19. Зелдович Я. Б. О трении в жидкости между врачающимися цилиндрами. Призыв Ин-та прикл. матем. АН СССР, 1979, № 139.

УДК 518.12 : 532.6

ЛОКАЛЬНАЯ АППРОКСИМАЦИЯ ВИХРЕВОГО СЛОЯ СИСТЕМОЙ ДИСКРЕТНЫХ ВИХРЕЙ

Д. Н. Горелов
(Новосибирск)

В аэродинамике крыло и вихревая пелена за ним часто моделируются системой дискретных вихрей. Строение обтекания такого профиля стационарным потоком несимметричной жидкости дано М. А. Лаврентьевым в работе [1].

Идея дискретизации несущей вихревой поверхности, обтекаемой потоком, привела к созданию метода дискретных вихрей, который успешно применяется для расчета аэродинамических характеристик летательных аппаратов [2–5].

Наиболее широкое применение получили расчетные схемы с равномерно распределенными дискретными вихрями и контрольными точками, в которых требуется выполнение промежуточных условий соответствующей краевой задачи. Для этих схем показана сходимость приближенного решения одномерного плавкого интегрального уравнения с ядром Коши к точному решение на любом фиксированном отрезке промежутка интегрирования [6, 7] и сходимость на всем промежутке по норме в L2 [8] для всех допустимых классов решений. В то же время было выяснено, что равномерная расчетная схема дает неустранимую потерю сходимости решения вблизи концов интервала [9, 4, 6].

Новые возможности открывает применение расчетных схем с неравномерным распределением дискретных вихрей и контрольных точек, что позволяет в принципе получить равномерное приближение интенсивности дискретных вихрей к соответствующим точным их значениям на всем интервале. Впервые такая схема была предложена, видимо, в работе [9]. Вопросы обоснования неравномерных схем практически не исследованы.

Следует отметить, что ключевым моментом в проблеме построения решения плавкого интегрального уравнения методом дискретных вихрей является вопрос об аппроксимации интегралов типа Коши соответствующей квадратурной формулой. Исследованию этого вопроса посвящена данная работа.

1. Рассмотрим интеграл типа Коши

\[F(x_0) = \int_0^1 f(x) dx, \]

(1.1)
определенный на отрезке [0, 1] действительной оси. Относительно функции γ(x) будем предполагать, что она представима в виде

\[γ(x) = \sqrt{1 - \frac{x}{c}} φ(x), \]

где функция φ(x) удовлетворяет условию Гельдера с показателем α, для \(x \in [0, \delta] \) и α для \(x \in (\delta, 1] \), полагая 0 < α < 1, \(p = 1, 2; 0 < \delta < 1 \).

Разделим отрезок [0, 1] точками \(c_0 = 0, c_1, \ldots, c_n = 1 \) на \(n \) элементов длиной \(h_m = c_m - c_{m-1}, m = 1, \ldots, n \). Введем величины

\[\Gamma_m = \int_{c_{m-1}}^{c_m} γ(x) dx, \quad m = 1, \ldots, n \]

и некоторые другие множества точек \(x_1, \ldots, x_n \) и \(x_{01}, \ldots, x_{0n} \), которые удовлетворяют условиям

\[x_m \in [c_{m-1}, c_m], \quad m = 1, \ldots, n; \]

\[x_{0k} \in (c_{k-1}, c_{k+1}), \quad k = 1, \ldots, n - 1, \quad x_{0n} \in (c_{n-1}, c_n]. \]

В соответствии с этими условиями представим \(x_m, x_{0k} \) в виде

\[x_m = c_m - \frac{h_m}{m} x_{0k}, \quad x_{0k} = c_{k-1} + \frac{h_k}{m} x_{0k}, \quad m = 1, \ldots, n, \]

где \(h_m, x_{0k} \) могут изменяться в пределах 0 ≤ \(h_m \leq 1 \), 0 < \(v_k < 2 \).

