РОССИЙСКАЯ АКАДЕМИЯ НАУК СИБИРСКОЕ ОТДЕЛЕНИЕ

АВТОМЕТРИЯ

2005, том 41, № 5

ФИЗИКО-ТЕХНИЧЕСКИЕ ОСНОВЫ МИКРО-И ОПТОЭЛЕКТРОНИКИ

УДК 535.231.6

М. А. Демьяненко, А. Ф. Кравченко, В. Н. Овсюк

(Новосибирск)

НЕОХЛАЖДАЕМЫЕ РЕЗИСТИВНЫЕ МИКРОБОЛОМЕТРЫ. Ч. II. РЕЖИМ ИМПУЛЬСНОГО СМЕЩЕНИЯ

Проведен теоретический анализ работы микроболометров в режиме импульсного смещения, применяемого в матричных приемниках. Рассмотрены три основные схемы измерения сигналов: при фиксированных токе и напряжении и в мостовой схеме Уитстона. Учтены флуктуации мощности выделяющегося в болометре джоулева тепла и влияние разогрева болометра на чувствительность и основные типы шумов. Получены соотношения для мощности, эквивалентной шуму, с учетом флуктуаций тепловых потоков, шума Джонсона и 1/ *f*шума болометра, шумов устройства считывания и источника питания. Показано, что соотношение вкладов флуктуаций выделяющегося в болометре джоулева тепла и тепловых потоков в мощность, эквивалентную шуму, аналогично режиму постоянного смещения.

Введение. Последние два десятилетия наиболее активно разрабатываются матричные резистивные микроболометрические приемники, относящиеся к неохлаждаемым приемникам инфракрасного излучения, в своем развитии достигшие формата 320 240 и минимальной разрешаемой температуры менее 30 мК при частоте кадров 30 Гц [1, 2], что близко к параметрам криогенных фотонных матричных приемников. Теоретическому описанию резистивных болометрических приемников (далее болометрических) посвящено большое количество работ, в том числе [3–11]. Однако в большинстве из них рассматривается режим постоянного смещения, характерный для одиночных или линейчатых многоэлементных структур, а при анализе работы матричных приемников в импульсном режиме динамический разогрев болометра [10] и фотоэлектрические характеристики [8, 11] рассматриваются независимо друг от друга.

В режиме постоянного смещения микроболометрических приемников измерение проводится в относительно узкой полосе частот f, одинаковой как для тепловых флуктуаций, так и для электрических шумов. В случае применения матричных приемников большого формата (например, 320 240) не удается изготовить и одновременно использовать усилители в количестве, равном количеству элементов матрицы, что не позволяет применять измерения в узкой полосе частот даже для стационарных сцен. Обычно количество усилителей равно количеству столбцов и время измерения одного элемента

і в течение кадра не может быть более (1/25) (1/240) 160 мкс (25 кадр./с и 240 строк). Это задает значительно более высокую полосу частот f

3 10³ Гц для электрических шумов по сравнению с полосой частот для тепловых флуктуаций, равной 1/4 0 [8], где 0 – время тепловой релаксации (обычно 10 мс). Поэтому для достижения предельных параметров, определяемых температурными флуктуациями, необходимо увеличить чувствительность путем значительного повышения напряжения V_D, падающего на болометре, по сравнению с режимом постоянного смещения. В результате постоянная составляющая мощности Q_D джоулева тепловыделения, происходящего при протекании тока І_D через болометр, может превысить пороговую мощность выгорания болометра при постоянном смещении (это и приводит к необходимости использовать режим импульсного смещения), а флуктуации джоулевой мощности Q_n могут оказаться значительно больше флуктуаций тепловых потоков P_n [9] и поэтому нуждаются в особом рассмотрении. Кроме того, в режиме импульсного смещения слабое изменение температуры болометра за счет энергии сигнала происходит на фоне значительного динамического разогрева болометра под влиянием выделяющегося джоулева тепла, приводящего к изменению в течение импульса в общем случае как чувствительности, так и шумов. Все это требует проведения анализа работы микроболометров в режиме импульсного смещения, в котором фотоэлектрические характеристики рассматриваются с учетом динамического разогрева болометра.

В данном исследовании представлен корректный теоретический анализ особенностей работы неохлаждаемых микроболометров в режиме импульсного смещения с учетом флуктуаций мощности выделяющегося джоулева тепла и влияния динамического разогрева на чувствительность и основные типы шумов. Предлагаемая работа является продолжением [9], где были рассмотрены резистивные микроболометры в режиме постоянного смещения.

Разогрев болометра, обусловленный джоулевым теплом. Будем считать, что измерения проводятся либо при фиксированном напряжении (V

сопst), либо фиксированном токе (I const), или с использованием распространенной мостовой схемы Уитстона. Последняя, в свою очередь, построена из четырех одинаковых болометров, два из которых имеют высокую теплопроводность на подложку, так что их температура и сопротивление постоянны, а из двух других, теплоизолированных от подложки, один защищен от попадания внешнего излучения. Все четыре сопротивления в отсутствие импульса смещения равны и принимают значение R_{D0} . Эквивалентные схемы для рассматриваемых режимов измерения приведены на рис. 1 работы [9]. Будем различать «основной» разогрев болометра T, происходящий под влиянием импульса смещения, и вариации его температуры T и T_n , вызванные соответственно сигналом и флуктуациями тепловых потоков и джоулева тепла.

