УДК 539.376

ДЛИТЕЛЬНАЯ ПРОЧНОСТЬ МЕТАЛЛОВ И УРАВНЕНИЯ ПОЛЗУЧЕСТИ, ОСНОВАННЫЕ НА КРИТЕРИИ КУЛОНА — МОРА

таты удовлетворительно согласуются.

А. М. Коврижных, В. Д. Барышников, А. В. Манаков, А. Ф. Никитенко*

Институт горного дела СО РАН, 630091 Новосибирск * Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: akovr@sibmail.ru

Предлагается соотношения длительной прочности и ползучести металлов строить на основе критерия Кулона — Мора. Подробно анализируются уравнения ползучести и критерий длительной прочности для плоского напряженного состояния. Результаты расчетов на длительную прочность сравниваются с данными экспериментов с металлическими материалами. Установлено, что теоретические и экспериментальные резуль-

Ключевые слова: пластичность, ползучесть, длительная прочность металлов, критерий текучести Кулона — Мора.

В течение последних 50 лет появилось большое количество работ, посвященных изучению ползучести и длительной прочности металлов при сложном напряженном состоянии. Обзор и анализ ряда известных экспериментальных исследований содержится в [1–11].

При определении времени разрушения элемента конструкции, находящегося в условиях ползучести в сложном напряженном состоянии, необходимо выбрать соответствующий условиям испытаний критерий длительной прочности. На основе выбранного критерия можно определить эквивалентные напряженные состояния, приводящие к разрушению за одно и то же время, а также вычислить это время с использованием данных простого испытания (при одноосном растяжении, сжатии или чистом сдвиге). Как правило, уравнения теорий ползучести основаны на некотором варианте теории пластичности, а критерии длительной прочности — на теориях прочности. Это обстоятельство обусловлено тем, что к моменту опубликования первых работ по техническим теориям ползучести уравнения классических теорий пластичности и основные теории прочности уже были сформулированы [1].

В теории пластичности критерий Кулона — Мора используется для грунтов и горных пород. По-видимому, этим объясняется тот факт, что в настоящее время данный критерий не применяется при исследовании длительной прочности металлов.

На основе результатов различных экспериментов в [12] доказана применимость критерия Кулона — Мора для процессов пластического деформирования металлов. В [13] установлено, что для металлических материалов, горных пород, грунтов и сыпучих сред этот критерий дает приемлемую точность при определении предельных напряжений и направлений разрушения, которые отождествляются с характеристиками уравнений для

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-08-33470).

поля скоростей. Для произвольного напряженного состояния критерий Кулона — Мора имеет вид

$$\max_{n} \left\{ |\tau_n| + \sigma_n \operatorname{tg} \varphi \right\} = C, \tag{1}$$

где τ_n , σ_n — касательное и нормальное напряжения в плоскости с нормалью n; φ — угол внутреннего трения; C — сцепление.

Пронумеровав главные оси I, II и III, так чтобы выполнялись неравенства

$$\sigma_{\rm I} > \sigma_{\rm II} > \sigma_{\rm III},\tag{2}$$

критерий (1) можно записать в следующем виде:

$$\frac{\sigma_{\rm I} - \sigma_{\rm III}}{2\cos\varphi} + \frac{\sigma_{\rm I} + \sigma_{\rm III}}{2} \operatorname{tg} \varphi = C.$$
(3)

Для различных зависимостей сцепления C от времени разрушения t_* в (1) или (3) получим различные варианты критерия длительной прочности Кулона — Мора. Если в качестве эквивалентного напряжения σ_e принимается левая часть равенства (3), то для степенной зависимости с нулевым и ненулевым пределами ползучести σ_0 время разрушения определяется соответственно по формулам

$$t_* = A^n \sigma_e^{-n}, \qquad t_* = A^n (\sigma_e - \sigma_0)^{-n},$$

где A, n — характеристики материала, вычисляемые по результатам экспериментов. Для критерия длительной прочности (3) из этих формул соответственно имеем

$$C(t_*) = A/t_*^{1/n}, \qquad C(t_*) = \sigma_0 + A/t_*^{1/n}.$$

На основе критерия (3) по результатам двух экспериментов на одноосное растяжение и кручение можно определить угол внутреннего трения φ и длительную прочность C = C(t):

$$\sin \varphi = 2\tau_s / \sigma_t - 1, \qquad C = (1 + \sin \varphi) \sigma_t / (2 \cos \varphi) \tag{4}$$

 $(\tau_s, \sigma_t -$ пределы длительной прочности при кручении и одноосном растяжении соответственно).

