2012. Том 53, № 1

Январь – февраль

C. 142 – 148

УДК 548.73

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА [CuL](NO₃)(ReO₄) И [CuL](ReO₄)₂ (L — 4,6,6-ТРИМЕТИЛ-1,9-ДИАМИНО-3,7-ДИАЗАНОН-3-ЕН)

© 2012 Е.А. Быкова¹*, С.П. Храненко¹, Е.Ю. Семитут¹, С.А. Громилов^{1,2}

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет, Научно-образовательный комплекс "Наносистемы и современные материалы"

Статья поступила 7 февраля 2011 г.

Изучены кристаллические структуры [CuL](NO₃)(ReO₄) и [CuL](ReO₄)₂ (L — 4,6,6триметил-1,9-диамино-3,7-диазанон-3-ен). В [CuL](NO₃)(ReO₄) квадратная координация атома меди дополнена до искаженной октаэдрической двумя атомами кислорода — Cu...O(ReO₄) 2,393 и Cu...O(NO₃) 2,685 Å, а в [CuL](ReO₄)₂ — Cu...O(ReO₄) 2,468 и 2,697 Å. Продукты термолиза солей в атмосфере водорода при 800 °С представляют собой смеси нанокристаллических металлических порошков с размерами OKP ~ 45 нм.

Ключевые слова: медь, рений, кристаллохимия, рентгеноструктурный анализ, термические исследования.

введение

Согласно фазовой диаграмме Си и Re не смешиваются даже в жидком состоянии [1]. Однако в литературе встречаются примеры получения твердых растворов в неравновесных условиях с соотношениями металлов, которые по данным фазовых диаграмм попадают в область расслоения. В частности, в работе [2] в подобной системе Au-Re путем термического разложения комплексной соли [Au(dien)Cl](ReO₄)₂ был получен твердый раствор состава Au_{0.1}Reo_{.9}. В данной работе нам представлялось интересным получить аналогичный предшественник, содержащий Cu и Re, и исследовать возможность образования твердых растворов этих металлов. В литературе есть примеры получения таких биметаллических солей, например [Cu(NH₃)₄]× ×(ReO₄)₂ [3], [Cu(en)₂](ReO₄)₂ (en — этилендиамин) [4], [Cu(H₂O)₄](ReO₄)₂ [5], CuReO₄ [6]. В работе [7] были описаны термические свойства биметаллических комплексных солей [M¹L][M²Cl₄] (где M¹ — Си, Ni; M² — Mn, Zn; L — 4,6,6-триметил-1,9-диамино-3,7-диазанон-3ен). Указанные соли использовали в качестве гетерометаллических предшественников для получения электрокатализаторов восстановления кислорода, которые можно применять в топливных элементах. Соединения наносили на высокопористую углеродную матрицу пропиткой, а затем проводили термообработку при температурах 200-800 °C. В продуктах термического разложения медных комплексов, помимо хлоридов марганца или цинка, присутствовали соединения меди с углеродом и азотом. В работах [8,9] было показано, что продукты пиролиза, содержащие металл, азот и углерод, являются высокоэффективными электрокатализаторами в реакции восстановления кислорода. Представлялось интересным получить биметаллическую комплексную соль, содержащую катион меди с лигандом L и перренат-анионом, определить ее кристаллическую структуру, а также изучить продукты термического разложения этой комплексной соли.

^{*} E-mail: knilav@ngs.ru

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

[CuL](ReO₄)(NO₃) синтезировали следующим образом. Смесь кристаллических солей Cu(NO₃)₂·3H₂O (0,242 г) и NaReO₄ (0,274 г), взятых в мольном отношении 1:1, хорошо растирали до однородной массы и вносили в нее 4 мл свежеприготовленного раствора этилендиамина в обезвоженном ацетоне с концентрацией 1,5 ммоль/мл. Реакционную смесь хорошо перемешивали до полного растворения твердой фазы и образования раствора темно-синего цвета. Затем раствор выдерживали в течение 25—30 мин при комнатной температуре и разбавляли до 15 мл ацетоном при интенсивном перемешивании. Выделившийся темно-сиреневый осадок высушивали на стеклянном фильтре, промывали 3—4 раза обезвоженным ацетоном и высушивали в эксикаторе над твердым NaOH. Выход продукта составил ~90 %. В растворе происходит альдольно-кротоновая конденсация молекулы этилендиамина, координированной к катиону меди, и двух молекул ацетона. Впервые подобная реакция была описана H.Ф. Куртисом в 1960 г. для [Nien₃](ClO₄)₂ [10]. Полученный продукт растворим в воде и не растворим в бензоле, хлороформе, этиловом спирте, ацетоне, хлористом метилене. Для получения монокристаллов, пригодных для рентгеноструктурного анализа, проводили перекристаллизацию синтезированного продукта из раствора диметилформамида.

