено существенное изменение дисперсности капель уже к 0,2 с. Это связано, в первую очередь, с неустоявшейся структурой облака, обусловленной циркуляцией и испарением: капли, находящиеся ближе к границе, более подвержены испарению, чем капли в центре.

Работа выполнена при частичной поддержке РФФИ (проекты № 12-08-90804 мол\_рф\_нр, 12-0831282 мол\_а) и Минобрнауки РФ (соглашение № 8883).

- 1. Голубев А.Г., Ягодкин В.И. Оптические методы измерения дисперсности аэрозолей // Труды ЦИАМ. М., 1978. № 828. 21 с.
- Ахмадеев И.Р. Метод и быстродействующая лазерная установка для исследования генезиса техногенного аэрозоля по рассеянию луча в контролируемом объеме: Дис. ... канд. техн. наук. Бийск: АлтГТУ, 2008. 98 с.
- 3. van de Hulst H.Ch. Light scattering by small particles (Structure of matter series). London: Chapman & Hall, 1957. 470 p.
- Кудряшова О.Б., Ворожцов Б.И., Архипов В.А. Моделирование процесса диспергирования жидкости взрывным газогенератором // Изв. вузов. Физ. 2008. № 8/2. С. 107–114.
- 5. Ворожцов Б.И, Кудряшова О.Б., Ишматов А.Н., Ахмадеев И.Р., Сакович Г.В. Взрывная генерация высокодисперсных жидкокапельных аэрозолей и их эволюция // Инж.-физ. ж. 2010. Т. 83, № 6. С. 1084– 1104.
- Kudryashova O.B., Vorozhtsov B.I., Muravlev E.V., Akhmadeev I.R., Pavlenko A.A., Titov S.S. Physicomathematical modeling of explosion dispersion of liquid and powders // Propellant, Explosives, Pyrotechnic. 2011. N 36. P. 524–529.
- Симаков Н.Н. Кризис сопротивления капель при переходных числах Рейнольдса в турбулентном двухфазном потоке факела распыла механической форсунки // Ж. техн. физ. 2004. Т. 74, вып. 2. С. 46–50.
- Лойцянский Г.Г. Механика жидкости и газа. М.: Наука, 1978. 736 с.
- 9. Kudryashova O.B., Akhmadeev I.R., Pavlenko A.A., Arkhipov V.A., Bondarchuk S.S. A Method for Laser Measurement of Disperse Composition and Concentration of Aerosol Particles // Key Eng. Materials. 2010. V. 437. P. 179–183.
- 10. Boyaval S., Dumouchel C. Investigation on the Drop Size Distribution of Sprays Produced by a High-Pressure Swirl Injector. Measurements and Application of the Maximum Entropy Formalism // Particle & Particle Systems Characterization. 2001. V. 18, iss. 1. P. 33–49.
- 11. Ишматов А.Н., Ворожцов Б.И. Метод исследования тонкодисперсного распыления жидкостей // Оптика атмосф. и океана. 2012. Т. 25, № 7. С. 653–656.

# A.N. Ishmatov, I.R. Akhmadeev. Application of the low-angle laser light scattering method for studying the pulse liquid atomization.

The features of application the low-angle laser light scattering method for study of the pulse formation of aerosol media are discussed. A modification of the measuring system, which allows the study of a cloud simulated in the laboratory conditions, almost from the time after its formation was proposed.