УДК 621.452.22

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ГОРЕНИЯ БОРСОДЕРЖАЩИХ ЧАСТИЦ КОНДЕНСИРОВАННОЙ ФАЗЫ В КАНАЛАХ С РАСПРЕДЕЛЕННЫМ ПОДВОДОМ ВОЗДУХА

К. Ю. Арефьев^{1,2}, Л. С. Яновский^{1,3}

¹Центральный институт авиационного моторостроения им. П. И. Баранова, 111116 Москва arefyev@ciam.ru, yanovskiy@ciam.ru

²Московский государственный технический университет им. Н. Э. Баумана, 105005 Москва

³Институт проблем химической физики РАН, 142432 Черноголовка

Представлены математическая модель и результаты расчетов горения частиц борсодержащей конденсированной фазы в каналах с распределенным подводом воздуха. Рассмотрен процесс горения в каналах с дискретно и с непрерывно распределенной подачей воздуха. Выявлены основные закономерности влияния на коэффициент полноты сгорания частиц в канале следующих параметров: соотношения компонентов топливной смеси, места подвода и температуры воздуха на входе. Определены условия, при которых распределенный подвод воздуха дает возможность увеличить коэффициент полноты сгорания частиц в канале. Полученные данные могут быть использованы на этапе проектирования и экспериментального исследования перспективных энергосиловых установок с использованием борсодержащих энергоконденсированных составов в качестве горючего.

Ключевые слова: двухфазное течение, коэффициент полноты сгорания, математическое моделирование, распределенный подвод воздуха, канал постоянного сечения.

DOI 10.15372/FGV20190106

ВВЕДЕНИЕ

Известно [1–5], что использование энергоконденсированных составов (ЭКС) в качестве топлива для атмосферных энергосиловых установок является актуальным направлением развития перспективных образцов техники.

В настоящее время к числу наиболее энергоемких относятся металлизированные и борсодержащие ЭКС. Выбор бора и ряда химических соединений на его основе в качестве основной высокоэнергетической добавки для перспективных ЭКС обусловлен их высокими объемной H_v и массовой H_u теплотами сгорания (рис. 1) по сравнению с углеводородными соединениями, а также с алюминием и магнием [4, 5]. Высокие значения H_v и H_u позволяют ожидать для борсодержащих ЭКС наибольшей энергетической эффективности в энергосиловых установках. Помимо этого, ЭКС имеют преимущества перед жидкими горючими при решении проблем, связанных с хранением

Рис. 1. Связь между объемной и массовой теплотой сгорания высокоэнергетических горючих, входящих в ЭКС:

1 — магний, 2 — антрацен (C₁₄H₁₀), 3 — алюминиево-магниевая смесь, 4 — алюминиево-магниевый сплав МД, 5 — алюминиево-магниевый сплав УНД, 6 — алюминий, 7 — ортокарборан (B₁₀H₁₂C₂), 8 — диборид магния (MgB₂), 9 — диборид алюминия (AlB₂), 10 — полиборид магния (MgB₁₂), 11 — полиборид алюминия (AlB₁₂), 12 — бор (B), 13 — тенденция достижения наибольших энергетических характеристик

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-01-03073).

[©] Арефьев К. Ю., Яновский Л. С., 2019.

и эксплуатацией летательных аппаратов.

Практическое использование ЭКС, как правило, приводит к необходимости разделения рабочего процесса на две стадии [4]. На первой стадии осуществляется горение (газификация) ЭКС в газогенераторе, а на второй стадии происходит физико-химическое взаимодействие образующихся продуктов газификации (ПГ) ЭКС с воздушным потоком в камере дожигания (КД). Наиболее распространена однозонная схема КД [4], представленная на рис. 2. Такая КД имеет локализованные вблизи начального сечения подводы воздуха и ПГ. В результате горения ПГ с воздухом в зоне горения образуется газовоздушная смесь, которая является рабочим телом для энергосиловой установки.

Следует отметить, что ПГ представляют собой сложную смесь газов с большим количеством конденсированной фазы, которая, в свою очередь, содержит значительную часть химической энергии, запасенной в ПГ. Вследствие этого эффективность рабочего процесса в КД сильно зависит от интенсивности сгорания частиц конденсированной фазы.

Согласно данным [6, 7], в однозонных КД энерговыделение при горении частиц конденсированной фазы в большинстве случаев не превышает 50 % их теплотворной способности, что препятствует реализации преимуществ ЭКС по сравнению с другими типами горючих и топлив. Это связано с относительно низким коэффициентом полноты сгорания частиц вследствие невысокой скорости их горения [8–10]. В общем случае скорость горения частиц зависит от их химического состава и диаметра, а также от скорости потока, статического давления, температуры и концентрации кислорода в газовой области вблизи частиц.