При синтезе [CuL](ReO₄)₂ растворяли Cu(NO₃)₂·3H₂O (1 ммоль) в ацетоне при комнатной температуре. После чего вносили 3 М ацетоновый раствор этилендиамина в избытке к металлу (соотношение Cu:en = 1:22,5). Получившуюся реакционную смесь упаривали на водяной бане при 30—40 °C до твердого или вязкого остатка, затем растворяли остаток в воде и вносили в стехиометрическом мольном соотношении NaReO₄. Выделившийся темно-сиреневый осадок отфильтровывали, а из маточного раствора через некоторое время выпадали монокристаллы. Выход продукта ~80 %. Полученный продукт растворим в воде и не растворим в бензоле, хлороформе, этиловом спирте, ацетоне, хлористом метилене.

Исследование термических свойств солей в атмосфере гелия проведено с использованием термовесов TG 209 F1 Iris® фирмы NETZSCH. Масса навесок составляла 10—15 мг, тигель — Al₂O₃, скорость нагрева 10 град./мин. Обработку экспериментальных данных проводили с использованием пакета программ Proteus analysis [11]. Для получения металлических порошков исходные соли нагревали в токе чистого водорода до 800 °C (кварцевый реактор, скорость нагрева 10 град./мин) и выдерживали при этой температуре в течение 2 ч.

Исследование монокристаллов проведено на автоматическом дифрактометре Bruker X8 APEX (Мо K_{α} -излучение, графитовый монохроматор, двухкоординатный CCD-детектор) при T = 150 К. Все расчеты выполнены по комплексу программ SHELX-97 [12]. Координаты и тепловые параметры атомов депонированы в Кембриджский банк структурных данных CCDC [13] и могут быть получены по адресу www.ccdc.cam.ac.uk/data request/cif.

Рентгенодифрактометрические исследования солей и продуктов их термического разложения проведены на дифрактометре ARL X'TRA (Cu K_{α} -излучение, полупроводниковый детектор). Дифрактограммы комплексных солей полностью проиндицированы по данным исследования отобранных из общей массы монокристаллов, что свидетельствует об однофазности продуктов. Полнопрофильное уточнение дифрактограммы конечного продукта термолиза было проведено в программе PCW 2.4 [14]. Оценку размеров областей когерентного рассеяния (OKP) частиц и микронапряжений проводили по методике Вильямсона—Холла [15].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Изученные кристаллические структуры являются островными и построены из изолированных комплексных катионов $[CuL]^{2+}$ и анионов ReO_4^- и NO_3^- . Строение структурных единиц с нумерацией атомов и эллипсоидами тепловых колебаний показано на рис. 1. В обоих случаях атом меди квадратно координирован атомами азота плоского лиганда 4,6,6-триметил-1,9диамино-3,7-диазанон-3-ена, интервалы значений ее основных геометрических характеристик даны в табл. 1. Координация атома меди дополнена до искаженной октаэдрической двумя ато-

Рис. 1. Фрагменты кристаллической структуры [CuL](ReO₄)(NO₃) (*a*) и [CuL](ReO₄)₂ (*б*) с нумерацией атомов и эллипсоидами тепловых колебаний. Атомы водорода не показаны