Введем функцию

\[G(x_{0k}) = \sum_{m=1}^{n} \frac{\Gamma_m}{x_m - x_{0k}}, \]

определенную в точках \(x_{0k} \in [0, 1], k = 1, \ldots, n \).

Поставим следующую задачу: построить такую последовательность множеств точек \(x_{01}, \ldots, x_{0n} \) и \(x_1, \ldots, x_n \), удовлетворяющих условиям (1.4), для которой функция (1.6) при неограниченном увеличении \(n \) равномерно сходится к интегралу типа Коши (1.1) во всех точках \(x_{0k} \in [0, 1] \).

Для решения этой задачи можем рассмотреть функции \(\mu_1, \ldots, \mu_n \) и \(v_1, \ldots, v_n \), полагая заданными функции γ(x) и точки \(c_0, c_1, \ldots, c_n \).

Определим, что в терминах гидродинамики функция γ(x) — интенсивность вихревого слоя, \(\Gamma_m \) — интенсивность дискретного вихря на элементе \([c_{m-1}, c_m] \), \(x_m \) — координата этого вихря, \(x_{0k} \) — координата контрольной точки, функция \(F(x_{0k}) \) определяет скорость жидкости, индуцированную непрерывным вихревым слоем в точке \(x_{0k} \), а функция \(G(x_{0k}) \) — скорость, индуцированную в этой точке системой дискретных вихрей.

2. Ограничимся случаем равномерного разбиения отрезка [0, 1] на элементы. Тогда \(c_m = m \delta, m = 0, 1, \ldots, n \). Введем на [0, 1] две области \([0, \delta_1], [\delta_2, 1] \) и отрезок \([0, \delta] \), полагая 0 < \(\delta_1 < \delta < \delta_1 < 1 \).

Определим через \(N_1, n_1, N_2 \) соответственно число элементов на отрезках \([0, \delta_1], [0, \delta], [\delta_2, 1] \). В соответствии с (1.2) будем предполагать, что в каждой области функция γ(x) представима в виде

\[γ(x) = \Phi_1(x)/\sqrt{x}, \quad \Phi_1(x) = \Phi(x)/\sqrt{1 - x} \quad \text{при} \quad x \in [0, \delta_1], \]

\[γ(x) = \Phi_2(x)/\sqrt{1 - x}, \quad \Phi_2(x) = \Phi(x)/\sqrt{x} \quad \text{при} \quad x \in [\delta_2, 1], \]
где für функции Φ_1, Φ_2 при всех $x \in [c_{m-1}, c_m]$ выполняются неравенства

$$
\begin{align*}
|\Phi_1(x) - \Phi_1(x_m)| &\leq A_1 n^{-\alpha_1}, \quad m = 1, \ldots, N_1, \\
|\Phi_2(x) - \Phi_2(x_m)| &\leq A_2 n^{-\alpha_2}, \quad m = N_2 + 1, \ldots, n.
\end{align*}
$$

Здесь A_1, A_2 — положительные константы. Обозначим далее

$$
M_1 = \sup_{[c_{m-1}, c_m]} |\Phi_1(x)|, \quad M_2 = \sup_{[c_{m-1}, c_m]} |\Phi_2(x)|.
$$

Представим функции $F(x_{ab}), G(x_{ab})$ в виде

$$
F(x_{ab}) = \sum_{m=1}^{n} F_m(x_{ab}), \quad G_m(x_{ab}) = \sum_{m=1}^{n} G_m(x_{ab});
$$

$$
F_m(x_{ab}) = \int_{c_{m-1}}^{c_m} \frac{v(x) e(x)}{x-x_{ab}} dx, \quad G_m(x_{ab}) = \frac{\Gamma_m}{x-m-x_{ab}}.
$$