Одним из возможных технических решений, обеспечивающих повышение эффективности горения частиц конденсированной фазы

Рис. 2. Схема однозонной КД:

1 — подача воздуха, 2 — подача ПГ
,3 — зона горения, 4 — газовоздушная смесь

ПГ, является использование распределенного подвода воздуха в КД [11, 12]. Воздух в КД может подаваться через несколько распределенных по длине подводящих каналов. Некоторые модели горения частиц в каналах с распределенным подводом воздуха представлены в работе [13], расчет по этим моделям позволил установить значительные эффекты при температурах воздуха на входе ниже 1 000 К. Однако параметрических исследований, связанных с распределенным подводом воздуха в камеру дожигания в широком температурном диапазоне, на данный момент недостаточно.

В статье рассмотрены две схемы КД: двухзонная (рис. 3, a) и многозонная с непрерывным по длине подводом воздуха (рис. $3, \delta$). В двухзонной КД часть воздуха 1 поступает в первую зону 3, а оставшаяся часть 4 — во вторую зону 5. При этом ПГ 2 подаются только в первую зону КД. В многозонной КД с непрерывным по длине подводом воздуха весь воздух 7 подается через множество специальных подводящих патрубков, расположенных вдоль всего канала 8 КД. Технически это может быть реализовано посредством использования перфорированной стенки КД. В результате сгорания в КД образуется газовоздушная смесь 6.

Рис. 3. Схемы двухзонной КД (a) и многозонной КД с непрерывным по длине подводом воздуха (δ):

1 — подача воздуха в первую зону, 2 — подача ПГ, 3 — первая зона КД, 4 — подача воздух во вторую зону КД, 5 — вторая зона КД, 6 — газовоздушная смесь, 7 — непрерывная по длине подача воздуха, 8 — канал КД с подводами воздуха Для повышения эффективности горения в КД с распределенным подводом воздуха (относительно однозонной КД) требуется надлежащим образом осуществить выбор геометрических характеристик проточного тракта и режимов его работы.

Представленная статья посвящена проблеме оценок эффективности горения борсодержащих частиц в камерах дожигания энергосиловых установок на основе ранее полученных экспериментов. Задачей настоящей работы являлась оценка влияния на коэффициент полноты сгорания частиц конденсированной фазы следующих параметров: соотношения компонентов топливной смеси в первой и второй зонах, местоположения подводящих патрубков и температуры воздуха на входе. При этом в статье не приводится математическая модель процессов вблизи частицы, а для описания ее горения использован эмпирический закон, установленный ранее в работе [6]. Полученные данные могут быть использованы для разработки рекомендаций по выбору геометрических и режимных параметров КД с распределенным подводом воздуха.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

В работе предложена математическая модель в одномерной постановке, дающая возможность проводить параметрические исследования без привлечения ресурсозатратных программных комплексов и вычислительных кластеров. Результаты исследований позволяют оценить влияние различных факторов на рабочий процесс в КД и осуществить предварительный выбор технического облика КД для атмосферных энергосиловых установок. Отметим, что согласно работам [7, 14] определенное влияние на эффективность рабочего процесса в КД оказывают газодинамические особенности течения (наличие вихревых зон, неравномерность параметров в поперечном сечении и т. д.), что в дальнейшем может потребовать уточнения полученных данных для конкретных энергосиловых установок. Такое уточнение может быть выполнено посредством математического моделирования в трехмерной постановке [7], а также проведения эксперимен-TOB.

Рассмотрим расчетную схему проточного тракта двухзонной КД (рис. 4). Площадь поперечного сечения проточного тракта КД F

Рис. 4. Расчетная схема двухзонной КД: 1 — подача ПГ, 2 — входное сечение, 3, 4 — подача воздуха, 5 — выходное сечение

принята постоянной, его длина равна $x_{\rm k}$. Стенки КД приняты теплоизолированными. Подача ПГ 1 осуществляется через входное сечение 2 КД. В сечении с координатой x_1 подается часть воздуха 3 с массовым расходом $G_{\rm B1}$. Принято $x_1 = 0$. Затем на расстоянии x_2 от начального сечения подается оставшаяся часть воздуха 4 с массовым расходом $G_{\rm B2} = G_{\rm B} - G_{\rm B1}$, где $G_{\rm B}$ суммарный массовый расход воздуха, поступающего в КД. Образовавшееся при горении рабочее тело выходит через сечение 5.

