УДК 532.546:536.421

## НАГРЕВ И ПЛАВЛЕНИЕ АСФАЛЬТОПАРАФИНОВЫХ ПРОБОК В ОБОРУДОВАНИИ НЕФТЯНЫХ СКВАЖИН ПРИ ПЕРИОДИЧЕСКОМ РЕЖИМЕ РАБОТЫ ВЫСОКОЧАСТОТНОГО ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

## В. А. Балакирев, Г. В. Сотников, Ю. В. Ткач, Т. Ю. Яценко

Институт электромагнитных исследований, 61022 Харьков, Украина

Исследован процесс устранения асфальтопарафиновых пробок в оборудовании нефтяных скважин источником высокочастотного излучения, работающим в режиме периодического включения и выключения. Численно анализируется динамика плавления пробок. Определено время ликвидации пробок в зависимости от скважности цикла работы высокочастотного генератора и времени его непрерывной работы в одном цикле.

Введение. В настоящее время высокочастотный (ВЧ) метод устранения парафиновых пробок в оборудовании нефтяных скважин и трубопроводах является одним из наиболее перспективных [1–4]. Это связано с его относительно простой экологически безопасной технической реализацией и высокой эффективностью. В отличие от других способов разрушения асфальтопарафиновых пробок в ВЧ-методе используется объемный характер выделения тепла и плавления асфальтопарафиновых пробок [3, 4]. При этом большая часть тепла идет на осуществление фазового перехода, в то время как в других тепловых методах значительная часть подводимой энергии расходуется на перегрев поверхностных слоев нефти, а также теряется из-за теплообмена с окружающей средой.

Для оптимальной работы "микроволновой печи" необходимо подобрать частоту излучения так, чтобы подводимая мощность ВЧ-источника использовалась на нагрев и плавление пробки с максимальной эффективностью [3, 4]. Однако даже в оптимальном режиме время работы ВЧ-генератора составляет от нескольких часов до десятков часов в зависимости от мощности источника излучения и объема парафиновой пробки. Так, ВЧ-генератор мощностью 10 кВт и частотой f = 10 МГц ликвидирует в нефтяной скважине парафиновую пробку длиной 100 м (радиус внутренней трубы оборудования ствола нефтяной скважины  $R_1 = 1,8$  см, внешней —  $R_2 = 5$  см) за 34 ч непрерывной работы [4]. Ясно, что работа ВЧ-источника электромагнитного излучения в непрерывном режиме в течение длительного времени сопряжена с техническими проблемами. Поэтому возникает вопрос о чувствительности рассматриваемого ВЧ-метода ликвидации парафиновых пробок при длительном отключении источника питания, которое может быть связано с неполадками, а также с профилактическими работами.

В настоящей работе исследуется процесс плавления парафиновых пробок при периодическом включении и выключении ВЧ-генератора.

Основные физические допущения и математическая модель процесса. Ствол нефтяной скважины представляет собой систему из двух коаксиальных металлических труб. С физической точки зрения оборудование ствола нефтяной скважины эквивалентно коаксиальной линии передачи. Рассмотрим коаксиальную линию, внутреннее пространство которой заполнено диэлектриком (парафином) с диэлектрической проницаемостью  $\varepsilon$ . Для математического описания процесса выберем цилиндрическую систему координат  $(r, \varphi, z)$ . Предположим, что парафиновая пробка занимает область  $0 \leq z \leq H$  в продольном направлении, а в поперечном сечении полностью заполняет пространство между трубами. Внутренний радиус коаксиальной линии  $R_1$ , внешний —  $R_2$ . В плоскости z = 0 находится источник электромагнитного излучения с частотой f и мощностью P.