Таблица 1

Параметр	[CuL](NO ₃)(ReO ₄)	[CuL](ReO ₄) ₂		
Брутто-формула	CuC ₁₀ H ₂₄ N ₅ O ₇ Re	$CuC_{10}H_{24}N_4O_8Re_2$		
<i>a</i> , <i>b</i> , <i>c</i> , Å	8,5719(3), 9,0823(3), 11,2273(3)	8,7752(5), 9,0189(4), 12,4386(6)		
α, β, γ, град.	81,794(1), 86,364(1), 79,587(1)	98,660(2), 105,513(2), 95,340(2)		
Пр. гр., Z	<i>P</i> -1, 2	<i>P</i> -1, 2		
V, Å ³	850,24(5)	928,51(8)		
$d_{\rm выч}, \Gamma/{\rm cm}^3$	2,250	2,734		
Размер кристалла, мм	0,13×0,11×0,08	0,07×0,06×0,01		
Диапазон сбора данных по θ , град.	2,30—30,51	2,31—28,26		
Число измер. / независ. рефлексов	9663 / 5158	8651 / 4567		
Число независимых рефлексов [$I > 2\sigma(I)$]	4897	3727		
R _{интегр}	0,0159	0,0300		
Полнота сбора данных ($2\theta = 50^{\circ}$), %	0,998	0,998		
Число уточняемых параметров	221	229		
S -фактор по F^2	1,037	0,988		
R_1 и $wR_2 [I > 2\sigma(I)]$	0,0155 и 0,0350	0,0252 и 0,0474		
R_1 и wR_2 (все данные)	0,0171 и 0,0354	0,0368 и 0,0501		
Cu—N, Å	1,985(2)-2,020(2)	2,006(4)-2,017(4)		
N—Си—N, град.	85,30(7) и 85,39(7)	84,8(2) и 85,8(2)		
Re—O, Å	1,718(2)—1,734(2)	1,715(4)—1,733(3)		
∠О—Re—О, град.	108,45(8)—110,97(8)	107,5(2)—110,3(2)		
CCDC №	809014	810944		

Кристаллоструктурные характеристики

Таблица 2

Соединение	Длины межатомных расстояний $CuO(ReO_4^-)$	Ссылка	
[CuL](NO ₃)(ReO ₄)	2,393(2)	Наст. работа	
$[CuL](ReO_4)_2$	2,468(4) и 2,697(4)	Наст. работа	
[Cu(PnAO—H)(ReO ₄)]*	2,40(1)	[16]	
$[Cu(pc)(ReO_4)]^{**}$	2,440(4), 2,451(5)	[17]	
$[Cu(pc)(ReO_4)_2]$	2,526(5)	[17]	
$[Cu(pc)]_3(ReO_4)_2$	2,374(5)	[17]	
$[Cu_2(pzc)_2(H_2O)_2ReO_4]^{***}$	2,086(5), 2,237(4)	[18]	
$[Cu(pzc)(H_2O)ReO_4] \cdot 2H_2O$	2,354(2), 2,335(3)	[18]	

Межатомные расстояния $Cu...O(ReO_4^-)$ (Å) в известных кристаллических структурах

* PnAO—H — (1,3-диаминопропан)бис(2-метил-3-бутатанон-оксимат).

** рс — фталоцианинат.

*** pzc — 2-пиразинкарбоксилат.

мами кислорода, принадлежащими анионам. Сравнение расстояний Cu...O(ReO₄⁻) в других родственных структурах (табл. 2) показало, что в случае [CuL](NO₃)(ReO₄) указанная связь является одной из наиболее коротких. Геометрические характеристики перренат-анионов стандартные (см. табл. 1). Основной вклад в структурные мотивы кристаллических структур [CuL](NO₃)(ReO₄) и [CuL](ReO₄)₂ вносит дополнительная координация меди и образование водородных связей N—H...O (рис. 2). Анионы выполняют функцию "мостиков" между катионами.

