УДК 665.63-404+544.478-03

Использование механоактивации для получения сульфидных катализаторов гидрогенолиза

Τ. Α. ΦΕДУЩΑΚ¹, Μ. Α. ΥЙΜИΗ², Α. Ε. ΕΡΜΑΚΟΒ², Α. С. ΑΚИΜΟΒ¹, Η. Η. ЩΕΓΟЛΕΒΑ², Τ. Β. ΠΕΤΡΕΗΚΟ¹, С. П. ЖУРАВКОВ³, А. В. ВОСМЕРИКОВ¹

¹Институт химии нефти Сибирского отделения РАН, проспект Академический, 4, Томск 634021 (Россия)

E-mail: taina@ipc.tsc.ru

²Институт физики металлов Уральского отделения РАН, ул. С. Ковалевской, 18, Екатеринбург 620990 (Россия)

³Национальный исследовательский Томский политехнический университет, проспект Ленина, 30, Томск 634050 (Россия)

Аннотация

Впервые описан подход к изготовлению массивных сульфидных катализаторов твердофазным способом в одну стадию, который реализуется посредством механоактивации смеси, состоящей из крупнодисперсных порошков дисульфида молибдена и кобальта, в присутствии детонационных наноалмазов. Исследовано влияние времени механообработки, соотношения исходных компонентов и наноалмазов на процесс нанофрагментации дисульфида молибдена и активность полученных каталитических систем в модельной реакции гидродесульфирования дибензотиофена.

Ключевые слова: механоактивация, гидроочистка, сульфидные катализаторы, модельная реакция, гидродесульфирование дибензотиофена

введение

По мнению российских ученых, проблема селективного синтеза активного компонента в нанесенных каталитических системах гидроочистки нефтяных фракций в настоящее время решена [1]. Продолжение работ в этой области связано с совершенствованием технологий нанесения и сульфидирования активных компонентов, оптимизацией химического, фазового состава, текстурных, гранулометрических и прочностных характеристик собственно носителя.

Дальнейшее развитие катализаторов гидрогенолиза, как в России, так и на Западе, связывают с разработкой новых методов и технологий получения массивных катализаторов. Они выгодно отличаются от нанесенных каталитических систем тем, что позволяют свободно варьировать концентрацией активного компонента и исключают использование водных растворов реагентов. В настоящее время разрабатываются принципиально новые методы получения композиций Ni-(Co)-Mo(W)-S, не содержащих носителей. Они основаны на синтезе наноструктур методом соосаждения прекурсоров активных компонентов [2], механохимическим сочетанием солей-прекурсоров никеля и молибдена или порошков Ni, W, Mo, Al микронных размеров с последующим выщелачиванием; высокотемпературным разложением тетратиомолибдата аммония (NH₄)₂MoS₄; на синтезе наноразмерных частиц прекурсора гетерогенного катализатора в мицеллярной трехфазной системе состава: обратная микроэмульсия раствор (NH₄)₆Mo₇O₂₄/ПАВ/пентадекан [3-6]. Ранее нами были синтезированы в одну стадию сульфидные катализаторы из нанопорошков металлов [7] посредством прямого сульфидирования нанопорошков молибдена, кобальта, никеля, а чуть позже – посредством механического сочетания крупнодисперного товарного дисульфида молибдена и нанопорошков 3*d*-металлов [8]. Однако указанные каталитические системы обеспечивали недостаточную глубину гидродесульфирования и на порядок уступали современным промышленным катализаторам гидроочистки по активности (S_{ост} ≈ 0.001 мас. %).

Данная работа продолжает начатый ранее экспериментальный поиск простого и экологичного способа синтеза сульфидных катализаторов гидроочистки нефтяных топливных фракций. Цель исследования — получение массивного сульфидного катализатора твердофазным способом в одну стадию посредством механохимического сочетания крупнодисперсных порошков дисульфида молибдена и кобальта в присутствии детонационных наноалмазов, а также изучение активности полученных каталитических систем.

Наноалмазы использованы в качестве третьего компонента, во-первых, с целью обеспечить диспергирование крупнодисперсных дисульфида молибдена и кобальта, а во-вторых, – с учетом сведений о каталитической активности наноалмазов в реакциях изомеризации, дегидрирования, диспропорционирования и поликонденсации [9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ при синтезе каталитических систем использовали коммерческие крупнодисперсные порошки дисульфида молибдена (МоS₂, ДМИ-7, получен из минерала молибденита, содержание основного вещества 99.72 %), кобальта (производится электрическим методом для целей порошковой металлургии и получения магнитов, средний размер 70 мкм, ГОСТ 9721-79, марка ПК-1у), а также детонационных наноалмазов (НА, серийный; поставщик - ООО СКН, г. Снежинск; синтез материала из состава марки ТГ-50 в ледяной оболочке; очистка кислотно-хромовым способом; массовая доля несгораемого остатка не превышает 2.0 %; средний размер первичных частиц 4 нм).