Закон работы ВЧ-источника будем описывать функцией  $\varphi(t)$ . В случае периодического режима работы функция  $\varphi(t)$  задается выражением

$$\varphi(t) = \begin{cases} 1, & n\tau < t < \tau_* + n\tau, \\ 0, & \tau_* + n\tau < t < (n+1)\tau, \end{cases}$$
(1)

где  $\tau$  — продолжительность цикла;  $\tau_*$  — длительность непрерывной работы источника электромагнитного излучения в одном цикле. Электромагнитная волна, распространяясь вдоль коаксиальной линии, затухает. В результате в диэлектрической среде выделяется энергия, плотность мощности которой равна [4]

$$Q = \frac{P\varphi(t)}{2\pi \ln \left(R_2/R_1\right)} \frac{\alpha_V}{r^2} \exp\left(-(\alpha_V + \alpha_S)z\right);\tag{2}$$

$$\alpha_V = \frac{2\pi f}{c} \sqrt{\varepsilon'} \,\delta, \qquad \delta = \frac{\varepsilon''}{\varepsilon'}; \tag{3}$$

$$\alpha_S = \frac{1}{2}\sqrt{\varepsilon'}\sqrt{\frac{f}{\sigma}}\frac{1/R_1 + 1/R_2}{\ln\left(R_2/R_1\right)},\tag{4}$$

где  $\varepsilon', \varepsilon''$  — действительная и мнимая части комплексной диэлектрической проницаемости  $\varepsilon = \varepsilon' + i\varepsilon''$ ; с — скорость света в вакууме;  $\sigma$  — проводимость металла, из которого изготовлены трубы ствола скважины. В выражении (2), в отличие от приведенного в [3], учитываются реальное распределение электромагнитного поля по поперечному сечению коаксиальной линии и дополнительное затухание волны в металлических стенках. Коэффициент  $\alpha_V$  описывает объемное затухание электромагнитной волны из-за наличия мнимой части у комплексной диэлектрической проницаемости парафина,  $\alpha_S$  — затухание электромагнитной волны в металлических стенках коаксиальных труб из-за конечной проводимости металла [5], в силу которой на внутренней поверхности металлических проводников выделяется энергия. Поверхностная плотность выделяемой тепловой мощности в стенках трубы описывается выражением

$$q_i = \sqrt{\varepsilon'} \sqrt{\frac{f}{\sigma}} \frac{P\varphi(t)}{4\pi R_i^2 \ln (R_2/R_1)} \exp\left(-(\alpha_V + \alpha_S)z\right), \qquad i = 1, 2.$$
(5)

Здесь i = 1 соответствует внутреннему проводнику, i = 2 — внешнему.

Распределение температуры в пробке описывается уравнением теплопроводности. Далее при численном решении будем использовать метод сквозного счета [6], поэтому уравнение теплопроводности запишем в общем виде без явного выделения фаз:

$$\rho c_T \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left( \lambda r \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial z} \left( \lambda \frac{\partial T}{\partial z} \right) + Q(r, z, t), \tag{6}$$

где  $\rho$ ,  $c_T$ ,  $\lambda$  — плотность, теплоемкость, теплопроводность высокопарафинистой нефти соответственно. Плотность и теплопроводность считаем независимыми от температуры, а теплоемкость при температуре фазового перехода  $T_s$  имеет  $\delta$ -образную особенность

$$c_T = c_0 + L\delta(T - T_s). \tag{7}$$

Здесь L — скрытая теплота фазового перехода;  $\delta(x)$  — дельта-функция.

Уравнение теплопроводности (6) следует дополнить граничными условиями. На торце пробки z = 0 зададим граничное условие в виде конвективного теплообмена по закону Ньютона

$$\lambda \left. \frac{\partial T}{\partial z} \right|_{z=0} = \mathscr{X}_1[T(r,0,t) - T_0],\tag{8}$$