В структуре [CuL](NO₃)(ReO₄) один из атомов кислорода перренат-аниона связан водородной связью с атомом водорода первичного амина, расстояние N...O достаточно короткое и составляет 2,896(2) Å (см. рис. 2). Незадействованные в координации к меди атомы кислорода аниона NO₃⁻ образуют водородные связи с атомом N1 первичного амина и атомом N3 вторичного амина, расстояния N...O составляют 3,003(2) и 3,028(2) Å соответственно. В результате этих взаимодействий структуру можно представить построенной из бесконечных лент, параллельных оси *а* и состоящих из катионов и анионов. Если обратиться к структуре отдельной лен-

Рис. 2. Дополнительная координация атомов меди и кратчайшие расстояния с участием атомов кислорода, принадлежащих анионам в структурах [CuL](ReO₄)(NO₃) (*a*) и [CuL](ReO₄)₂ (*б*). Атомы водорода не показаны

Рис. 3. Мотив укладки комплексных катионов и анионов в структурах [CuL](ReO₄)(NO₃) (*a*) и [CuL](ReO₄)₂ (*б*). Атомы водорода не показаны

ты (рис. 3), то можно видеть, что она построена так, чтобы гидрофобные фрагменты структуры (связи С—Н) находились преимущественно снаружи. Упаковка лент происходит так, чтобы число ван-дер-ваальсовых взаимодействий между связями С—Н было максимальным.

В структуре [CuL](ReO₄)₂ перренат-анионы группируются в четверки с расстояниями Re...Re 4,4941(3) и 4,5954(3) Å (см. рис. 2, δ). Два кристаллографически независимых перренатаниона дополняют координацию атомов меди до искаженно-октаэдрической, расстояния Cu...O составляют 2,468(4) и 2,697(4) Å, а \angle O...Cu...O равен 174,7(2)°. В результате этого в направлении *b* образуются цепочки связанных катионов и анионов. Псевдогексагональная укладка этих цепочек показана на рис. 3, δ .

Рентгенофазовый анализ показал, что при нагревании солей в токе чистого водорода до 800 °С происходит их полное восстановление до металлов (рис. 4). Занижение массы конечного продукта относительно теоретического содержания металлов в исходных соединениях (табл. 3)

Таблица З

Угол	ω, град.	Связь	d, Å	Связь	d, Å	Связь	d, Å
Мо(1)-тетраэдр		М=(Ce,Zr)-октаэдры		Rb(1)-девятивершинник			
O(4)—Mo(1)—O(3)	108,2(3)	Mo(1)—O(3)	1,736(5)	M(1)—O(1)	2,201(7)×6	Rb(1)—O(3)	2,895(5)×3
O(4)—Mo(1)—O(1)	107,2(3)	Mo(1)—O(4)	1,745(6)	M(2)—O(2)	2,090(4)×6	Rb(1)—O(4)	2,945(7)×3
O(3)—Mo(1)—O(1)	111,1(3)	Mo(1)—O(1)	1,771(6)			Rb(1)—O(2)	3,260(4)×3
O(4)—Mo(1)—O(2)	107,1(3)	Mo(1)—O(2)	1,827(4)	Rb(2)-кубооктаэдр			
O(3)—Mo(1)—O(2)	111,4(2)	(Mo(1)O)	1,770	Rb(2)—O(4)	2,924(6)×2	Rb(2)—O(1)	3,366(6)×2
O(1)—Mo(1)—O(2)	111,7(2)			Rb(2)—O(3)	3,069(5)×2	Rb(2)—O(3)'	3,390(6)×2
(O—Mo(1)—O)	109,45			Rb(2)—O(2)	3,149(4)×2	Rb(2)—O(1)'	3,478(7)×2
		Кратчайшие межкатионные расстояния					
		Mo(1)—Mo(1)'	3,930(2)	Mo(1)—Rb(2)'	3,899(1)	M(2) - Rb(1)	4,003(1)
		Mo(1)—Rb(1)	3,802(1)	Mo(1)—M(1)	3,723(2)	M(2)—Rb(2)	4,171(1)
		Mo(1)—Rb(1)'	4,164(1)	Mo(1)—M(2)	3,720(2)	Rb(1)—Rb(2)	4,132(2)
		Mo(1)—Rb(2)	3,923(1)				