Рассмотрим сначала основной разогрев. Раскладывая в соотношении (1) из работы [9] мощности тепловых потоков, обусловленных обменом излучениями болометра с наблюдаемой сценой P_S и корпусом P_B , по разности T T_D T_B и пренебрегая малым радиационным разогревом болометра, обусловленным различием температуры сцены T_S и корпуса T_B , получим

$$C_D \frac{d}{dt} Q_D = G_{0D} \quad T.$$
⁽¹⁾

Здесь T_D и C_D – температура и теплоемкость болометра; G_{0D} – его дифференциальная теплопроводность, обусловленная несущими балками и тепловым излучением. Импульс смещения подается на время измерения , 1 раз за вре-, В течение этого времени болометр разогревается до немя кадра F которой температуры T_i и затем остывает по закону $T = T_i \exp(t/t_0)$, $_{0}$ C_{D}/G_{0D} , и к началу следующего импульса T становится близким к нулю, так как обычно $_{F}$ 3 $_{0}$. Здесь и далее в первую очередь будем интересоваться полупроводниковыми болометрами, имеющими высокий темпера-0,02 К¹, в которых разотурный коэффициент сопротивления (ТКС) грев болометра Т за время считывания сигнала достаточно мал, а теплопроводность по несущим балкам G_l много больше теплопроводности G_r , обусловленной излучением, и слабо зависит от температуры. Это позволяет считать, что при расчете разогрева болометра Т и вариаций его температуры Т и Т, изменяется только сопротивление болометра (и, следовательно, джоулева мощность), а ТКС, теплоемкость и теплопроводность остаются неизменными. Поскольку измерения проводятся за время , о, то в течение импульса последним членом в (1) можно пренебречь, так как при этом $T_i \quad Q_D \quad _i/C_D$ и $Q_D/G_{0D} \quad T_i$ $_{0}/_{i}$ 1.

В результате разогрева и соответствено изменения сопротивления болометра мощность выделяющегося джоулева тепла является переменной. Ее изменение при нагрузочном сопротивлении R_L const, включенном последовательно с болометром, описывается соотношением [5, 6]

$$dQ_D/dT_D \qquad Q_D, \tag{2}$$

где $(R_L R_D)/(R_L R_D)$. При R_L 0 (режим V const) 1, при R_L (режим I const) 1. В мостовой схеме Уитстона является переменной величиной. Однако, учитывая, что в этом случае для ТКС, не зависящего от температуры, мощность выделяющегося джоулева тепла задается соотношением $Q_D D_{D0}/ch^2(T/2)$ и при T 1 практически равна значению в начале импульса Q_{D0} ; будем приближенно считать, что 0. В результате мощность выделяющегося джоулева тепла задаеть соотношением

$$Q_D \quad Q_{D0} \exp(\qquad T), \tag{3}$$

где 1; +1; 0 для режимов V const, I const и мостовой схемы соответственно. Отметим, что учтенное изменение джоулевой мощности, равное Q_D T, много больше опущенного в (1) члена G_{0D} T. Действительно, отношение величин Q_D/G_{0D} можно оценить как $T_{i0}(_0/_i)$, что много больше единицы при типичных используемых величинах: $_0/_i$ 100 и T_{i0} 2/ T_B 0,3. Здесь мы учли, что характерный разогрев болометра удовлетворяет условию 2/ 2T_B T_{i0} 1 (смотри далее).

Для металлических болометров, в которых разогрев T за время считывания сигнала значителен, точная величина мощности выделяющегося джоулева тепла $Q_D \quad Q_{D0}(T_D/T_B)$, полученная для режимов V const и I const при учете температурной зависимости ТКС в виде $1/T_D$, будет отличаться от приближенной величины (3) не более, чем на 8 % при разогревах болометра от 300 до 450 К. Для полупроводниковых болометров, вследствие высоко-

го ТКС и, следовательно, малого разогрева, подобное различие будет существенно меньше.

Решение уравнения (1) для трех рассматриваемых нами схем включения болометра в приближении (3) задается соотношением

$$\exp(T) (1 T_{i0}t/i)^{-1},$$
 (4)

где T_{i0} Q_{D0} $_i/C_D$ – разогрев болометра в течение импульса без учета изменения джоулевой мощности. В случае мостовой схемы, проведя разложение (4) по малой и устремив ее к нулю, получим T $T_{i0}t/_i$. Заметим, что соотношение (4) задает также изменение проводимости $_D$ и сопротивления болометра R_D при основном разогреве в режимах V const и I const, поскольку $_D/_{D0}$ exp(T) и R_D/R_{D0} exp(T), где $_{D0}$ и R_{D0} – значения $_D$ и R_D непосредственно перед импульсом.

