УЛК 621.382.3

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАВИСИМОСТИ ХАРАКТЕРИСТИК ПОЛЕВОГО GaAs-ТРАНЗИСТОРА ОТ ПАРАМЕТРОВ ПРОФИЛЯ ЛЕГИРОВАНИЯ КАНАЛА

А. К. Шестаков, К. С. Журавлев

Учреждение Российской академии наук Институт физики полупроводников им. А. В. Ржанова Сибирского отделения РАН, 630090, г. Новосибирск, просп. Академика Лаврентьева, 13 E-mail: shestakov@thermo.isp.nsc.ru

Проведено моделирование арсенид-галлиевых ионно-легированных полевых транзисторов с затвором Шоттки и различными профилями легирования. Рассчитаны и проанализированы зависимости статических характеристик транзисторов от параметров профиля легирования. Исследованы физические процессы, определяющие характеристики транзисторов при изменении параметров профиля легирования.

Ключевые слова: ПТШ, моделирование, ионная имплантация.

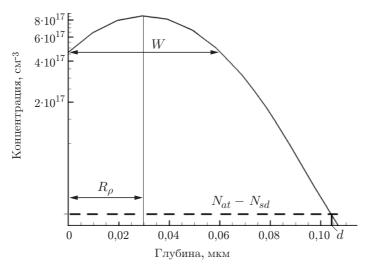
Введение. Арсенид-галлиевые полевые транзисторы с затвором Шоттки широко применяются в различных областях, например в сотовой телефонии, высокоскоростной оптоволоконной связи, беспроводной передаче данных (Wi-Fi, WiMAX), спутниковой связи и радиолокации. Для изготовления таких транзисторов широко используется метод ионной имплантации в полуизолирующую подложку. Транзисторы на ионно-легированных структурах продолжают совершенствоваться и применяться, так как их характеристики удовлетворяют широкому кругу задач, а производство хорошо отлажено [1, 2].

Характеристики ионно-легированных транзисторов определяются параметрами профиля легирования канала. Подбирая режимы имплантации и активационного отжига структур, можно управлять профилем легирования, а следовательно, и выходными характеристиками транзистора [3–7]. Важными характеристиками транзистора являются мощность, которая оценивается в статическом случае как произведение выходного тока на выходное напряжение, и коэффициент усиления, определённый в статическом случае как отношение произведения выходного тока на выходное напряжение к произведению входного тока на входное напряжение [3]. Оптимизация профиля легирования при проектировании исходной полупроводниковой структуры может позволить повысить обе эти характеристики.

Целью данной работы является исследование с использованием численного компьютерного моделирования зависимостей статических выходных характеристик полевых арсенид-галлиевых транзисторов с барьером Шоттки от ширины профиля легирования, а также изучение физических процессов, определяющих эти зависимости.

Геометрия, параметры профиля легирования и характеристики транзисторов. Для расчётов вольт-амперных характеристик транзистора использовался пакет программно-технологического моделирования "Sentaurus TCAD", разработанный фирмой "Synopsys" (США) [8]. Модель, с помощью которой проводились расчёты, описана в [9].

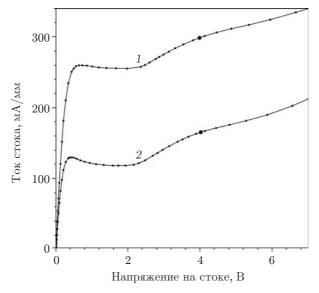
Для проверки достоверности разработанной модели сравнивались рассчитанные характеристики с экспериментально измеренными характеристиками транзисторов, изготовленных на полуизолирующей арсенид-галлиевой подложке с удельным сопротивлением $\rho > 10^7~{\rm OM\cdot cm}$ толщиной 500 мкм. Профили легирования в областях канала и контактов