Основные межатомные расстояния и валентные углы в структуре Rb₅CeZr(MoO₄)₆

Рис. 4 (справа). Экспериментальные (кружки) и теоретические дифрактограммы продуктов термолиза комплексных солей [CuL](ReO₄)(NO₃) (сверху) и [CuL](ReO₄)₂ (снизу). Индексы ГЦК-фазы даны курсивом. Во вставке снизу показаны термогравиметрические кривые для [CuL](ReO₄)₂, полученные в атмосфере гелия

m, % ¬

100 90

80

70. 60

50

40 30 TG

DTG

100

200

300

а

связано, по-видимому, с образованием легколетучего Re_2O_7 с последующим восстановлением до металлического рения (на стенках кварцевого реактора наблюдается появление металлического зеркала). Термограмма [CuL](ReO₄)₂ показана на вставке рис. 4, а [CuL](NO₃)(ReO₄) — на рис. 5, *а*. На основании данных термического анализа проведена оценка температуры плавления [CuL](NO₃)(ReO₄) (см. рис. 5, *б*). Соль плавится с разложением при T = 186 °C.

Результаты полнопрофильного уточнения дифрактограмм продуктов термолиза представлены в табл. 3. В обоих случаях получены смеси нанокристаллических металлических порошков — размеры областей когерентного рассеяния в интервале 12—49 нм. Значения параметров элементарных ячеек показывают, что это смеси практически чистых металлов Си и Re и это согласуется с общепринятой фазовой диаграммой Cu—Re [19, с. 299]. Несмотря на то, что не зафиксировано образование твердых растворов, продукты термолиза представляют интерес, так как получены гомогенные смеси нанокристаллических порошков металлов, не смешивающихся даже в жидком состоянии.

Работа выполнена при поддержке Российского фонда фундаментальных исследований 11-03-00668-а, Междисциплинарного проекта Президиума СО РАН № 112 и Государственного контракта № П960 Федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" на 2009—2013 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. Binary Alloy Phase Diagrams, II Ed. / Ed. T.B. Massalski. 1990.
- 2. Байдина И.А., Макотченко Е.В., Шушарина Е.А. и др. // Журн. структур. химии. 2010. **51**, № 3. С. 544 551.
- 3. *Храненко С.П., Шушарина Е.А., Громилов С.А. и др.* // Журн. структур. химии. 2009. **50**, № 6. С. 1253 1255.
- 4. Шушарина Е.А., Храненко С.П., Громилов С.А. // Журн. структур. химии. 2011. **52**, № 1. С. 206 208.
- 5. Varfolomeev M.B., Zemenkova A.N., Chrustalev V.N. et al. // J. Alloys Compd. 1994. 215. P. 339 343.
- 6. Mikhailova D., Ehrenberg H., Fuess H. // J. Solid State Chem. 2006. 179, N 7. P. 2004 2011.
- 7. Пирский Ю.К. // Докл. Нац. Акад. Наук Укр. 2008. № 10. С. 148 154.
- 8. Jaouen F., Dodelet J-P. // Electrochim. Acta. 2007. 52. P. 5975 5984.
- 9. Liu G., Zhang H.M., Wang M.R. et al. // J. Power Sources. 2007. 172. P. 503 510.
- 10. Curtis N.F. // J. Chem. Soc. 1960. P. 4409 4413.
- 11. NETZSCH Proteus Thermal Analysis v.4.8.1. NETZSCH-Gerätebau Bayern, Germany, 2005.
- 12. Sheldrick G.M. // Acta Crystallogr. 2008. A64, N 1. P. 112 122.
- 13. Allen F.H. // Acta Crystallogr. 2002. B58, N 3-1. P. 380 388.
- 14. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. 29. P. 301 303.
- 15. Williamson G.K., Hall W.H. // Acta Metall. 1953. 1, N 1. P. 22 31.
- 16. Liss I.B., Schlempler E.O. // Inorg. Chem. 1975. 14, N 12. P. 3035 3039.
- 17. Gardberg A.S., Deng K., Ellis D.E. et al. // J. Amer. Chem. Soc. 2002. 124, N 19. P. 5476 5480.
- 18. Luo J., Alexander B., Wagner T.R., Maggard P.A. // Inorg. Chem. 2004. 43, N 18. P. 5537 5542.
- 19. *Диаграммы* состояния двойных металлических систем. Справочник. В 3 т. Т. 2. / Под ред. Н.П. Лякишева. – М.: Машиностроение, 1997.