С учетом формул (2.4), (1.3), (2.1) и (2.2)

$$
F_m(x_{ab}) = \Phi_p(x_m) f_{m}^{(p)}(x_{ab}) \left[1 + O \left(n^{-\rho} \right) \right],
$$

$$
G_m(x_{ab}) = \Phi_p(x_m) g_{m}^{(p)}(x_{ab}) \left[1 + O \left(n^{-\rho} \right) \right],
$$

где индекс $p = 1$ при $m = 1, \ldots, N_1$ и $p = 2$ при $m = N_2 + 1, \ldots, n$, а функции $f_{m}^{(p)}, g_{m}^{(p)}$ определяются следующими выражениями:

$$
f^{(1)}_m = \sqrt{\frac{n}{\sigma_k}} \ln \left(\frac{\sqrt{m} - \sqrt{\sigma_k}}{\sqrt{m} + \sqrt{\sigma_k}} \right) \left(\sqrt{m} - 1 + \sqrt{\sigma_k} \right), \quad m \neq k, \quad k + 1,
$$

$$
f^{(1)}_h + f^{(1)}_{k+1} = \sqrt{\frac{n}{\sigma_k}} \ln \left(\frac{\sqrt{\sigma_k} + \sqrt{k+1}}{\sqrt{\sigma_k} - \sqrt{k+1}} \right) \left(\sqrt{k+1} - \sqrt{\sigma_k} \right),
$$

$$
f^{(2)}_m = -\frac{2}{\sqrt{n}} \left[\sqrt{m} n - m + \sqrt{m} n - m - \frac{\sqrt{m}}{2} \times \ln \frac{\sqrt{\sigma_k} - \sqrt{n} - m}{\sqrt{\sigma_k} + \sqrt{n} - m} \right], \quad m \neq k, \quad k + 1,
$$

$$
f^{(2)}_h + f^{(2)}_{k+1} = -\frac{2}{\sqrt{n}} \left[\sqrt{n} k - n + \sqrt{n} k - n - \frac{\sqrt{n}}{2} \times \ln \frac{\sqrt{n} k - n - m}{\sqrt{n} k + \sqrt{n} m} \right], \quad k \neq n,
$$

$$
f^{(2)}_n = -\frac{2}{\sqrt{n}} \left[1 - \frac{\sqrt{\tau_h}}{\sqrt{\tau_h}} \ln \frac{1 + \sqrt{\tau_h}}{1 - \sqrt{\tau_h}} \right];
$$

$$
g^{(2)}_m = 2 \sqrt{n} \left(\frac{\sqrt{m} - \sqrt{m-1}}{m - \tau_h + 1 + \mu_m} \right), \quad s^{(2)}_m = \frac{2}{3 \sqrt{n}} \left(\frac{n - m + 1}{m - n + \tau_h - 1 + \mu_{ns}} \right)^{3/2};
$$

$$
\sigma_k = k - 1 + \nu_k, \quad \nu_k = n - k + 1 - \nu_k.
$$

Отметим, что при выводе этих формул для $m = k + 1$ в качестве значения $\Phi_p(x_{h+1})$ выбиралось $\Phi_p(x_h)$.
Исследуем теперь разность функций F и G в точках x_{0k}, полагая $k = 1, \ldots, n_1$. С учетом формул (2.3)—(2.8) имеем

$$(2.10) \quad F(x_{0k}) - G(x_{0k}) = \sum_{m=1}^{N_1} \Phi_1(x_m) \left[f_m^{(1)}(x_{0k}) - g_m^{(1)}(x_{0k}) \right] + \sum_{m=N_1+1}^{n} \Phi_2(x_m) \left[f_m^{(2)}(x_{0k}) - g_m^{(2)}(x_{0k}) \right].$$

Здесь опущены обозначения $1 + O\left(n^{-\alpha_0}\right) (\rho = 1,2)$ в правой части выражения, которые несущественны в исследуемом сходимости функции $G(x_{0k})$ к $F(x_{0k})$. Кроме того, при $n_k = 1$ запись первой суммы для $m = 1, k, k + 1$ имеет условный характер, так как при этих значениях n_k смысла имеет только сумма $f_k + f_k^{(1)}$.