стока и истока формировались с помощью имплантации ионов кремния. Концентрация мелких фоновых доноров в GaAs-подложке составляла $N_{sd}=10^{16}~{\rm cm}^{-3}$. Для уменьшения проводимости подложки в процессе роста в неё добавлялся компенсирующий глубокий акцептор с энергией активации $E_{at}=0.64~{\rm sB}$ [10] и концентрацией $N_{at}=2.5\cdot 10^{16}~{\rm cm}^{-3}$ [9]. Геометрически транзистор представлял собой простую планарную структуру, все контакты которой находились на одной плоскости. Расстояния исток—затвор и затвор—сток $L_{sg}=L_{gd}=1~{\rm mkm}$, длина затвора $L_g=0.6~{\rm mkm}$. Удельные сопротивления омических контактов истока и стока и высота барьера Шоттки были определены экспериментально как $\rho=5\cdot 10^{-6}~{\rm CM}\cdot{\rm cm}$ и $\varphi_b=0.6~{\rm sB}$ соответственно.

Для сравнения были взяты две партии транзисторов с различными профилями легирования канала. При изготовлении канала для первой партии ионы кремния с энергией E=40 кэВ имплантировались в GaAs-подложку через плёнку SiO₂ толщиной 15 нм, доза имплантированных ионов составляла $Q_1=1,1$ мкКл/см² (профиль 1). Для второй партии имплантация ионов кремния производилась с той же энергией через плёнку SiO₂ толщиной 50 нм, доза имплантированных ионов была больше: $Q_2=1,6$ мкКл/см² (профиль 2). Экспериментально измеренные характеристики для транзисторов обоих профилей следующие: ток насыщения сток—исток $I_{dss}=300/165$ мА/мм и пороговое напряжение $V_{th}=-2,3/-1,1$ В. Характеристики транзисторов измерялись в квазиимпульсном режиме в целях уменьшения влияния эффекта разогрева канала.

Ионы, прошедшие при имплантации через диэлектрическую плёнку, получают разброс по энергии и углу, поэтому сформированный в арсениде галлия профиль не может быть описан функцией Гаусса полностью. Тем не менее это возможно сделать в пределах канала, глубина которого (d) определяется формулой $N(d)+N_{sd}=N_{at}$, где N — концентрация имплантированных ионов. В канале форма профиля достаточно точно аппроксимируется гауссовой кривой, а вне канала имплантированные ионы компенсируются глубокими центрами и на характеристики транзистора влияния не оказывают, что проверено сравнением профиля в канале, описываемого функцией Гаусса, и профиля, рассчитанного с помощью программы SRIM [11], использующей метод Монте-Карло. Профиль легирования канала вычислялся по формуле

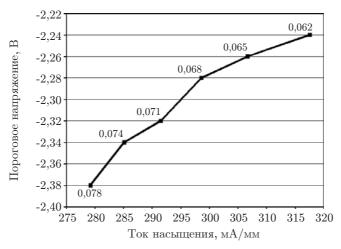
$$N(x) = \frac{K_{act}Q}{\sqrt{2\pi}\Delta\bar{R}_{\rho}} \exp\left[-\frac{(x-\bar{R}_{\rho})^2}{2\Delta\bar{R}_{\rho}^2}\right],\tag{1}$$


где x изменялся от 0 (поверхность транзистора) до $d; \bar{R}_{\rho}$ — проекция среднего пробега имплантированных ионов в подложке, которая определяет положение пика концентрации легирующей примеси; ΔR_{ρ} — среднеквадратичное отклонение среднего пробега, задающее ширину профиля легирования; Q — доза имплантированных ионов; K_{act} — коэффициент активации примеси; величина $K_{act}Q/\sqrt{2\pi}\Delta\bar{R}_{\rho}$ даёт концентрацию легирующей примеси в максимуме профиля. Коэффициент активации равен отношению концентрации электрически активной после процесса отжига примеси к полной концентрации имплантированной примеси. Положение пика концентрации легирующей примеси задавалось относительно поверхности транзистора, на которой расположены электроды истока, стока и затвора. Ширина профиля легирования бралась на половине высоты профиля и рассчитывалась по формуле $W = 2\Delta R_{\rho}\sqrt{2\ln 2}$ за вычетом части, которая при имплантации попадала в диэлектрическую плёнку и удалялась вместе с ней. Профиль легирования канала (распределение концентрации имплантированных ионов кремния), вычисленный по формуле (1), показан на рис. 1. Параметры профиля легирования канала определялись исходя из параметров процесса имплантации — энергии имплантируемых ионов, их дозы и коэффициента активации.