где  $T_0$  — начальная температура парафина, равная температуре окружающей среды. На удаленном торце пробки z = H теплообмен отсутствует:

$$\lambda \left. \frac{\partial T}{\partial z} \right|_{z=H} = 0. \tag{9}$$

На боковой поверхности внешнего цилиндра  $r = R_2$  граничное условие зададим в виде закона конвективного теплообмена, но с другим коэффициентом теплообмена æ. При этом учитывается поверхностное тепловыделение из-за затухания электромагнитной волны в стенках металлических труб (5):

$$-\lambda \frac{\partial T}{\partial r}\Big|_{r=R_2} = \mathscr{E}[T(R_2, z, t) - T_0] - q_2(z, t).$$
(10)

Внутреннюю поверхность коаксиальной линии  $r = R_1$  считаем теплоизолированной. Граничное условие на ней с учетом поверхностного тепловыделения имеет вид

$$\lambda \left. \frac{\partial T}{\partial r} \right|_{r=R_1} = -q_1(z,t). \tag{11}$$

Таким образом, уравнение теплопроводности (6), граничные условия (8)–(11) и выражения для плотности мощности объемного и поверхностного тепловыделений полностью описывают динамику распределения температуры в оборудовании нефтяной скважины в случае периодического режима нагрева пробки ВЧ-источником, описываемого функцией  $\varphi(t)$ . Следует отметить, что физическая картина нагрева и плавления пробки слабо зависит от граничных условий на торцах, поскольку тепло в основном теряется через боковую поверхность внешней трубы.

Численное моделирование процесса устранения парафиновой пробки. Для моделирования процесса ликвидации парафиновой пробки выберем нефтяную скважину с внутренним радиусом насосно-компрессорной трубы  $R_1 = 0,018$  м, внешним радиусом  $R_2 = 0,05$  м, длина парафиновой пробки H = 100 м. Теплофизические параметры высокопарафинистой нефти следующие:  $\rho = 950$  кг/м<sup>3</sup>,  $c_0 = 3$  кДж/(кг · K),  $T_s = 50$  °C, L = 300 кДж/кг,  $\lambda = 0,125$  BT/(м · K). Температура окружающей среды  $T_0 = 20$  °C. Действительную и мнимую части диэлектрической постоянной  $\varepsilon$  считаем слабо зависящими от частоты в диапазоне работы ВЧ-источника. В численных расчетах используются значения  $\varepsilon = 2,3, \delta = \varepsilon''/\varepsilon' = 0,021$  [3]. На левом торце трубы (z = 0) коэффициент теплообмена  $w_1 = 0,2$  BT/(м<sup>2</sup> · K), на боковой поверхности внешнего цилиндра w = 2,5 BT/(м<sup>2</sup> · K). Указанное значение w соответствует тепловому контакту внешней трубы оборудования ствола нефтяной скважины с сухим грунтом [3].

При численном решении уравнения (6)  $\delta$ -функция в выражении для теплоемкости (7) аппроксимировалась ступенькой шириной  $\Delta = 0.8$  °C. Тем самым предполагается, что в интервале температур  $|T - T_s| < \Delta/2$  в каждом элементарном объеме идет процесс плавления, т. е. жидкая и твердая фазы существуют одновременно. Из уравнения (6), пренебрегая температуропроводностью, получим оценку снизу времени плавления

$$\Delta t_{ph} \sim L\rho/Q. \tag{12}$$

Как и следовало ожидать, время плавления не зависит от способа "размазывания"  $\delta$ -функции. Однако, с одной стороны, ширина зоны плавления  $\Delta$  не должна быть очень мала,

чтобы время плавления существенно превосходило временной шаг сетки. С другой стороны, ширина ступеньки  $\Delta$  "размазанной"  $\delta$ -функции не должна быть слишком большой, так как в противном случае возникают большие ошибки в определении положения фронта плавления.

Минимальное время плавления реализуется на поверхности внутренней трубы в сечении z = 0. Подставляя в (12) расчетные значения параметров, получим  $\Delta t_{ph}^{\min} = 4.3 \cdot 10^3$  с.

Для численного решения уравнения (1) применялась явная разностная схема на равномерной прямоугольной сетке  $\Delta t = 3.6$  с,  $\Delta r = 8 \cdot 10^{-4}$  м,  $\Delta z = 0.1$  м.