Результаты экспериментов [5] показали, что при длительной работе материала в условиях высоких температур критерием прочности может служить максимальное нормальное напряжение $\sigma_{e1} = \sigma_1$. В [14] для обработки экспериментальных данных в качестве критерия использовалась интенсивность нормальных напряжений:

$$\sigma_{e2} = \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2 / \sqrt{2}}.$$
(5)

В [7, 8] предложен критерий, который хорошо согласуется с экспериментальными данными и представляется в виде полусуммы интенсивности напряжений и максимального нормального напряжения:

$$\sigma_{e3} = (\sigma_{e2} + \sigma_{e1})/2$$

Возможность использования такого критерия подтверждают результаты экспериментов, полученные в [10]. Для процесса разрушения металлических материалов при длительном приложении постоянных нагрузок в [11] доказана применимость обобщенного критерия, включающего величины σ_{e2} , σ_{e1} и некоторый коэффициент χ , зависящий от свойств материала:

$$\sigma_{e4} = \chi(\sigma_{e2} - \sigma_{e1}) + \sigma_{e1}.$$
(6)

Коэффициент χ можно определить как величину, характеризующую степень участия в макроразрушении сдвиговой деформации, создающей благоприятные условия для разрыхления материала. При $\chi = 0$, когда разрушение определяется только прочностью границ зерен, критерий (6) преобразуется в критерий Джонсона [5]. Коэффициент $\chi = 1$, если разрушение является результатом сдвиговых процессов внутри зерна; в этом случае критерий (6) совпадает с критерием Каца (5). Коэффициент $\chi = 0,5$, если разупрочняющее влияние сдвиговой деформации эквивалентно влиянию нормального напряжения; в этом случае критерий (6) совпадает с критерием Сдобырева [7, 8].

Для ползучести, так же как и для пластичности [12, 13], оправданно применение критерия Кулона — Мора (3) с учетом (4). При $\varphi = 0$ преобладает внутрикристаллический механизм разрушения, и в этом случае критерий (3) совпадает с критерием максимального касательного напряжения. При $\varphi = \pi/2$ преобладающим является межкристаллический механизм разрушения, и в этом случае критерий (3) совпадает с критерием Джонсона [5].

Ниже приведены результаты экспериментов [7, 8, 10], в которых исследовалась длительная прочность тонкостенных цилиндрических образцов при их нагружении растягивающей силой и крутящим моментом.

В [10] для стали аустенитного класса (1X18H12T) испытания проводились при температуре 610 °C, а для перлитной стали $(15X1M1\Phi)$ — при температуре 570 °C. В обоих случаях проводилось три серии экспериментов с трубчатыми образцами: 1) одноосное растяжение ($\sigma_x = \sigma, \tau_{xy} = 0$); 2) чистое кручение ($\sigma_x = 0, \tau_{xy} = \tau$); 3) совместное действие растяжения и кручения ($\sigma_x = \sigma, \tau_{xy} = \sigma/2$). Как правило, экспериментальные данные обрабатываются следующим образом: в качестве эквивалентного напряжения σ_e выбирается некоторая комбинация инвариантов тензора напряжений, принимается степенная или экспоненциальная зависимость t_* от σ_e ($t_* = A \sigma_e^{-m}$ или $t_* = B \cdot 10^{-\sigma_e/n}$), в зависимости от этого диаграммы длительной прочности строятся в логарифмических $(\lg t_*, \lg \sigma_e)$ или полулогарифмических ($\lg t_*, \sigma_e$) координатах и аппроксимируются прямыми линиями. Уравнение прямой линии для каждого значения напряжения σ_e определяется методом наименьших квадратов, при этом в качестве характеристики разброса экспериментальных данных принимается дисперсия D расстояний от экспериментальных точек до этой прямой. В качестве критерия длительной прочности выбирается эквивалентное напряжение σ_e , которому соответствует наименьшее значение дисперсии D_{\min} . С использованием такой методики в [6] проведена статистическая обработка всех известных экспериментальных данных и получены критерии длительной прочности для разных материалов при различных условиях испытаний.