Вариация температуры болометра, обусловленная сигналом. Уравнение теплового баланса для вариации температуры болометра T, вызванной потоком измеряемого теплового излучения P_S , с учетом (2) можно записать в виде

$$C_D \frac{d(T - T_0)}{dt} = Q_D(t) T - G_{0D}(T - T_0),$$
 (5)

где временная зависимость мощности $Q_D(t)$ задается соотношениями (3) и (4) и введена вариация температуры $T_0 = P_S/G_{0D}$, соответствующая изменению температуры болометра под воздействием квазистационарного потока P_S (слабо изменяющегося за время тепловой релаксации ____) при отсутствии зависимости мощности выделяющегося джоулева тепла от температуры болометра. К отклонению T от T_0 в уравнении (5) приводит только член

 $Q_D(t)$ *T*, который равен нулю между импульсами в течение длительного времени (3). В результате к началу очередного импульса смещения вновь установится вариация *T T*₀. Отношение величин Q_D/G_{0D} , как отмечено выше, много больше единицы, и, следовательно, в соотношении (5) в течение импульса смещения членом, пропорциональным G_{0D} , можно пренебречь. В этом случае решение уравнения (5) можно записать в виде

$$T = T_0 (1 = T_{i0} t / i)^{-1}.$$
 (6)

При этом для изменения тока I_S в режиме V const и напряжения V_S в режиме I const имеем: I_S (t) $T(t)_D(t)V_D$ и V_S (t) $T(t)R_D(t)I_D$, а для мостовой схемы V_S (t) $T(t)V_0/4$ ch² (T/2), где V_0 – напряжение смещения моста. Усредняя эти значения за время $_i$, учитывая, что ch (T/2) 1 при

T/2 1 с точностью до членов второго порядка разложения в ряд Тейлора, и в режиме V сопят вместо тока, используя напряжение, введенное формальным умножением I_S на R_{D0} , получим

$$V_{S} \qquad \sqrt{\frac{Q_{D0}R_{D0}}{s}} \frac{P_{S}}{G_{0D}(1 \qquad T_{i0})}.$$
 (7)

Здесь S 1 при использовании режима V const (1) или I const (1); S 4 в случае мостовой схемы; введено эффективное значение ТКС

$$\int_{0}^{T_{i}} (T_{B} x) \exp(-x) dx / \exp(-x) dx$$

а разогрев болометра T_i в конце импульса смещения задается соотношением (4) при t_i . Величина $G_{0D}(1 T_{i0})$ в соотношении (7) представляет собой эффективную теплопроводность аналогично теплопроводности G в выражении (14) из работы [9]. Отличие состоит в том, что в (7) T_{i0} – разогрев болометра в течение импульса в предположении постоянства джоулевой мощности, который при i_0 много меньше стационарного разогрева Q_D/G_{0D} .

Флуктуации температуры. Уравнение теплового баланса для вариации температуры болометра T_n , вызванной флуктуациями тепловых потоков P_n и джоулевой мощности Q_n , с учетом (2) можно записать в виде

$$C_D \frac{d T_n}{dt} P_n Q_n^f \qquad Q_D(t) T_n G_{0D} T_n, \tag{8}$$

где из полных флуктуаций джоулевой мощности Q_n выделены флуктуации, вызванные флуктуациями температуры болометра (член $Q_D T_n$), при этом в оставшейся части Q_n^f флуктуации сопротивления болометра обусловлены только флуктуациями типа 1/f [9]. Там же отмечено, что величина флуктуаций джоулевой мощности Q_n^f в режиме постоянного смещения болометров может быть сравнима с величиной флуктуаций тепловых потоков. В режиме импульсного смещения вследствие значительно большей джоулевой мощности Q_D ее флуктуации Q_n^f на протяжении импульса смещения могут значительно превысить P_n . Соотношение (8) является линейным дифференциальным уравнением первого порядка. Его решение может быть записано в виде

$$T_{n} \exp \left[\begin{array}{ccc} t \\ t_{0} \end{array} \right] dt_{1} \left[\begin{array}{ccc} t \\ t_{0} \end{array} \right] \left[\begin{array}{ccc} P_{n} & Q_{n}^{f} \\ C_{D} \end{array} \right] \exp \left[\begin{array}{ccc} t_{1} \\ t_{0} \end{array} \right] dt_{2} dt_{1} \\ t_{n0} \end{array} \right] dt_{2} dt_{1}$$
(9)

где ($Q_D G_{0D}$)/ C_D ; T_{n0} – значение температуры в момент времени t_0 0 (начало импульса смещения). При t t_0 в течение длительного времени (3_0) Q_n^f 0, и к моменту времени t_0 под воздействием только флуктуаций тепловых потоков P_n устанавливаются флуктуации температуры T_{n0} со спектральной плотностью $S_T S_P/G_{0D}^2(1^{2} C_0^2)$. Здесь S_P – спектральная плотность тепловых потоков, а – угловая частота. Поскольку за время 3 0 болометр остывает почти полностью, можно считать, что S_P не зависит от температуры разогрева болометра T и задается соотношениями, приведенными в работе [9]. Для упрощения примем $S_P = 4kT_B^2G_{0D}$. В результате ин-

тегрирования S_T по частоте получим среднеквадратичное значение флуктуаций температуры T_{n0} , равное kT_B^2/C_D . Вклад флуктуаций температуры T_{n0} в текущее значение T_n , задаваемый в соотношении (9) слагаемым

 $T_{n0} \exp \int_{t_0} dt_1$, найдем, пренебрегая G_{0D} по сравнению с Q_D и учиты-