Синтез катализаторов с соотношениями Co/HA/MoS₂ = 1:3:3 и 1:1:5 выполняли путем механической обработки компонентов в вертикальной вибрационной мельнице под вакуумом (10⁻⁵ Торр) с частотой 16 Гц, амплитудой воздействия 2 мм и временем механоактивации 0.5-8 ч; продукт хранили в инертной среде аргона. Электронные микрофотографии получали с помощью микроскопа Philips CM-30. Активность катализаторов оценивали по остаточному содержанию серы в ходе гидродесульфирования модельного соединения (дибензотиофен, ДБТ, аналитическая длина волны $\lambda = 324$ нм) и по соответствующим значениям констант скорости превращения ДБТ. Эксперименты проводили на установке с реактором закрытого типа общей вместимостью 100 мл, при давлении 3.0 МПа и температуре 340 °С. Загрузка катализатора составляла 0.64 г, модельной смеси - 62 г (80 мл). Исходная концентрация раствора ДБТ в гексадекане составляла 0.05 % по сере. Константы скорости гидрогенолиза ДБТ (k) находили, исходя из предположения о псевдопервом порядке превращения ДБТ:

$$C_{\rm ДБT} = C_{\rm ДБT}^0 e^{-kt} \tag{1}$$

где $C_{\text{дыт}}^0$, $C_{\text{дыт}}$ – исходное и конечное содержание раствора ДБТ в гексадекане соответственно; k – коэффициент наклона прямой; t – время.

После преобразования выражение скорости приобретает вид

$$\ln \left(\begin{array}{c} C_{\text{ДБТ}}^{0} \\ C_{\text{ДБТ}} \end{array} \right) = kt \tag{2}$$

Из тангенса угла наклона зависимости

 $\ln \begin{pmatrix} C_{\text{двт}}^0 \\ C_{\text{двт}} \end{pmatrix}$ от t получали соответствующие

значения констант скорости k. Пробы последовательно отбирали из реактора (объем аликвоты 0.5 мл) через 0.5, 1, 2, 3, 4, 6 и 7 ч. Элементное содержание серы в конечных образцах определяли рентгенофлуоресцентным методом (анализатор серы OXFORD Instruments Lab-X 3500 SCL). Изменение концентрации ДБТ в промежуточных пробах определяли спектрофотометрически (Uvikon-943, Kontron Instruments, Италия) на аналитической длине волны $\lambda = 324$ нм. Активность

полученных каталитических систем сравнивали с отечественным нанесенным катализатором.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Кристаллы дисульфида молибдена имеют форму пластинок гексагональной формы, которые расслаиваются перпендикулярно главной оси на очень тонкие лепестки. В кристаллической решетке MoS₂ каждый атом молибдена расположен в центре шести атомов серы, находящихся в углах треугольной призмы [10]. Для нанесенных сульфидных катализаторов вопросы проявления механизмов их активности исследованы достаточно глубоко. На сегодня бесспорен тот факт, что активная фаза в нанесенных катализаторах представляет собой нанокристаллиты дисульфида молибдена размером 3-5 нм пачечной структуры с количеством кристаллитов в пачке 1-2, слабо связанные химически с носителем [11].

Катализаторы готовили из трех компонентов при различном их соотношении и времени механоактивации (MA).

На микрофотографии дисульфида молибдена (рис. 1) межплоскостное расстояние между гранями кристаллов составляет 0.61 нм, что характерно для MoS_2 . В ходе механического диспергирования системы $Co/HA/MoS_2 =$ 1:3:3 в интервале 0.5–8.0 ч происходит нанофрагментация исходных крупных кристаллов MoS_2 и образуются нанокристаллиты (рис. 2, 3) с "искривленной" конфигурацией. По данным авторов [5], в модельных реакциях гид-

Рис. 2. Электронный снимок катализатора II (время МА 4 ч).

рирования, изомеризации и дейтерообмена алкенов уровень каталитической активности MoS₂, полученного термическим разложением тиомолибдата аммония, соотносится со степенью изгиба наноразмерных пластинчатых кристаллов, объединенных в упаковки. Непосредственно сами наноалмазы проявляются как "пятна" с межплоскостным расстоянием между гранями кристаллов 0.2 нм. Частицы кобальта на электронных снимках распознать не удалось. Согласно данным рис. 2 и 3, в условиях механоактивации образуются нанокристаллиты дисульфида молибдена большего размера, нежели те, что входят в состав активной фазы в нанесенных катализаторах [12].

Для оценки активности катализаторов относительно соединений дибензотиофенового

Рис. 1. Микрофотография исходного MoS₂.

Рис. 3. Микрофотография катализатора II (время МА 8 ч).

Т. А. ФЕДУЩАК и др.

Рис. 4. Схема гидродесульфирования дибензотиофена (ДБТ) и возможные продукты реакций.

ряда, которые присутствуют в дизельных фракциях и входят в группу соединений, наиболее устойчивых к гидроочистке, традиционно используют модельную реакцию гидродесульфирования ДБТ. Последовательность реакций в процессе гидродесульфирования ДБТ приведена на рис. 4.

Рис. 5. Влияние времени МА на остаточное содержание серы в присутствии катализатора I.