Расчеты для сталей аустенитного и перлитного классов проводились по одной методике. В полулогарифмических системах координат для кручения (lg t_* , τ_s) и одноосного растяжения (lg t_* , σ_t) наносились экспериментальные точки, по которым методом наименьших квадратов проводились прямые линии. Затем по формуле (4) на базе 100 и 1000 ч осреднением был получен угол внутреннего трения $\varphi = 23,2^{\circ}$ для аустенитной стали и $\varphi = 22,6^{\circ}$ для перлитной стали. На рис. 1 представлены результаты обработки данных экспериментов [10] в полулогарифмических координатах (lg t_* , σ_{e5}), где σ_{e5} определяется критерием Кулона — Мора (3). По оси абсцисс откладывается логарифм времени разрушения t_* (время измеряется в часах).

Аналогично обрабатывались результаты экспериментов [7, 8] для сплава ЭИ437Б, которые представлены на рис. 2 в полулогарифмических координатах (lg (100 t_*), σ_{e5}). Для сплава ЭИ437Б [7] угол внутреннего трения $\varphi = 34^{\circ}$, а для сплава ЭИ437Б другой плавки (плавка 51364) [8] $\varphi = 28^{\circ}$. Для каждого из критериев σ_{ej} (j = 1, ..., 5) определялось среднеквадратичное отклонение экспериментальных точек от линейной зависимости, по-

Рис. 1. Результаты обработки данных экспериментов [10] с образцами из стали марки 1X18H12T (*a*) и 15X1M1Ф (*б*) по критерию Кулона — Мора: 1 — кручение; 2 — растяжение; 3 — растяжение и кручение; линия — аппроксимация экспериментальных данных на основе метода наименьших квадратов

Рис. 2. Результаты обработки по критерию Кулона — Мора данных экспериментов [7] (a) и [8] (b) (обозначения те же, что на рис. 1)

строенной методом наименьших квадратов:

$$\Delta_j = \sqrt{D_j}, \qquad D_j = \frac{1}{n-1} \sum_{i=1}^n (\sigma_{ej}^i - \sigma_{ej}(t_i))^2, \qquad j = 1, \dots, 5.$$

Здесь D_j (j = 1, ..., 5) — дисперсия расстояний от экспериментальных точек до соответствующих линейных зависимостей длительной прочности.

В таблице приведены результаты обработки экспериментальных данных [7, 8, 10] на основе различных критериев длительной прочности. Для каждого критерия приводится относительное среднеквадратичное отклонение Δ_j/Δ , где $\Delta = \min_j \Delta_j$, $j = 1, \ldots, 5$. В отличие от σ_{e1} , σ_{e2} и σ_{e3} критерии σ_{e4} и σ_{e5} зависят также от констант материала χ и φ соответственно. Приведенные в таблице значения χ и φ вычислялись по одной и той же методике для каждой серии экспериментов: сначала по двум значениям времени разрушения для каждого материала определялись средние значения χ и φ , затем при необходимости они уточнялись с помощью условия минимума дисперсии D.

Материал	Δ_1/Δ [5]	Δ_2/Δ [14]	Δ_3/Δ [7]	Δ_4/Δ [11]	χ	Δ_5/Δ	φ , град
Сталь 1X18H12T [10]	$3,\!86$	$3,\!25$	1,31	1,28	0,58	1,00	23,2
Сталь 15Х1М1Ф [10]	$3,\!38$	$2,\!35$	$1,\!34$	1,21	$0,\!61$	$1,\!00$	$22,\!6$
Сплав ЭИ437Б [7]	1,39	2,31	1,14	$1,\!00$	0,275	1,03	34,0
Сплав ЭИ437Б [8]	$4,\!15$	$4,\!14$	$1,\!11$	$1,\!11$	$0,\!50$	1,00	28,0

Относительное среднеквадратичное отклонение экспериментальных данных от линейной зависимости по различным критериям

Сравнение результатов, приведенных в таблице и на рис. 1, 2, позволяет сделать вывод, что критерий длительной прочности Кулона — Мора лучше, чем перечисленные выше наиболее распространенные критерии, согласуется с экспериментальными данными [7, 8, 10].