вая, что Q_D определяется соотношениями (3), (4). Интегрируя, как и следовало ожидать, получим соотношение, аналогичное (6), с заменой T на T_n . Естественно, что и вклад флуктуаций T_{n0} в измеряемый сигнал тоже будет задаваться соотношением, аналогичным (7). Таким образом, для среднеквадратичного шумового напряжения, обусловленного членом T_{n0} , получим

$$\left\langle V_{n}^{2} \right\rangle = \frac{{}^{2}Q_{D0}R_{D0}}{{}_{S}\left(1-T_{i0}\right)^{2}}\frac{kT_{B}^{2}}{C_{D}}.$$
 (10)

Точное решение уравнения (9) затруднительно для анализа. Поэтому нас в первую очередь интересует приближенное решение, позволяющее оценить величину флуктуаций температуры T_{nQ} , обусловленную флуктуациями джоулевой мощности Q_n^f . Будем считать, что в течение импульса смещения

и амплитуда флуктуаций джоулевой мощности Q_{n0}^{f} постоянны. В частности, $Q_{n}^{f} = Q_{n0}^{f} \exp(i t)$. Тогда, проводя интегрирование в (9), усредняя T_{nQ} по времени в течение импульса измерения, далее возводя их в квадрат, усредняя по реализациям случайного шумового процесса и интегрируя по частоте, найдем среднеквадратичное значение

$$\left\langle T_{nQ}^{2} \right\rangle = \frac{S_{Q}}{f_{L}} \frac{\sin\left(\frac{i}{2}\right) \exp\left(\frac{i}{i}/2\right)}{\frac{i}{2}} = \frac{\sin\left(\frac{i}{2}\right) \exp\left(\frac{i}{2}\right)}{\frac{i}{2}} = \frac{1}{2} \frac{1}{2} df,$$
(11)

где S_Q – спектральная плотность флуктуаций джоулевой мощности на 1 Гц, определенная соотношениями (16), (19) и (20) из работы [9] для мостовой схемы, режимов V сопst и I сопst соответственно; f_L – частота калибровки измерительной системы (обычно реже 1 раза в минуту). Учитывая, что для всех трех рассматриваемых нами схем включения болометра S_Q содержит член $4kT_DQ_D$ (для мостовой схемы в соотношении (16) работы [9] можно принять 0, $_D$ 1 и Q_L Q_D), обусловленный шумом Джонсона, спектральную плотность флуктуаций джоулевой мощности для краткости удобно записать в виде

$$S_O = 4kT_D Q_D (1 \quad FSR_f), \tag{12}$$

где FSR_f – нормированная на $4kT_DQ_D$ и зависящая в общем случае от частоты сумма спектральных плотностей флуктуаций джоулевой мощности, вызванных флуктуациями сопротивления болометра типа 1/f, флуктуациями смещения и шумами схемы считывания. При и 1/i подынтеграль-

⁸ Автометрия № 5, том 41, 2005 г.

ное выражение в (11) равно $(S_Q/C_D^2)(_i/2)^2$, а при $_i$ 1 и $_i$ 1 – резко уменьшается с повышением частоты. Эффективная ширина полосы при этом составляет 2/3 $_i$, а среднеквадратичное значение флуктуаций температуры T_{nQ} , обусловленное флуктуациями джоулевой мощности Q_n^f , может быть оценено как

$$\langle T_{nQ}^2 \rangle = \frac{2}{3} \frac{kT_B^2}{C_D} \frac{T_{i0}}{T_B} (1 \ FSR_i),$$
 (13)

где FSR_i – значение величины FSR_f , усредненное по полосе2/3 *i*.Для полупроводниковых болометров типичная величина T_{i0}/T_B 1 и, следовательно, $\langle T_{nQ}^2 \rangle \langle T_{n0}^2 \rangle$; для болометров на основе металлических терморезисторов T_{i0}/T_B 1 и соответственно $\langle T_{nQ}^2 \rangle$ с учетом компоненты FSR_i может превысить $\langle T_{n0}^2 \rangle$. Несмотря на то что в импульсном режиме S_Q/S_P 1 (их отношение при FSR_i 0 можно оценить величиной T_{i0-0}/T_B *i*, равной 3 для полупроводниковых болометров и 50 для металлических), мы получили величины $\langle T_{nQ}^2 \rangle$, сравнимые с режимом постоянного смещения. Это обусловлено малой продолжительностью действия смещения *i* по сравнению со временем тепловой релаксации 0. Отметим также, что указанное превышение S_Q над S_P в импульсном режиме позволило нам пренебречь величиной P_n в соотношении (9).

Мощность, эквивалентная шуму. Вывод соотношения для NEP (мощности, эквивалентной шуму), характеризующей величину потока измеряемого излучения, вызывающего электрический сигнал, равный величине шу- ма на выходе приемника, будем проводить для мостовой схемы измерения. В остальных случаях приведем только окончательный ответ. Измерение сигнала, проводимое путем его усреднения за время _i, приводит к интегрированию шумов в полосе от f_L до f_H 1/2 $_i$ [12]. Для вычисления флуктуаций измеряемого напряжения одного плеча моста V_L воспользуемся соотношением (22) из работы [9]. Поскольку в течение импульса смещения происходит разогрев болометра и меняется его сопротивление, то компоненты шумового напряжения являются нестационарными. Учтем их изменение по мере разогрева болометра с точностью до членов первого порядка по *T_{i0}*. Это легко сделать, если принять во внимание, что шумовое напряжение с амплитудой, Т, после усреднения по меняющейся вследствие разогрева по закону 1 времени измерения и возведения в квадрат будет иметь среднеквадратичное значение с поправочным коэффициентом 1 *T*_{*i*0}, характеризующим влияние разогрева, где – некоторый постоянный коэффициент. Изменение спектральной мощности 1/f-шума с ростом температуры болометра в течение импульса смещения будем учитывать, введя коэффициент _к относительного изменения параметра K_D , задаваемый соотношением