Оценим в выражении (2.10) каждое слагаемое в отдельности. Рассмотрим сначала первую сумму. С учетом сделанных замечаний эту сумму можно преобразовать к виду

$$\sum_{m=1}^{N_1} \Phi_1(x_m) \left[f_m^{(1)}(x_{0k}) - g_m^{(1)}(x_{0k}) \right] = \Phi_1(x_{N_1}) S_{N_1}^{(1)}(\sigma_k) + \sum_{r=1}^{N_1-1} [\Phi_1(x_r) - \Phi_1(x_{r+1})] S_r^{(1)}(\sigma_k),$$

где штрихом обозначено суммирование по всем r, кроме $r = k$, а

$$S_r^{(1)}(\sigma_k) = \sum_{m=1}^{N_1} \left[f_m^{(1)}(x_{0k}) - g_m^{(1)}(x_{0k}) \right].$$

Из формул (2.6), (2.8) следует, что при $|m - k| \geq 1$

$$f_m^{(1)}(x_{0k}) - g_m^{(1)}(x_{0k}) = O\left(\frac{\sqrt{n/m}}{(m-k)^2}\right).$$

Это позволяет сделать вывод, что

$$\sum_{r=1}^{N_1-1} \left| S_r^{(1)}(\sigma_k) \right| \leq \frac{B_1 V_n}{k^{\rho}},$$

где B_1 — некоторая постоянная; β — произвольное число, удовлетворяющее условию $0 < \beta < 0.5$. Отсюда, учитывая неравенство (2.2), получаем оценку

$$(2.11) \quad \sum_{r=1}^{N_1-1} \left[\Phi_1(x_r) - \Phi_1(x_{r+1}) \right] S_r^{(1)}(\sigma_k) \leq \frac{2A B_1}{k^{\rho} a_{1-\alpha,b}}.$$

Выберем теперь коэффициенты n_1, \ldots, n_n и μ_1, \ldots, μ_{N_1} таким образом, чтобы $S_{N_1}^{(0)} = 0$. Тогда оценка первой суммы в правой части выражения (2.10) совпадает с оценкой (2.11).

Требование $S_{N_1}^{(0)} = 0$ приводит к следующему трансцендентному уравнению:

$$(2.12) \quad \ln \frac{\sqrt{N_1} + \sqrt{a_{1}}}{\sqrt{N_1} - \sqrt{a_{1}}} = 2 \sqrt{a_{1}} \sum_{m=1}^{N_1} \frac{\sqrt{m} - \sqrt{m-1}}{a_{1} - m + 1 - \mu_m} = 0, \quad k = 1, \ldots, n_1.$$
При заданных значениях коэффициентов μ_m корнями этого уравнения являются величины σ_k, связанные с коэффициентами v_k соотношением (2.9). Допустимо также задание коэффициентов v_k или σ_k с определением μ_m как решения системы уравнений (2.12). Примеры этих решений приведены ниже.

Оценим вторую сумму в выражении (2.10). Формулы (2.7), (2.8) позволяют получить следующие асимптотические выражения при $n-m \gg 1$, $m-k \gg 1$:

$$f_m(x_{ob}) - g_m(x_{ob}) = O \left(\frac{1}{n^{3/2} \sqrt{n-m}} \right).$$

Отсюда следует оценка

$$\sum_{m=N_{1}+1}^{n} \left| f_m^{(i)}(x_{ob}) - g_m^{(i)}(x_{ob}) \right| \leq C_2 \frac{C_2}{\sqrt{n^{\beta + 0.5}}}, \quad C_2 = \text{const} > 0, \quad 0 < \beta < 0.5,$$

$$\sum_{m=N_{1}+1}^{n} \Phi_k(x_m) \left| f_m(x_{ob}) - g_m(x_{ob}) \right| \leq \frac{M C_2}{x_{ob}^{\beta + 0.5}}.$$