Рассмотрим уравнения ползучести, основанные на дилатационно-сдвиговой теории пластичности [12]. Для компонент тензора скоростей деформаций ползучести при выполнении неравенства (2) в главных осях напряжений имеем следующие зависимости:

$$\dot{e}_{\rm I} = \frac{\alpha(1+\sin\varphi)+\cos\varphi}{2}\,\dot{\gamma}_2, \qquad \dot{e}_{\rm II} = 0, \qquad \dot{e}_{\rm III} = \frac{\alpha(1-\sin\varphi)+\cos\varphi}{2}\,\dot{\gamma}_2 \tag{7}$$

 $(\alpha$ — коэффициент дилатации). При кратковременном нагружении идеально пластичного материала $\dot{\gamma}_2$ является неопределенным параметром, который находится при решении конкретной задачи; в случае упрочняющегося материала $\dot{\gamma}_2$ определяется уровнем достигнутых напряжений и их приращениями [12]. При длительно приложенной нагрузке в условиях ползучести по теориям течения и упрочнения соответственно имеем

$$\dot{\gamma}_2 = f_1(\tau_2, t), \qquad \dot{\gamma}_2 = f_2(\gamma_2, \tau_2).$$

Пусть главное напряжение $\sigma_y = \sigma_2 = 0$, а σ_1 , σ_3 — два других главных нормальных напряжения. Тогда при пересечении пирамиды Кулона — Мора с плоскостью напряжений (σ_1, σ_3) образуется неправильный шестиугольник *ABCDEF* (рис. 3), стороны которого принадлежат граням, а вершины — ребрам пирамиды. В зависимости от знака и величины главных напряжений σ_1 , σ_3 предельное состояние может достигаться на различных

Рис. 3. Критерий Кулона — Мора в плоскости напряжений (σ_1, σ_3)

площадках, поэтому уравнения плоского напряженного состояния для критерия Кулона — Мора будут различными для разных режимов нагружения. Если напряжения σ_1 , σ_3 имеют разные знаки, то предельное условие достигается на площадках, перпендикулярных плоскости (x, z) и проходящих через оси, соответствующие второму главному направлению. При этом в плоскости (x, z) имеется два семейства характеристик, для которых справедливы соотношения

$$\frac{dz}{dx} = \operatorname{tg}(\theta - \psi), \qquad \operatorname{ctg}\varphi\ln\left(1 - \frac{\sigma}{C}\operatorname{tg}\varphi\right) + 2\theta = \operatorname{const} = \xi,
\frac{dz}{dx} = \operatorname{tg}(\theta + \psi), \qquad \operatorname{ctg}\varphi\ln\left(1 - \frac{\sigma}{C}\operatorname{tg}\varphi\right) - 2\theta = \operatorname{const} = \eta.$$
(8)

Здесь $\psi = \psi_{\sigma} = \pi/4 + \varphi/2$ — угол между характеристикой первого семейства (α -линия) и первым главным направлением тензора напряжений σ_1 ; θ — угол между направлением σ_1 и осью x: tg $2\theta = 2\tau_{xz}/(\sigma_x - \sigma_z)$. Уравнения характеристик в виде (8) используются в дальнейшем также для скоростей. Соотношения (8) справедливы для режима DE, когда $\sigma_1 > \sigma_2 > \sigma_3$, и для режима AB, когда $\sigma_3 > \sigma_2 > \sigma_1$.