$$_{K}$$
 $(1/K_{D})dK_{D}/dT_{D}.$

Напомним, что параметр K_D характеризует флуктуации сопротивления R_D вида $S_R/R_D^2 = K_D/f$ [13], где S_R – спектральная плотность флуктуаций сопротивления R_D . В результате для мощности, эквивалентной шуму, в мостовой схеме получим

$$NEP^{2} = \frac{4kT_{B}^{2}G_{0D}}{\frac{2}{0}W} \frac{1}{S} \frac{1}{2} \frac{1}{2} \frac{2}{3T_{B}} (1 \ FSR_{i}) = \frac{2}{\frac{2}{T_{B}}} \frac{1}{T_{i0}} \frac{1}{2} \frac{1}{2} \frac{2}{T_{B}} \frac{1}{T_{i0}} \frac{1}{2} \frac{1}{2} \frac{1}{3T_{B}} \frac{1}{3T_{B}} \frac{1}{3T_{B}} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3}$$

где $_{W}$ – коэффициент пропускания окна; $_{S}$ – коэффициент поглощения теплового излучения, усредненный по рабочему диапазону длин волн; T_{i0} ; $_{K}$ $_{K}$ T_{i0} ; Q_{Di0} Q_{D0} $_{i}$ – джоулево тепло, выделяемое за время измерения $_{i}$ без учета разогрева; S_{jRi} и S_{Ri} – значения усредненных по частотной полосе f_{H} f_{L} спектральных плотностей флуктуаций тока эквивалентного генератора тока S_{jR} и флуктуаций ЭДС эквивалентного генератора напряжения S_{R} схемы считывания, введенных в работе [9].

Для режимов V const (верхний знак) и I const (нижний знак) получим

$$NEP^{2} \quad \frac{kT_{B}^{2}G_{0D}}{\frac{2}{0}\frac{2}{W}\frac{2}{S}} \quad 1 \quad \frac{2}{3}\frac{T_{i0}}{3T_{B}} (1 \quad FSR_{i}) \quad \frac{2(1 \quad)^{2}}{\frac{2}{T_{B}}T_{i0}}$$

$$1 \mp \frac{1}{2} \quad \frac{(1 \mp \cdot)(S_{RTi} \quad S_{bi}) \quad S_{ROi}}{4kT_{B}} \quad \frac{(1 \mp \cdot K/2)K_{D}\ln(f_{H}/f_{L})Q_{Di0}}{2kT_{B}} \quad , \qquad (15)$$

где S_{ROi} , S_{RTi} и S_{bi} – усредненные по частотной полосе f_H f_L значения обобщенных спектральных мощностей S_{RO} , S_{RT} и S_b соответственно (см. [9], табл. 1). NETD (разность температур, эквивалентная шуму), характеризующая величину изменения температур объектов наблюдения, вызывающего электрический сигнал, равный величине шума на выходе приемника, по известной величине NEP определяется соотношением (25) работы [9].

Анализ результатов. Во всех расчетах (рис. 1–4) и оценках в качестве неизменных параметров принимали T_B 300 K, $_S$ 0,5, A 1,5 10 5 см², $_{1}$ $_{2}$ 8–14 мкм, $_{0}$ 10 2 с, $_{i}$ 100 мкс, $_{W}$ $_{ob}$ F 1.3десь А – площадь, на которой происходит поглощение теплового излучения; $_{1}$ и $_{2}$ – нижнее и верхнее значения рабочего диапазона длин волн; $_{ob}$ – коэффициент пропускания объектива; F – отношение фокусного расстояния к диаметру объектива. Зависимости на рис. 1 рассчитывали по соотношению (15) и соотношению (25) из работы [9]. При этом дополнительно приняли C_D

и соотношению (25) из работы [9]. При этом дополнительно приняли C_D 10⁹ Дж/К и G_{0D} 10⁷ Вт/К (независимо от температуры), для металлического болометра $1/T_D$ К¹ и $K_D/4kT_B$ 3 10⁵ Дж¹ [14, 15], для

Рис. 1. Зависимости мощности NEP и разности температур NETD, эквивалентных шуму, от величины разогрева T_{i0} для полупроводниковых (кривые 1, 2) и металлических (кривые 3, 4) болометров, рассчитанные для режимов измерения V const (кривые 1, 4) и I const (кривые 2, 3). Сплошные линии – зависимости с учетом флуктуаций выделяющегося в болометре джо-