 $Puc.\ 1.\$ Профиль легирования канала ионно-легированного транзистора (R_p — глубина залегания пика концентрации легирующей примеси)

Зависимость характеристик транзистора от ширины профиля легирования. Рассчитанные статические вольт-амперные характеристики транзисторов с профилями легирования 1 и 2 представлены на рис. 2. Для каждого профиля достигнуто хорошее совпадение результатов расчётов с экспериментом. Используемая для расчётов физическая модель адекватно отражает происходящее в реальном приборе, поэтому её можно применять не только для определения характеристик транзистора с другими параметрами профиля легирования, но и для исследования физических процессов, происходящих при изменении этих параметров.

Рассмотрим зависимость выходных характеристик транзистора от ширины профиля легирования. Параметры профиля 1 были приняты базовыми: положение пика концентрации 0,032 мкм и коэффициент активации 0,8 не изменялись; ширина профиля варьирова-


 $Puc.\ 2.$ Рассчитанные вольт-амперные характеристики транзистора с разными профилями легирования (кривая 1 — транзистор с профилем $1;\ 2$ — с профилем 2; жирными точками отмечен ток насыщения транзистора, измеренный экспериментально при напряжениях на стоке $4\ \mathrm{B}$ и на затворе $0\ \mathrm{B}$)

лась от 0,078 до 0,062 мкм со средним шагом 0,003 мкм (шаг изменения ширины менялся незначительно). Отметим, что согласно выражению (1) увеличение ширины профиля приводило к уменьшению концентрации имплантированной примеси в максимуме.

Зависимость токов насыщения и пороговых напряжений от ширины профиля легирования представлена на рис. З. Из результатов расчётов видно, что при уменьшении ширины профиля ток насыщения возрастает, а пороговое напряжение убывает. Таким образом, одновременно увеличиваются мощность транзистора и его коэффициент усиления. Следовательно, при изготовлении ионно-легированных структур необходимо стремиться к получению наиболее узкого и резкого профиля. В принципе, ширина профиля меняется с изменением энергии имплантации ионов, но в этом случае профиль ещё и сдвигается относительно поверхности транзистора. Для того чтобы менять только ширину профиля, оставляя при этом глубину его залегания постоянной, одновременно с энергией имплантации требуется подобрать ещё соответствующую толщину диэлектрической плёнки и дозу имплантируемых ионов.

При уменьшении ширины профиля плотность заряда в канале возрастает, так как меньше ионов задерживается в диэлектрической плёнке. Рост плотности заряда в канале увеличивает и ток насыщения, и пороговое напряжение, но вместе с тем сужение профиля приводит к уменьшению порогового напряжения, которое происходит примерно пропорционально квадрату толщины канала [12]. Было обнаружено, что при уменьшении ширины профиля ток возрастает не только из-за увеличения плотности заряда в канале, но и вследствие возникновения межзонной ударной ионизации, приводящей к лавинной генерации электрон-дырочных пар. Генерация появляется в связи с уменьшением ширины профиля, и распределение напряжённости электрического поля в канале изменяется таким образом, что в домене сильного поля у стоковой части затвора напряжённость возрастает и достигает значений более 10^5 B/cm. В остальной же части канала при формировании домена сильного поля напряжённость электрического поля падает. Темп межзонной ударной ионизации в домене сильного поля превышает 10^{20} см $^{-3} \cdot c^{-1}$, что приводит к увеличению тока насыщения.