Уравнения для поля скоростей в данных режимах нагружения для неассоциированной модели [12] впервые получены в [13]:

$$tg (2\theta) \frac{\partial v_x}{\partial x} - \frac{\partial v_z}{\partial x} - tg (2\theta) \frac{\partial v_z}{\partial z} = 0,$$

$$(a \cos (2\theta) - b) \frac{\partial v_x}{\partial x} + (a \cos (2\theta) + b) \frac{\partial v_z}{\partial z} = 0$$

$$(9)$$

 $(a = 1 + \alpha \operatorname{tg} \varphi; b = \alpha / \cos \varphi)$. Данная система дифференциальных уравнений является системой гиперболического типа, а направления ее характеристик однозначно определяются углом внутреннего трения φ и коэффициентом дилатации α . При $\alpha = \operatorname{tg} \varphi$ характеристики уравнений (9) для поля скоростей совпадают с характеристиками уравнений для поля напряжений (8).

Рассмотрим режим CD, для которого $\sigma_1 = \sigma_t > \sigma_3 > \sigma_2 = 0$ (σ_t — предел длительной прочности при одноосном растяжении). В этом случае при выводе уравнений для напряжений и скоростей на основе (2), (3) следует принять $\sigma_I = \sigma_1$, $\sigma_{II} = \sigma_3$, $\sigma_{III} = \sigma_2$. Введем следующие обозначения:

$$(\sigma_1 + \sigma_3)/2 = \sigma, \qquad (\sigma_1 - \sigma_3)/2 = \sigma_t - \sigma. \tag{10}$$

Используя формулы преобразования компонент напряжений и обозначения (10), получим

 $\sigma_x = \sigma(1 - \cos 2\theta) + \sigma_t \cos 2\theta, \quad \tau_{xz} = (\sigma_t - \sigma) \sin 2\theta, \quad \sigma_z = \sigma(1 + \cos 2\theta) - \sigma_t \cos 2\theta.$

Подставляя компоненты напряжений в уравнения равновесия, после некоторых преобразований найдем [15]

$$\sin\left(\theta\right)\frac{\partial\theta}{\partial x} - \cos\left(\theta\right)\frac{\partial\theta}{\partial z} = 0,$$

$$\sin\left(2\theta\right)\frac{\partial\ln\left(\sigma - \sigma_t\right)}{\partial x} - \left(1 + \cos2\theta\right)\frac{\partial\ln\left(\sigma - \sigma_t\right)}{\partial z} + 2\frac{\partial\theta}{\partial x} = 0.$$
(11)

Для первого уравнения системы (11) запишем систему дифференциальных уравнений векторных линий

$$\frac{dx}{\sin\theta} = \frac{dz}{-\cos\theta} = \frac{d\theta}{0},\tag{12}$$

которая легко интегрируется: $\theta = \text{const} = C_1, z + x \operatorname{ctg} \theta = C_2.$

Таким образом, общее решение первого уравнения системы (11) имеет вид

$$z + x \operatorname{ctg} \theta = \Phi(\theta), \tag{13}$$

где $\Phi(\theta)$ — произвольная функция, определяемая по заданным граничным условиям.

Система дифференциальных уравнений векторных линий для второго уравнения системы (11) имеет вид

$$\frac{dx}{\sin 2\theta} = \frac{dz}{-(1+\cos 2\theta)} = \frac{d\ln(\sigma - \sigma_t)}{-2\partial\theta/\partial x}.$$
(14)

В плоскости (x, z) система (14) имеет то же семейство характеристик, что и (12), значит, система (11) является системой параболического типа. Вдоль характеристики системы (14) имеем

$$d\ln\left(\sigma - \sigma_t\right) = -2\frac{\partial\theta}{\partial x}\frac{dx}{\sin 2\theta}.$$

Интегрируя это соотношение с учетом (13), получим общее решение второго уравнения системы (11):

$$\sigma = \sigma_t + \frac{\Psi(\theta)}{2x + (1 - \cos 2\theta)\Phi'(\theta)}.$$

Выведем уравнения для поля скоростей в режиме CD. Используя (7), в произвольной системе координат (x, z) определим

$$\dot{e}_x = \dot{e}_1(1 + \cos 2\theta)/2, \qquad \dot{e}_z = \dot{e}_1(1 - \cos 2\theta)/2, \qquad \dot{\gamma}_{xz} = \dot{e}_1 \sin 2\theta.$$