полупроводникового болометра $0,02(300/T_D)^2$ К ¹ и $K_D/4kT_B$

3 10⁶ Дж ¹. Шумы схем считывания и флуктуации смещения не учитывали. Для полупроводникового болометра значения пороговой мощности заметно меньше в режиме V const, а для металлического – в режиме I const, что обусловлено соотношением эффективных теплопроводностей $G_{0D}(1 T_{i0})$ в выражении (7). Резкое уменьшение мощности, эквивален- $G_{0D}(1, T_{i0})$ в выражении (7). Резкое уменьшение мощности, эквивален-тной шуму, при малых T_{i0} вызвано уменьшением относительного вклада шума Джонсона. При дальнейшем увеличении T_{i0} для полупроводникового болометра в режиме I const и металлического болометра в режиме V const происходит стабилизация или небольшой рост NEP, обусловленный главным образом понижением ТКС и увеличением соответствующей эффективной теплопроводности. Оптимальные значения разогрева болометров Т₁₀ составляют 100 К для металлического и 10 К для полупроводникового терморезисторов. Использование последнего позволяет примерно в 2 раза понизить NEP. Учет флуктуаций выделяющегося в болометре джоулева тепла слабо влияет на мощность, эквивалентную шуму, в силу их малости в полупроводниковом терморезисторе и малого вклада флуктуаций температуры по сравнению с шумом Джонсона и 1/f -шумом в металлическом терморезисторе. Это хорошо видно из рис. 2, где зависимости рассчитаны при тех же параметрах, что и на рис. 1. Шум Джонсона в металлическом болометре сравнивается с шумом тепловых флуктуаций только при *T*_{i0} 165 K, а среднеквадратичные значения флуктуаций температуры под воздействием флуктуации джоулевой мощности увеличиваются в 1,5-2 раза. В полупроводниковом болометре шум Джонсона в режиме V сonst сравнивается с шумом тепловых флуктуаций только при T_{i0} 11 K, а среднеквадратичные значе-

Рис. 2. Зависимости от величины разогрева T_{i0} среднеквадратичных значений флуктуаций температур $\langle T_n^2 \rangle$ (кривые 1, 4), нормированных на их значения при отсутствии флуктуаций выделяющегося в болометре джоулева тепла $\langle T_{n0}^2 \rangle$, и отношений вкладов в NEP квадратов шумов Джонсона JT (кривые 2, 5) и 1/ *f*-шума болометра FT (кривые 3, 6) к вкладам тепловых флуктуаций $\langle T_{n0}^2 \rangle$ для полупроводникового (1–3) и металлического (4–6) болометров в режи-

ния флуктуаций температуры под воздействием флуктуации джоулевой мощности увеличиваются менее чем на 10 % при T_{i0} 20 К. Вклад 1/f-шума в металлическом болометре примерно в 3 раза больше, чем в полупроводниковом, несмотря на его в 10 раз меньшее абсолютное значение, что обусловлено малым значением ТКС.

При проведении дальнейшего анализа влияния основных факторов на NEP воспользуемся выражением, полученным из (14) и (15) путем следующих приближений. Во-первых, как видно из рис. 1, аналогично режиму постоянного смещения, можно пренебречь членом, пропорциональным T_{i0}/T_B и обусловленным флуктуациями джоулевой мощности. Во-вгорых, для болометров, работающих при малом разогреве *T*, пренебрежем влиянием разогрева, т. е. членами типа 1 . Это дает возможность все шумы схемы измерения описать приведенной ко входу схемы считывания эквивалентной шумовой ЭДС, для которой выражения спектральной плотности *S* _{еq} приведены в табл. 2 работы [9] (напомним, что в мостовой схеме предполагается наличие приведенных ЭДС в обоих полумостах). В результате, считая не зависящей от температуры для всех рассматриваемых нами схем, получим

NEP²
$$\frac{kT_B^2 G_{0D}}{\binom{2}{0} \frac{2}{W} \frac{2}{S}} = {}_{S} T[1 \ JT_i(1 \ RJ_i) \ FT_i],$$
 (16)

Рис. 3. Зависимости мощности NEP и разности температур NETD, эквивалентных шуму, от сопротивления микроболометра R_D при $_0$ 10 мс. Сплошные линии – G_{0D} 10 ⁷ Вт/К, $K_D/4kT_B$ 0; 1 10⁶; 3 10⁶ и 10⁷ Дж ¹. Пунктирные – G_{0D} 2 10 ⁸ Вт/К, $K_D/4kT_B$ 0;

где $JT_i = \frac{2}{T_i^2 T_B T_{i0}}$ и $FT_i = \frac{C_D K_D \ln (f_H / f_L)}{T^k T_B^2}$ – отношения вкладов в NEP

шума Джонсона и 1/f-шума болометра к вкладу тепловых флуктуаций; $RJ_i = \frac{m^S eqi}{4kT_BR_{D0}}$ – отношение вкладов в NEP шума схемы считывания и шума

Джонсона; S_{eqi} – усредненная по полосе 1/2 _i спектральная плотность S_{eq} . Как и ранее, RJ JT RT – отношение вкладов в NEP шумов схемы измерения и тепловых флуктуаций. Для мостовой схемы $_{S}$ 4, $_{T}$ 1/2 и $_{m}$ 2, а в остальных рассматриваемых случаях эти коэффициенты равны единице.