Целью численного анализа является исследование влияния периода включения ВЧ-источника (продолжительность цикла)  $\tau$  и времени его непрерывной работы  $\tau_*$  (в одном цикле) на полное время ликвидации парафиновой пробки и полное время работы ВЧ-источника. Полное время работы ВЧ-источника определяет величину затраченной энергии при фиксированной мощности.

Очевидно, что периодическое включение ВЧ-источника может существенно влиять на процесс ликвидации парафиновой пробки, если промежуток времени, в течение которого ВЧ-источник отключен, порядка или больше характерного времени термодиффузии  $c\rho X^2/\lambda$  (X — характерный поперечный или продольный размер системы). В противном случае задачу о плавлении пробки можно рассматривать как задачу с непрерывным ВЧисточником [4], но с эквивалентной мощностью, равной осредненной мощности по периоду работы источника ВЧ-излучения.

Все расчеты выполнены для источника электромагнитного излучения с частотой  $f = 10 \text{ M}\Gamma$ ц и мощностью P = 20 кBt.

На рис. 1–3 представлены изотермы парафиновой пробки в различные моменты времени. Рис. 1 соответствует непрерывному режиму, рис. 2, 3 — периодическому режиму с временем непрерывной работы ВЧ-источника  $\tau_* = 2$ ; 1 ч и скважностью  $N = \tau/\tau_* = 1,5$ ; 2 соответственно. Характерные времена для непрерывного режима выбраны следующим образом: рис. 1,*a* — время плавления пробки на всей длине канала; рис. 1,*b* — время плавления пробки по всему поперечному сечению в точке z = 0; рис. 1,*b* — время ликвидации парафиновой пробки. Для периодических режимов работы ВЧ-источника моменты времени на рис. 2,*a*,*b* и рис. 3,*a*,*b* выбраны из тех же соображений, что и на рис. 1,*a*,*b*; рис. 2,*b*, 3,*b* соответствуют времени ликвидации парафиновой пробки в непрерывном режиме; рис. 2,*z*, 3,*z* — времени ликвидации парафиновой пробки.

Из анализа рис. 1–3 следует, что воздействие ВЧ-источника на парафиновую пробку в периодическом режиме приводит к более равномерному прогреву пробки и расплавленных слоев парафина. Максимальная температура  $T_{\rm max}$ , достигаемая в исследуемом образце, существенно ниже, чем при разогреве пробки ВЧ-источником при постоянной работе. При скважности N = 2 и  $\tau_* = 1$  ч  $T_{\rm max} = 160$  °C, в непрерывном режиме  $T_{\rm max} = 220$  °C. Полное время ликвидации парафиновой пробки возрастает нелинейно с увеличением скважности:  $t_{tot} = 20$  ч для N = 1,5,  $t_{tot} = 34,25$  ч для N = 2, при этом время работы ВЧ-источника t' = 14; 17,25 ч соответственно. В непрерывном режиме работы ВЧ-источника парафиновая пробка ликвидируется за 12 ч.

Отметим, что при дальнейшем увеличении скважности время ликвидации парафиновой пробки сильно возрастает и при N = 3 (P = 20 кВт) полного плавления пробки достичь невозможно. Возникает стационарное состояние, в котором процессы тепловыделения и потерь тепла взаимно компенсируются.

Результаты численного анализа процесса устранения парафиновых пробок в периодическом режиме работы ВЧ-источника для различных значений скважности и длительности работы ВЧ-источника в одном цикле приведены в таблице.