Исключая из этих соотношений \dot{e}_1 , получим следующую систему уравнений для скоростей:

$$\operatorname{tg}(2\theta)\frac{\partial v_x}{\partial x} - \frac{\partial v_z}{\partial x} - \frac{\partial v_x}{\partial z} - \operatorname{tg}(2\theta)\frac{\partial v_z}{\partial z} = 0,$$
$$(1 - \cos 2\theta)\frac{\partial v_x}{\partial x} + (1 + \cos 2\theta)\frac{\partial v_z}{\partial z} = 0.$$

Данная система дифференциальных уравнений является системой параболического типа и имеет одно характеристическое направление, которое совпадает с направлением σ_3 . Уравнение характеристики и соотношение на ней имеют вид

$$\frac{dz}{dx} = -\operatorname{ctg}\theta = \operatorname{tg}(\theta + \pi/2), \qquad dv_3 + v_1 \, d\theta = 0,$$

где v_1, v_3 — проекции вектора скорости на главные оси напряжений.

Рассмотрим режим AF, для которого $\sigma_2 = 0 > \sigma_3 > \sigma_1 = -\sigma_c \ (\sigma_c = \sigma_t (1 + \sin \varphi)/(1 - \sin \varphi)$ — предел длительной прочности при одноосном сжатии). Аналогично можно получить общее решение для напряжений в режиме AF:

$$z + x \operatorname{ctg} \theta = \Phi(\theta), \qquad \sigma = -\sigma_c + \frac{\Psi(\theta)}{2x + (1 - \cos 2\theta)\Phi'(\theta)},$$

а также показать, что характеристики уравнений для поля скоростей и соотношения на них в режимах AF и CD совпадают.

Рассмотрим режим *BC*, для которого $\sigma_3 = \sigma_t > \sigma_1 > \sigma_2 = 0$. Для этого режима общее решение для напряжений записывается в виде

$$z - x \operatorname{tg} \theta = \Phi(\theta), \qquad \sigma = \sigma_t + \frac{\Psi(\theta)}{2x + (1 + \cos 2\theta)\Phi'(\theta)}.$$
 (15)

T (0)

В этом случае система дифференциальных уравнений для компонент вектора скорости имеет вид

$$\operatorname{tg}\left(2\theta\right)\frac{\partial v_x}{\partial x} - \frac{\partial v_z}{\partial x} - \frac{\partial v_x}{\partial z} - \operatorname{tg}\left(2\theta\right)\frac{\partial v_z}{\partial z} = 0,$$

$$(1 + \cos 2\theta) \frac{\partial v_x}{\partial x} + (1 - \cos 2\theta) \frac{\partial v_z}{\partial z} = 0.$$

Данная система является системой параболического типа, характеристика которой совпадает с направлением σ_1 . Уравнение характеристики и соотношение на ней записываются в виде

$$\frac{dz}{dx} = \operatorname{tg}\theta, \qquad dv_1 - v_3 \, d\theta = 0. \tag{16}$$

При нагружении в режиме EF имеем $\sigma_2 = 0 > \sigma_1 > \sigma_3 = -\sigma_c$. Для этого режима, так же как и для режима BC, характеристики уравнений для напряжений и скоростей совпадают с направлением σ_1 . Соотношение на характеристике для напряжений получается из (15) заменой σ_t на $-\sigma_c$. Соотношения для скоростей в режиме EF совпадают с (16).

Уравнения жесткоползучего тела для поля скоростей на ребрах пирамиды Кулона — Мора (режимы B и D на рис. 3) совпадают с уравнениями (9), но величины a и b имеют другие значения. К этому виду нагружения относится одноосное растяжение. Угол между характеристикой уравнений для поля скоростей и первым главным направлением тензора напряжений находится по формуле [13]

$$\cos 2\psi = -\frac{b}{a} = -\frac{\cos\varphi + \alpha(3 + \sin\varphi)}{3\cos\varphi + \alpha(3 + \sin\varphi)}.$$
(17)