Сделаем некоторые оценки. Используем параметры, типичные для многоэлементных неохлаждаемых полупроводниковых микроболометров:

0,02 К ¹, G_{0D} 10 ⁷ Вт/К. Кроме того, примем s_{T} ^m 1. Мощность, эквивалентная шуму, обусловленная только тепловыми флуктуациями, равна 7 10 ¹² Вт. Естественно считать, что болометр спроектирован хорошо, если каждая из остальных компонент шума не превышает шума тепловых флуктуаций, т. е. *JT*, *RJ* и FT меньше единицы. Укажем необходимые для этого условия. Для шума Джонсона ${}^{2}T_{B}T_{i0}$ 2 или T_{i0} 16 К. (Меньшее значение T_{i0} 11 К (см. рис. 2) получено при учете разогрева полупроводникового болометра в режиме *V* const.) Приведенный ко входу шум схемы считывания должен быть меньше $4kT_{B}R_{D}$, что, например, для R_{D} 100 кОм составляет 40 нВ Гц ${}^{1/2}$. Токовый 1/*f*-шум болометра будет меньше шума тепловых флуктуаций при условии

Рис. 4. Зависимости температуры разогрева болометра T_{i0} , напряжения смещения V_D , квадрата обратного ТКС (1/²) и отношений вкладов в NEP шума Джонсона (*JT*), 1/*f*-шума (*FT*), шума схемы считывания (*RT*) к вкладу тепловых флуктуаций от сопротивления болометра R_D . Сплошные линии – G_{0D} 10⁷ Вт/К, $K_D/4kT_B$ 3 10⁶ Дж¹. Пунктирные – G_{0D} 2 10⁸ Вт/К, $K_D/4kT_B$ 1,5 10⁷ Дж¹

$$\frac{K_D}{4kT_B} = \frac{{}^2T_B}{4C_D\ln\left(f_H / f_L\right)}.$$
(17)

В частности, при выбранных выше параметрах и частоте калибровки системы f_L 0,01 Гц здесь параметр $K_D/4kT_B$ должен быть меньше 2,3 10^6 Дж⁻¹. (Для металлического болометра при $1/T_D$ – менее 6,0 10^4 Дж⁻¹.) Приведенное выше значение T_{i0} 16 К позволяет легко оценить рассеиваемую в матрице микроболометров мощность, Q_M C_D $T_{i0} N_L N_C f_F$, которая при количестве столбцов N_C 320 и строк N_L 240 для частоты кадров f_F 25 Гц составит всего 31 мВт. В качестве неизменных параметров во всех дальнейших расчетах

В качестве неизменных параметров во всех дальнейших расчетах (см. рис. 3, 4) использовали: $_{S}$ $_{T}$ $_{m}$ 1, S_{eq} $_{RJ}^{2}$ $_{RJ}^{2}/f$ при $_{RJ}$ 10 8 В Гц $^{1/2}$, $_{Rf}$ 30 10 8 В. Величина 1/f -шума схемы считывания $_{Rf}$ выбрана так, что его интегральная величина в полосе 1/2 $_{i}$ оказывается близкой к величине белого шума схемы считывания $_{RJ}$. Кроме того, ТКС в соответствии с экспериментальными данными для слоев оксидов ванадия VO_x [16] принимался логарифмически зависящим от сопротивления болометра и равным 0,02 К 1 при R_{D} 100 кОм и 0,01 К 1 при R_{D} 1 кОм. Величина разогрева болометра T_{i0} выбиралась так, чтобы параметр JT, если это возможно, был равен 0,5, или в противном случае не превышала 30 К при малых значениях ТКС, или была равна максимально достижимому разогреву при больших R_{D} и максимальном напряжении смещения болометра V_{D} 5В.

Из зависимостей, рассчитанных по соотношению (16) и соотношению (25) работы [9], на рис. З видно, что для выбранных параметров оптимальны-

ми являются сопротивления болометров 70–200 и 300–1000 кОм при теплопроводности G_{0D} 10⁷ и G_{0D} 2 10⁸ Вт/К соответственно. Отметим, что разброс сопротивлений болометров по матрице и их изменение в результате разогрева импульсом смещения требуют повышенного динамического диапазона схемы считывания [10], что, в свою очередь, при измерении сигнала интегрирующим операционным усилителем [11] требует понижения времени измерения _i (и соответственно коэффициента усиления) или компенсации разброса и разогрева [10]. Мы не будем рассматривать эти аспекты в данной работе, а лишь отметим, что понижение _i со 100 до 20 мкс уменьшает приблизительно в 5 раз сопротивления болометров, при которых наблюдаются минимальные значения NEP и NETD. При этом NEP и NETD повышаются незначительно.

Заметное увеличение NEP и NETD при R_D 10 кОм связано с уменьшением ТКС и ограничением на максимальный разогрев T_{i0} 30K (при уменьшении R_D необходимо понизить V_D , что приводит к уменьшению чувствительности), а при R_D 100 кОм и \overline{R}_D 1 МОм их увеличение обусловлено ростом шума Джонсона и ограничением максимальной величины V_D Это хорошо видно из зависимостей на рис. 4, рассчитанных при тех же параметрах, что и на рис. 3. Отметим, что существует достаточно обширная область сопротивлений болометров (от 20 до 200 кОм и от 20 кОм до 1,5 МОм для болометров с теплопроводностью G_{0D} 10 ⁷ и G_{0D} 2 10 ⁸ Вт/К соответственно), в которой вклад шума Джонсона и схемы считывания меньше шума тепловой флуктуации. Следует отметить, что при импульсном смещении и выбранных параметрах, в отличие от режима постоянного смещения, диапазон сопротивлений болометров, в котором вклад шума Джонсона достигает уровня 0,5 от вклада шума тепловых флуктуаций, достаточно мал и отсутствует при G_{0D} 10⁷ Вт/К. Это вызвано широкой полосой измерения. В результате минимальные значения NEP и NETD достигаются в относительно узком интервале значений R_D. Так же, как и для постоянного смещения, резкое увеличение относительного вклада шума схемы считывания RT с понижением R_D связано с уменьшением чувствительности болометра по мере понижения V_D, обусловленного установленным выше ограничением на разогрев болометра T_{i0} 30 К.