Рис. 2. Положение изотерм при скважности N = 1,5 ( $\tau_* = 2$  ч): a - t = 4 ч,  $\delta - t = 10,25$  ч, e - t = 17 ч, e - t = 20 ч

100 г, м





a-t=2,5ч, b-t=7ч, b-t=12ч

б

г

<sup>∟</sup>50,4 °C

*г*, м

*г*, м



a - t = 8 ч,  $\delta - t = 14,25$  ч, b - t = 23 ч, c - t = 34,25 ч

Для иллюстрации процессов термодиффузии и потерь тепла в промежуток времени между выключением и включением ВЧ-источника на рис. 4 представлены распределения температуры по объему парафиновой пробки при N = 2 и  $\tau_* = 2$  ч. Видно, что в промежуток времени, когда ВЧ-источник отключен, максимальная температура снизилась на 38 °C, а распределение температуры стало более однородным. Поверхность фазового перехода за указанное время практически не изменила положения. Аналогичная ситуация наблюдается для случая N = 2,  $\tau_* = 1$  ч.

| N    | $	au_*,$ ч     | $t_{tot},$ ч     | <i>t</i> ′, ч   | N   | $	au_*,$ ч    | $t_{tot},$ ч   | <i>t</i> ′, ч   |
|------|----------------|------------------|-----------------|-----|---------------|----------------|-----------------|
|      | 2,00           | 14,75            | 12,75           |     | 2,00          | 20,00          | 14,00           |
| 1,25 | $1,00 \\ 0,50$ | 16,00<br>16,00   | 13,00<br>13,00  | 1,5 | 0,50          | 20,00<br>20,50 | 14,00<br>14,00  |
|      | 0,25<br>0.125  | $16,00 \\ 16.00$ | 13,00<br>12.875 |     | 0,25<br>0.125 | 20,75<br>20.75 | 14,00<br>13.875 |
|      | 0,120          | 10,00            | 12,010          |     | 0,120         | 20,10          | 10,010          |
|      | 2,00           | 17,50            | 13,50           |     | 2,00          | $33,\!50$      | 17,50           |
|      | 1,00           | 17,50            | 13,50           |     | 1,00          | 34,25          | 17,25           |
| 4/3  | 0,50           | 17,25            | $13,\!25$       | 2   | 0,50          | 34,50          | 17,50           |
|      | 0,25           | 17,25            | 13,00           |     | 0,25          | 34,00          | 17,00           |
|      | 0,125          | 17,50            | 13,125          |     | 0,125         | 33,75          | 16,875          |



Рис. 4. Динамика остывания среды в промежуток времени между двумя импульсами ВЧ-сигнала:

a-t=34ч,  $\delta-t=36$ ч

Для определения эффективности работы источника электромагнитного излучения следует знать, как расходуется его энергия. Запишем баланс энергии, следующий из дифференциального уравнения теплопроводности (6) с граничными условиями (8)–(11) и выражениями (2)–(5) для объемных и поверхностных потерь энергии электромагнитной волны, в виде

$$W_2 = W_1 - W_3 - W_4,$$

где

$$W_{1} = P(1 - \exp(-\lambda H)) \int_{0}^{t} \varphi(t') dt'; \qquad W_{2} = \rho \int dV \int_{T_{0}}^{T} c(T') dT';$$
$$W_{3} = 2\pi \mathscr{R}_{2} \int_{0}^{t} dt \int_{0}^{H} [T(r = R_{2}, z, t) - T_{0}] dz; \qquad W_{4} = 2\pi \mathscr{R}_{1} \int_{0}^{t} dt \int_{R_{1}}^{R_{2}} r[T(r, z = 0, t) - T_{0}] dr.$$

Величины  $W_i$  (i = 1, ..., 4) имеют следующий физический смысл:  $W_1$  — энергия, поглощенная в объеме парафиновой пробки и металлических стенках коаксиальной линии;  $W_2$  — энтальпия системы;  $W_3$  — потери энергии вследствие теплообмена на поверхности внешней трубы;  $W_4$  — потери энергии на торце парафиновой пробки.

На рис. 5 представлены зависимости энергетических характеристик  $W_i$  от времени для непрерывного и периодического режимов. Видно, что при скважности N = 2 потери тепла сравнимы с энтальпией системы в конце процесса устранения пробки. При полной ликвидации пробки примерно половина выделяемой в ней тепловой энергии будет рассеяна в окружающую среду. При N = 1,5 и в случае непрерывного режима такие потери существенно меньше.