Для режимов A и E, которые как частный случай включают одноосное сжатие, угол ψ определяется по формуле

$$\cos 2\psi = \frac{\cos \varphi - \alpha (3 - \sin \varphi)}{3 \cos \varphi - \alpha (1 - 3 \sin \varphi)}.$$
(18)

В [1] приводятся результаты экспериментов по разрушению стальных труб в условиях ползучести при их нагружении осевой силой и внутренним давлением. В случае, если максимальное растягивающее напряжение тангенциальное, трещины являются продольными. Если же в трубе максимальное растягивающее напряжение осевое, трещины являются преимущественно кольцевыми. В [16] приводятся результаты экспериментов на одноосное сжатие при длительном нагружении призматических образцов соляных пород в условиях ползучести с последующим разрушением. Установлено, что при длительном приложении нагрузки разрушение проявляется в увеличении скорости деформирования и появлении продольных трещин, при этом образец не утрачивает несущей способности. Экспериментальные данные согласуются с результатами вычислений по формулам (17) и (18) в двух случаях: 1) если принять $\alpha = \operatorname{tg} \varphi$, $\varphi = \pi/2$; 2) если принять $\alpha = \cos \varphi/(1 - \sin \varphi)$. В обоих случаях из (17) и (18) получим $\psi = \pi/2$.

Проведенное сравнение теоретических и экспериментальных результатов при длительном нагружении различных материалов в условиях ползучести позволяет на основе критерия Кулона — Мора определять предельные напряжения и направления разрушения, которые совпадают с характеристическими направлениями уравнений жесткоползучего тела для поля скоростей.

ЛИТЕРАТУРА

- 1. Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960.
- 2. Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 1966.
- 3. Малинин Н. Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975.

- 4. **Каблов Е. Н.** Жаропрочность никелевых сплавов / Е. Н. Каблов, Е. Р. Голубовский. М.: Машиностроение, 1998.
- 5. Джонсон А. Ползучесть металлов при плоском напряженном состоянии // Механика. Период. сб. пер. иностр. ст. 1962. № 4. С. 91–145.
- Локощенко А. М., Назаров В. В., Платонов Д. О., Шестериков С. А. Анализ критериев длительной прочности металлов при сложном напряженном состоянии // Изв. РАН. Механика твердого тела. 2003. № 2. С. 139–149.
- 7. Сдобырев В. П. Длительная прочность сплава ЭИ437Б при сложном напряженном состоянии // Изв. АН СССР. Отд-ние техн. наук. 1958. № 4. С. 92–97.
- 8. Сдобырев В. П. Критерий длительной прочности для некоторых жаропрочных сплавов при сложном напряженном состоянии // Изв. АН СССР. Отд-ние техн. наук. 1959. № 6. С. 93–99.
- Соснин О. В., Горев Б. В., Никитенко А. Ф. К обоснованию энергетического варианта теории ползучести. 1. Основные гипотезы и их экспериментальная проверка // Пробл. прочности. 1976. № 11. С. 3–8.
- 10. **Трунин И. И.** Оценка сопротивления длительному разрушению и некоторые особенности деформирования при сложном напряженном состоянии // ПМТФ. 1963. № 1. С. 110–114.
- 11. **Лебедев А. А.** Обобщенный критерий длительной прочности // Термопрочность материалов и конструкционных элементов. Киев: Наук. думка, 1965. С. 69–76.
- 12. Коврижных А. М. Пластическое деформирование упрочняющихся материалов при сложном нагружении // Изв. АН СССР. Механика твердого тела. 1986. № 4. С. 140–146.
- 13. Коврижных А. М. Об условиях гиперболичности уравнений теории пластического сдвига // Докл. РАН. 1999. Т. 365, № 4. С. 485–487.
- 14. Кац Ш. Н. Исследование длительной прочности углеродистых труб // Теплоэнергетика. 1955. № 11. С. 37–40.
- 15. Качанов Л. М. Основы теории пластичности. М.: Наука, 1969.
- 16. **Ержанов Ж. С.** Ползучесть соляных пород / Ж. С. Ержанов, Э. И. Бергман. Алма-Ата: Наука КазССР, 1977.

Поступила в редакцию 26/X 2006 г., в окончательном варианте — 12/XII 2006 г.