Одним из наиболее важных режимных параметров рабочего процесса в КД является коэффициент избытка воздуха $\alpha = G_{\rm B}/(L_0G_{\rm nr})$, где L_0 — стехиометрическое соотношение для топливной смеси, $G_{\rm nr}$ — массовый расход ПГ ЭКС. Для описания режима горения в первой зоне двухзонной КД введем дополнительный параметр $\alpha_1 = G_{\rm B1}/(L_0G_{\rm nr})$, определяющий коэффициент избытка воздуха при $x_1 \leq x \leq x_2$.

Расчетная схема проточного тракта многозонной КД с непрерывным по длине подводом воздуха представлена на рис. 5. Здесь так же, как и в двухзонной КД, подача ПГ осуществляется в начальном сечении КД. Воздух подается по всей длине $x_{\rm K}$ КД, площадь проходного сечения которой равна F. Такой подвод воздуха

Рис. 5. Расчетная схема КД с непрерывным по длине подводом воздуха:

наиболее эффективен для процесса горения в КД.

Рабочее тело КД является смесью воздуха, газовой и конденсированной фаз ПГ, а также продуктов сгорания [6, 15]. В предложенной модели используются следующие обозначения массовых долей каждого компонента рабочего тела: $g_{\rm B}$ — воздуха; $g_{\rm nr,\kappa}$ — конденсированной фазы ПГ ЭКС; $g_{\rm nr,r}$ — газовой фазы ПГ ЭКС; $g_{\rm nc,r}$ — продуктов сгорания газовой фазы продуктов газификации ЭКС; $g_{\rm nc,\kappa}$ — продуктов сгорания конденсированной фазы продуктов газификации ЭКС. Массовые доли компонентов связаны с коэффициентами полноты сгорания газовой $\eta_{\rm r}$ и конденсированной $\eta_{\rm k}$ фаз в соответствии с моделью, представленной в [6].

Распределение коэффициента $\eta_{\rm r}$ вдоль КД рассчитывалось по обобщенной модели, предложенной в [16]. Эта модель предназначена для описания диффузионного горения газообразных, а также псевдогазообразных горючих и дает хорошую корреляцию с экспериментальными данными [17–19], в том числе с полученными в случае горения углеводородов.

Для определения коэффициента полноты сгорания конденсированной фазы по длине КД решается уравнение, связывающее коэффициент $\eta_{\rm K}$ и линейную скорость горения частиц $u_{\rm q}$:

$$\eta_{\kappa} = 1 - \left[1 - \left(\int_{0}^{x} \frac{u_{\mathbf{q}}}{w} dx \right) \middle/ D_{32} \right]^{3}, \quad (1)$$

где x — продольная координата, w — средняя по сечению канала осевая скорость потока, D_{32} — средний объемно-поверхностный (заутеровский) диаметр частиц.

Расчеты проведены для ПГ модельного ЭКС с массовым содержанием бора 30 %. Массовое содержание конденсированной фазы в ПГ составляет 60 %, горение которой экспериментально было исследовано в работе [6]. Конденсированная фаза в основном состоит из карбида бора (B_4C) , углерода (C), нитрида бора (BN) и химически инертных оксидов различных элементов. Данная модель предназначена для описания горения борсодержащих частиц, массовая доля которых в ПГ составляет более 45 %. Газовая фаза ПГ состоит из монооксида углерода (CO), метана (CH₄), других углеводородов, а также низших и высших оксидов бора и других химических соединений. Стехиометрические коэффициенты для газовой

Дисперсный состав частиц конденсированной фазы в ПГ модельного ЭКС [20]

$d_{\mathbf{y}}$, мкм	g_m	$d_{\mathbf{y}}$, мкм	g_m
88.00	0.1047	13.08	0.0402
74.00	0.0623	11.00	0.0333
62.22	0.0740	9.25	0.0274
52.32	0.0881	7.78	0.0224
44.00	0.0917	6.54	0.0182
37.00	0.0779	5.50	0.0148
31.10	0.0740	4.62	0.0120
26.16	0.0660	3.89	0.0098
22.00	0.0606	3.27	0.0079
18.50	0.0555	2.75	0.0064
15.55	0.0480	2.31	0.0050

и конденсированной фаз продуктов газификации модельного ЭКС составляют $L_{0r} = 5.85$ и $L_{0\kappa} = 7.96$ соответственно. Средний объемноповерхностный диаметр частиц конденсированной фазы D_{32} принят равным ≈ 40 мкм, что соответствует результатам предварительно выполненных исследований [20], приведенным в таблице для рассматриваемого модельного состава ЭКС. Некоторое отличие диаметров частиц от приведенных в других работах, в частности в [21], обусловлено особенностями модельного состава ЭКС. При этом эксперименты [20] показывают, что в ПГ рассматриваемых модельных ЭКС образуются агломераты, диаметры которых существенно больше первоначальных диаметров частиц.