Рис. 6. Влияние времени МА на константу скорости гидрогенолиза ДБТ (k) в присутствии катализатора I.

Активность каталитических систем в модельной реакции определяли для катализаторов двух серий (I и II), отличающихся по составу (Co/HA/MoS₂ = 1:1:5 и 1:3:3 соответственно) и времени MA. Катализаторы получали в условиях различного времени механосочетания исходных компонентов – 0.5, 1, 2, 4 и 8 ч. Об активности каталитических систем судили по остаточному содержанию серы в реакционной смеси через 7 ч и константам скорости гидродесульфирования модельного соединения.

Зависимость времени механообработки от остаточного содержания серы в гидродесульфуризате для катализатора I (рис. 5) носит немонотонный характер и проходит через минимум, который соответствует времени МА в 2 ч. Для этого времени МА $S_{ocr} = 0.003$ мас. %, $k = 0.35 \text{ ч}^{-1}$ (рис. 6). Константы скорости гидрогенолиза ДБТ для МА в течение 4 ч оказались несколько выше ($k = 0.47 \text{ ч}^{-1}$) (см. рис. 6).

В отличие от катализаторов I серии, для катализаторов II серии тенденция изменения

Рис. 7. Влияние времени МА на остаточное содержание серы в присутствии катализатора II.

Рис. 8. Влияние времени МА на константу скорости гидрогенолиза ДБТ для катализатора II.

остаточного содержания серы (S_{oct}) в гидродесульфуризатах в зависимости от времени механообработки носит монотонный убывающий характер (рис. 7). В исследованных условиях оптимальное время механообработки составляет 8 ч: величина S_{oct} достигает минимального значения и составляет 0.005 мас. % (см. рис. 7). При этом константы скорости гидродесульфирования ДБТ в зависимости от времени МА исходных реагентов монотонно возрастают и достигают максимального значения в исследованном ряду – k = 0.93 ч⁻¹ (рис. 8).

Сравнительный анализ эффективности каталитического действия этих систем относительно ДБТ показывает, что катализатор I (2 ч МА; соотношение компонентов 1 : 1 : 5) со сравнительно невысокой константой ($k = 0.46 \text{ ч}^{-1}$) превосходит катализатор II, поскольку обеспечивает сравнительно низкое содержание остаточной серы (0.003 мас. %). Эти данные немного уступают показателям активности, полученным для нанесенного катализатора сравнения: $k = 0.68 \text{ ч}^{-1}$, $\mathbf{S}_{oct} = 0.002$ мас. %.

В то же время, высокая константа скорости для катализатора II не вполне согласуется с полнотой гидрообессеривания модельного соединения (**S**_{ост} = 0.005 мас. %). Это может быть связано с увеличением вклада процессов, которые протекают одновременно с гидрированием дибензотиофенового кольца и способствуют понижению концентрации ДБТ в реакционной смеси ($\lambda = 324$ нм), но при этом сера в кольце сохраняется. Таким процессами, например, могут быть реакции образования продуктов **A** или **B** не дибензотиофенового ряда (см. рис. 4).

ЗАКЛЮЧЕНИЕ

Таким образом, показана принципиальная возможность синтеза массивных сульфидных катализаторов гидродесульфирования ДБТ с высокой гидродесульфирующей способностью посредством механоактивации крупнодисперсных дисульфида молибдена, кобальта в присутствии наноалмаза в одну стадию.

СПИСОК ЛИТЕРАТУРЫ

- 1 Климов О. В. // Нефтегазовый журн. 2013. № 3. С. 71–75.
- 2 Eijsbouts S., Plantenga F., Leliveld B., Inoue Yoshimasa, Fujita K. // Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 2003. Vol. 48. P. 494–497.
- 3 Пат. 2346742 РФ, 2011.
- 4 Polyakov M., Indris S., Schwamborn S. // J. Catal. 2008. Vol. 260. P. 236–244.
- 5 Huirache-Acuna R., Flores Z. M. I., Albiter M. A. // Adv. Tech. Mater. Mat. Proc. J. 2006. Vol. 2. P. 91–95.
- 6 Кадиев Х. М., Хаджиев С. М., Кадиева М. Х., Гюльмалиева А. М. // Материалы 1-го Рос. нефт. конгр. Москва, 2011. С. 8.
- 7 Федущак Т. А., Канашевич Д. А., Петренко Т. В. // Изв. ТПУ. 2010. Т. 320, № 3. С. 58-61.
- 8 Федущак Т. А., Петренко Т. В., Восмериков А. В., Канашевич Д. А., Величкина Л. М. // Журн. физ. химии. 2012. Т. 86. С. 444–448.
- 9 Еременко А. Н., Беседина О. А., Образцова И. И. // ЖПХ. 2004. Т. 77. С. 1956–1959.
- 10 Ефимов О. Н., Вершинин Н. Н., Таций В. Ф., Гусев А. Л., Гольдшлегер Н. Ф. // Альтернативная энергетика и экология. 2007. Т. 50. С. 98–108.
- 11 Topsoe H. // Appl. Catal. A: Gen. 2007. Vol. 322. P. 3-8.