Для проверки степени влияния лавинной генерации на ток насыщения проведён расчёт с помощью модели без генерации и рекомбинации носителей заряда. В этом случае ток насыщения транзистора с теми же параметрами профиля легирования уменьшился с 300 до 255 А/мм по сравнению с током, полученным в модели, учитывающей генерацию и рекомбинацию неравновесных носителей заряда. Расчёт показывает также, что уменьшение тока

Puc. 3. Значения порогового напряжения и тока насыщения при различной ширине профиля легирования (значения ширины профиля указаны на графике)

связано не только с отсутствием сгенерированных неравновесных носителей заряда, но и со снижением плотности носителей заряда в канале из-за захвата их на глубокие уровни. Действительно, сильное электрическое поле в области канала выбрасывает часть электронов вглубь подложки, где они захватываются на глубокие уровни. В модели с генерацией неравновесные носители заряда частично экранируют поле в канале и доля электронов, выбрасываемых в глубь подложки, уменьшается.

Заключение. С помощью численного компьютерного моделирования в данной работе были рассчитаны характеристики ионно-легированных транзисторов с двумя различными профилями легирования. Достоверность разработанной модели подтверждена совпадением расчётных и экспериментальных характеристик транзисторов. С использованием этой модели исследованы зависимости характеристик транзистора от ширины профиля легирования и физические процессы, определяющие эти зависимости. Показано, что существенное влияние на характеристики транзистора оказывают процессы генерации и рекомбинации носителей заряда, а также процессы их захвата на глубокие уровни в подложке.

Авторы выражают благодарность В. С. Арыкову и В. А. Кагадею (ЗАО «НПФ "Микран"», г. Томск) за представленные экспериментальные результаты и А. М. Мясникову (Институт физики полупроводников СО РАН) за плодотворное обсуждение работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Селезнев Б. И.**, Дмитриев В. А., Штейнгарт А. П. Исследование структур СВЧ полевых транзисторов с барьером Шотки на арсениде галлия // Вестн. НовГУ. 2001. **19**. С. 77–83.
- 2. **M/A-COM** Technology Solutions. URL: http://www.macomtech.com (дата обращения: 11.08.2011).
- 3. **Полевые** транзисторы на арсениде галлия /Под ред. Д. В. Ди Лоренцо, Д. Д. Канделуола. М.: Радио и связь, 1988. 496 с.
- 4. Sharma B. L. Ion implantation into GaAs // Def. Sci. Journ. 1989. 39, N 4. P. 353–365.
- 5. Anholt R., Balasingam P., Chou S. Y., Sigmon T. W. Ion implantation into gallium arsenide // Journ. Appl. Phys. 1988. **64**, N 7. P. 3429–3438.
- 6. **Бончик А. Ю., Ижин И. И., Кияк С. Г., Савицкий Г. В.** Влияние режимов ионного легирования и фотонного отжига на параметры имплантированных слоев n-GaAs:Si // Технология и конструирование в электронной аппаратуре. 2005. № 3. С. 3–4.
- 7. Anholt R., Sigmon T. W. Substrate-impurities effects on GaAs MESFETs // Journ. Electron. Mater. 1988. 17, N 1. P. 5–10.
- 8. **TCAD** Sentaurus Device User's Manual. Version C-2009.06. Mountain View: Synopsys Inc., 2009. 1224 p.
- 9. Shestakov A. K., Zhuravlev K. S., Arykov V. S., Kagadei V. A. Doping profile influence on characteristics of ion-implanted GaAs field effect transistor with the Schottky barrier // Proc. of the 2010 IEEE Region 8 Intern. Conf. on Computational Technologies in Electrical and Electronics Engineering. Irkutsk, Russia, July 11–15, 2010. Vol. 2. P. 584–588.
- 10. **Бобрешов А. М., Дыбой А. В., Нестеренко Ю. Н., Разуваев Ю. Ю.** Структура объемного заряда в GaAs ПТШ на границе между активным слоем и подложкой, легированной хромом // Вестн. ВГУ. Сер. Физика. Математика. 2008. № 1. С. 5–10.
- 11. **SRIM** [Сайт программы]. URL: http://www.srim.org (дата обращения: 11.08.2011).
- 12. Зи С. М. Физика полупроводниковых приборов: Пер. с англ. М.: Мир, 1984. Кн. 1. 455 с.