Собирая вместе все оценки, получим, что при $k = 1, \ldots, n,$

$$(2.13) \quad |F(x_{ob}) - G(x_{ob})| \leq \frac{2A B}{n^{\alpha + \beta - 0.5}} + \frac{M C_2}{n^{\beta + 0.5}} + O \left(\frac{1}{n^{\beta + 0.5}} \right).$$

Аналогичным образом получается оценка разности функций F и G в точках x_{ob} при $k = n_1 + 1, \ldots, n$:

$$(2.14) \quad |F(x_{ob}) - G(x_{ob})| \leq \frac{2A B}{n^{\alpha + \beta - 0.5}} + \frac{M C_2}{n^{\beta + 0.5}} + O \left(\frac{1}{n^{\beta + 0.5}} \right),$$

где B_2, C_1 — соответствующие константы. При этом уравнение (2.12) переходит в уравнение

$$(2.15) \quad \sqrt{n - N_2 - \frac{1}{2} \ln \frac{V_n - N_2 + V_{N_2}}{V_n - N_2 - V_{N_2}}} - \frac{1}{3} \sum_{m=N_{1}+1}^{n} \frac{(n-m+1)^{3/2} - (n-m)^{3/2}}{n - m - \tau_k + 1 - \mu_m} = 0, \quad k = n_1 + 1, \ldots, n.$$
Предположим, что все коэффициенты $\mu_m = \mu = \text{const}$. Тогда при $N \to \infty (N = N_1$, $n = N_2)$ решения уравнений (2.12), (2.15) имеют вид

$$v_k(\mu) = v_k(0) + \mu, \quad k = 1, \ldots, n.$$

Расчет показывает, что зависимость (3.1) практически выполняется и при конечном значении $N \gg 1$. Поэтому в случае $\mu_m = \text{const}$ достаточно вычислять коэффициенты $v_k(0)$. Результаты такого расчета для $N = 100$ с округлением до двух десятичных знаков приведены в табл. 1.

Те же результаты дает расчет при $N = 1000$. В соответствии с формулами (1.5), (3.1) координаты дискретных вихрей и контрольных точек определяются выражениями

$$x_m = (m - 1 + \mu)/n, \quad x_{nk} = (k - 1 + v_k(0) + \mu)/n,$$

$m, \quad k = 1, \ldots, n.$

Отметим, что при $\mu > 1 - v_k(0)$ контрольная точка выходит за пределы элемента $i c_{k-1}, c_{kh}$, $k = 1, 2, \ldots$

Пример расчета погрешности аппроксимации интеграла типа Коши (4.1) формулой (1.6) в случае $y(x) = \sqrt{T - x}/x$ для равномерного распределения дискретных вихрей на отрезке $[0, 1]$ приведен в табл. 2. Величина

$$\varepsilon_k = |1 - G(x_{nk})/F(x_{nk})| \cdot 100\%, \quad k = 1, \ldots, n.$$

Расчет проводился по двум схемам выбора координат дискретных вихрей и контрольных точек: $\mu = 1/4$, $\nu_k = 3/4$ локальная аппроксимация. Первая схема широко применяется в методе дискретных вихрей [2-5], а вторая основана на формулах (3.1), (3.2) и данных табл. 1. Отметим, что расчет по второй схеме для $\mu = 0; 0,25$ и 0,5 дал идентичные результаты, которые отражены в табл. 2.

Расчет показал, что в средней части интервала $[0, 1]$ погрешность аппроксимации интеграла (1.1) формулой (1.6) практически одинакова по обеим схемам. Вблизи концов интервала первая схема дает высокую погрешность, которая вблизи конца $x = 0$ увеличивается с ростом n. Локальная аппроксимация при рассматриваемых значениях n на два порядка уменьшает погрешность расчета интеграла (1.1) вблизи концов интервала, и эта погрешность убывает с ростом n.