Из рис. 5 следует, что в непрерывном режиме на полезную работу затрачивается примерно 40% энергии ВЧ-генератора. Для скважности N = 1,5 на ликвидацию парафиновой пробки уходит 35% вложенной энергии, для N = 2 — менее 30%.

Выше утверждалось, что воздействие электромагнитного излучения на парафиновую пробку в режиме периодической работы ВЧ-источника при определенных условиях можно описывать как воздействие волны с постоянной амплитудой и осредненной по периоду работы мощностью. Для сравнения на рис. 5, $\delta$  сплошными линиями показаны временны́е характеристики  $W_i$  для ВЧ-источника мощностью P = 13,33 кВт в непрерывном режиме



Рис. 5. Зависимости энергетических характеристик от времени: 1 —  $W_1$ , 2 —  $W_2$ , 3 —  $W_3$ , 4 —  $W_4$ ; а — непрерывный режим; б — сплошные кривые — непрерывный режим при P = 13,33 кВт, штриховые — периодический режим (N = 1,5,  $\tau_* = 2$  ч); в — сплошные кривые — непрерывный режим при P = 10 кВт, штриховые — периодический режим ( $N = 2, \tau_* = 1$  ч)

работы, на рис. 5, 6 — для ВЧ-источника с P = 10 кВт также в непрерывном режиме работы. Видно, что времена устранения парафиновых пробок для ВЧ-источника излучения, действующего в режиме периодической работы, и источника, работающего непрерывно, с мощностью, равной средней мощности "периодического" источника, почти совпадают.

Заключение. Проведенный анализ процесса ликвидации парафиновых пробок в оборудовании нефтяных скважин электромагнитным излучением в периодическом режиме работы ВЧ-источника показал, что полное время устранения пробки существенно зависит от мощности ВЧ-излучения и скважности цикла его работы. При фиксированной мощности ВЧ-источника полное время устранения пробки нелинейно зависит от скважности. Полное время работы ВЧ-источника при увеличении скважности возрастает и слабо зависит от времени работы в одном цикле. Существует пороговое значение скважности, при котором полное плавление парафиновой пробки никогда не достигается. Так, при мощности P = 20 кВт и скважности N = 3 полностью устранить пробку длиной 100 м в стандартном оборудовании скважины невозможно.

## ЛИТЕРАТУРА

- А. с. 1314756 СССР, МКИ Е 21 В 43/00. Способ электродепарафинизации скважин / Ф. Л. Саяхов, М. А. Фатыхов, Н. Ш. Имашев // Открытия. Изобрет. 1987. № 20.
- А. с. 1707190 СССР, МКИ 5 Е 21 В 43/00. Способ ликвидации ледяных, газогидратных и парафиновых пробок в выкидных линиях скважин и трубопроводах / А. Т. Ахметов, А. И. Дьячук, А. А. Кислицын и др. // Открытия. Изобрет. 1992. № 3.

- 3. Кислицын А. А. Численное моделирование высокочастотного электромагнитного прогрева диэлектрической пробки, заполняющей трубу // ПМТФ. 1996. Т. 37, № 3. С. 75–82.
- 4. Балакирев В. А., Сотников Г. В., Ткач Ю. В., Яценко Т. Ю. СВЧ-метод устранения парафиновых пробок в оборудовании нефтяных скважин и трубопроводах // Электромагнит. явления. 1998. Т. 1, № 4. С. 552–561.
- 5. Вайштейн Л. А. Электромагнитные волны. М.: Радио и связь, 1988.
- 6. Самарский А. А., Моисеенко Б. Д. Экономичная схема сквозного счета для многомерной задачи Стефана // Журн. вычисл. математики и мат. физики. 1965. Т. 5, № 5. С. 817–827.

Поступила в редакцию 12/X 2000 г., в окончательном варианте — 14/III 2001 г.