Относительный вклад токового 1/f-шума болометра при фиксированном времени тепловой релаксации $_0$ так же, как и для режима постоянного смещения, прямо пропорционален теплопроводности болометра и обратно пропорционален квадрату ТКС. Однако, вследствие большей полосы частот при G_{0D} 10⁷ Вт/К и R_D 100 кОм, в согласии с установленным выше он оказывается меньше вклада шума тепловых флуктуаций, если $K_D/4kT_B$

2,3 10⁶ Дж⁻¹, т. е. при значительно более жестком условии, чем при постоянном смещении.

Заключение. Получены теоретические соотношения (14) и (15) для величины мощности, эквивалентной шуму, соответствующие трем основным используемым на практике схемам измерения сигналов неохлаждаемых матричных микроболометров в режиме импульсного смещения с учетом разогрева болометра, флуктуаций тепловых потоков, шума Джонсона и 1/f-шума болометра, шумов устройства считывания и источников питания.

Показано, что в металлических болометрах вклад флуктуаций выделяющегося джоулева тепла в мощность, эквивалентную шуму, и в среднеквадратичные флуктуации температуры (13) сравним или даже превышает вклад флуктуаций тепловых потоков. Для полупроводниковых болометров влияние флуктуации джоулева тепла незначительно. Разогрев приводит к уменьшению мощности, эквивалентной шуму, в режиме фиксированного напряжения и к ее увеличению в режиме фиксированного тока для полупроводниковых болометров и к обратным зависимостям для металлических болометров.

Установлен критерий (17), при выполнении которого вклад 1/f-шума микроболометра в мощность, эквивалентную шуму, не превышает вклада тепловых флуктуаций, а разность температур, эквивалентная шуму, для типичных в настоящее время конструктивных параметров матричных микроболометрических приемников на основе оксидов ванадия в режиме импульсного смещения может достигать величины менее 20 мК.

СПИСОК ЛИТЕРАТУРЫ

- 1. Филачев А. М., Пономаренко В. П., Таубкин И. И., Ушакова М. Б. Инфракрасные матрицы и тенденции их развития. Ч. І // Прикладная физика. 2003. № 1. С. 105.
- Murphy R., Kohin M., Backer B. et al. Recent developments in uncooled IR technology // Proc. SPIE. 2000. 4028. P. 12.
- 3. Rogalski A. Infrared Detectors. Singapore: Gordon and Breach Science Publishers, 2000.
- 4. Kruse P. W. A comparison of the limits to the performance of thermal and photon detector imaging arrays // Infrared Phys. and Technol. 1995. 36, N 5. P. 869.
- 5. Kruse P. W., McGlauchlin L. D., McQuistan R. B. Elements of Infrared Technology: Generation, Transmission, and Detection. N. Y.–L.: John Willey and Sons, Inc., 1962.
- 6. Smith R. A., Jones F. E., Chasmar R. P. The Detection and Measurement of Infra-red Radiation. Oxford: Clarendon Press, 1968.
- 7. Chol G., Marfaing Y., Munsch M. et al. Les Detecteurs de Rayonnement Infra-rouge. Paris: Dunod, 1966.
- Hanson C. M. Uncooled IR detector performance limits and barriers // Proc. SPIE. 2000. 4028. P. 2.
- Демьяненко М. А., Кравченко А. Ф., Овсюк В. Н. Неохлаждаемые резистивные микроболометры. Ч. І. Режим постоянного смещения // Автометрия. 2005. 41. №1. С. 88.
- Jansson C., Ringh U., Liddiard K. Theoretical analysis of pulse bias heating of resistance bolometer infrared detectors and effectiveness of bias compensation // Proc. SPIE. 1995. 2552. P. 644.
- Jakonis D., Svensson C., Jansson C. Readout architectures for uncooled IR detector arrays // Sensor and Actuators A: Physical. 2000. 84. P. 220.
- 12. Ахманов С. А., Дьяков Ю. Е., Чиркин А. С. Ведение в статистическую радиофизику и оптику. М.: Наука, 1981.
- 13. Van der Ziel A. Noise in measurements. N.Y.-L.: John Willey and Sons, Inc., 1976.
- Voss R. F., Clarke J. Flicker (1/f) noise: Equilibrium temperature and resistance fluctuations // Phys. Rev. 1976. 13. P. 556.
- Dutta P., Horn P. M. Low-frequency fluctuations in solids: 1/f noise // Rev. Modern Phys. 1981. 53. P. 497.
- Radford W., Murphy D., Ray M. et al. 320 240 silicon microbolometer uncooled IRFPAs with on-chip offset correction // Proc. SPIE. 1996. 2746. P. 82.

Институт физики полупроводников СО РАН, Новосибирский государственный университет, E-mail: dem_yanenko@thermo.isp.nsc.ru Поступила в редакцию 26 января 2005 г.