Другим примером локальной аппроксимации является расчетная схема, предложенная в работе [9]. Согласно этой схеме, дискретные вихри помещаются в центре тяжести вихревого слоя на каждом отрезке $[c_i, c_{i+1}]$, а контрольные точки выбираются, как показал дополнительный анализ, в соответствии с решениями уравнений (2.12), (2.15).

<table>
<thead>
<tr>
<th>n</th>
<th>$\mu = 1/4$, $\nu_k = 3/4$</th>
<th>Локальная аппроксимация</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ, ν_k</td>
<td>ε_i</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>97</td>
</tr>
<tr>
<td>50</td>
<td>137</td>
<td>27</td>
</tr>
<tr>
<td>100</td>
<td>194</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>2,2</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>1,8</td>
</tr>
<tr>
<td>100</td>
<td>1,7</td>
<td>0,17</td>
</tr>
</tbody>
</table>

6 пмфг, 14 5, 1980 г.
Приведенные примеры иллюстрируют широкие возможности локальной априоксимации вихревого слоя системой дискретных вихрей. Основной особенностью такой априоксимации является решение задачи для некото­рого участка вихревого слоя независимо от влияния остальной его части.

В связи с этим полученные результаты могут быть применены для априоксимации вихревых слоев с иным характером поведения интенсивности \(\gamma(x) \) близи концов слоя. Однако при этом следует иметь в виду, что число контрольных точек и их положение зависят от вида функции \(\gamma(x) \). Например, в случае ограниченной на обоих концах вихревого слоя функции \(\gamma(x) = \sqrt{x(1-x)} \psi(x) \) равномерная сходимость функции (1.6) к интегралу (1.1) имеет место в \(n + 1 \) точках при \(n \) дискретных вихрях, расположенных в середине каждого элемента \([c_{m-1}, c_{m}] \) вихревого слоя. Координаты контрольных точек определяются вблизи концов интервала [0,1] решением уравнения (2.15). В соответствии с данными табл. 1

\[
x_{01} = 0.12/n, \quad x_{0k} = (k - 1)/n, \quad k = 2, \ldots, n, \quad x_{0n+1} = 1 - x_{01}.
\]

Для функции \(\gamma(x) = \psi(x)/\sqrt{x(1-x)} \), не ограниченной на обоих концах интервала [0,1], равномерная сходимость функции (1.6) к интегралу (1.1) имеет место в \(n - 1 \) точках. При этом дискретные вихри должны быть снова расположены в середине каждого элемента, а координаты контрольных точек

\[
x_{0k} = (k - 0.5 + v_n(0))/n, \quad k = 1, \ldots, n_1, \quad x_{0n} = (k + 0.5 - v_n(0))/n, \quad k = n_1 + 1, \ldots, n - 1,
\]

где коэффициенты \(v_n(0) \) определяются табл. 1.

Поступила 19 III 1980

ЛИТЕРАТУРА

1. Лаврентьев М. А. О построении потока, обтекающего дугу заданной формы.— Труды ЦАГИ, 1932, вып. 118.
2. Белоцерковский С. М. Тонкая несущая поверхность в дозвуковом потоке газа. М., 1963.
5. Белоцерковский С. М., Ницт М. И. Отрезное и безотрезное обтекание тонких крыльев идеальной жидкостью. М., 1978.
6. Лифанов И. К., Полозов Я. Е. Обоснование численного метода дискретных вихрей решения сигулярных интегральных уравнений.— ПММ, 1975, т. 39, вып. 4.
7. Лифанов И. К. О сигулярных интегральных уравнениях с однимными и кратными интегралами типа Коши.— ДАН СССР, 1978, т. 239, № 2.