Для определения линейной скорости горения таких частиц использована зависимость вида

$$u_{\mathbf{q}} = kg_{\mathbf{B}},\tag{2}$$

где *k* — константа скорости реакции.

Анализ экспериментальных данных в работе [6] показал, что при температурах газа вблизи частицы T < 2400 К константа скорости химической реакции может быть вычислена как $k = k_0 \exp(T/T_0)$, где $T_0 = 293$ К, $k_0 = (1.5 \div 2.7) \cdot 10^{-3}$ мм/с. При $T = 2400 \div 2800$ К константа скорости реакции практически постоянна и равна $k = 6.5 \div 8.2$ мм/с. Сопоставление представленного закона горения с данными работ [22–24] показывает некоторые отличия в скоростях горения частиц. Их можно объяснить тем, что агломераты, горящие в рассматриваемых в работе условиях, могут иметь пористую структуру с более развитой поверхностью горения, нежели в одиночных частицах такого же характерного диаметра. В этом случае количественные показатели скорости горения, приведенные к максимальному диаметру агломерата, будут выше, чем в 22-24]. Возможным объяснением этого является то, что скоростная неравномерность и повышенная турбулентность, реализуемые в канале, могут приводить к срыву окисленного слоя на частицах и к интенсификации массопереноса вблизи их поверхности. Данные особенности горения наиболее сильно проявляются на начальном участке КД, когда газ и частицы двигаются с различной скоростью, а температура газа меньше температуры кипения оксида боpa.

Для определения параметров потока в сечении КД с осевой координатой x решается система уравнений сохранения энергии, количества движения и массового расхода:

$$g_{\mathrm{nr},\mathrm{r}}H_{\mathrm{nr},\mathrm{r}} + g_{\mathrm{nr},\mathrm{k}}H_{\mathrm{nr},\mathrm{k}} + g_{\mathrm{nc},\mathrm{k}}H_{\mathrm{nc},\mathrm{k}} + g_{\mathrm{nc},\mathrm{r}}H_{\mathrm{nc},\mathrm{r}} +$$

$$+ g_{\rm B}H_{\rm B} + \frac{w^2}{2} = H_{\rm B}^* \frac{\alpha L_0}{1 + \alpha L_0} + H_{\rm nr}^* \frac{1}{1 + \alpha L_0},$$
(3)
$$\left(w + \frac{p}{\rho w}\right) \left(G_{\rm B} \int_0^x \Psi dx + G_{\rm nr}\right) (1 - g_{\rm nr,\kappa}) = P,$$

$$\rho wF = \left(G_{\rm B} \int_{0}^{-} \Psi dx + G_{\rm IIF}\right)(1 - g_{\rm IIF,K}).$$

Здесь $H_{\text{пг,г}}$, $H_{\text{пг,к}}$, $H_{\text{пс,к}}$, $H_{\text{пс,г}}$, $H_{\text{в}}$ — статические составляющие энтальпии соответствующих компонентов смеси при равновесной (между компонентами смеси) температуре T в каждом сечении канала; $H_{\text{в}}^*$, $H_{\text{пг}}^*$ — полная энтальпия воздушного потока и продуктов газификации ЭКС в начальном сечении; p, ρ — давление и плотность газовой смеси; P — импульс потока в канале; $\Psi = \frac{1}{G_{\text{в}}} \frac{dG_{\text{в,x}}}{dx}$ — функция распределения массового расхода воздуха по длине КД; $G_{\text{в,x}}$ — массовый расход воздуха в сечении x.

Для двухзонной КД функция Ψ обеспечивает выполнение следующих условий:

$$\int_{0}^{x} \Psi dx = \frac{\alpha_{1}}{\alpha} \text{ при } x_{1} \leqslant x \leqslant x_{2},$$

$$\int_{0}^{x} \Psi dx = 1 \text{ при } x_{2} < x \leqslant x_{\kappa}.$$
(4)

Для многозонной КД с непрерывным по длине подводом воздуха функция Ψ должна удовлетворять условию

$$\int_{0}^{x_{\rm K}} \Psi dx = 1. \tag{5}$$

В рассматриваемой постановке задачи отвод тепла от газа в стенки канала не учитывался. Импульс потока *P* в сечениях канала принимался постоянным, что справедливо в случае незначительных потерь на трение газовой смеси о стенки канала постоянного сечения и реализации подвода воздуха с минимальным осевым импульсом.

Система (3) замыкается уравнением состояния $p = \rho RT$, где R — газовая постоянная для смеси компонентов рабочего тела при условиях, соответствующих рассматриваемому сечению КД.

Для определения термодинамических параметров каждого из компонентов газовой смеси и смеси в целом использовался модифицированный программный комплекс TERRA [25].

В качестве граничных условий задавались массовые расходы $G_{\rm B}$, $G_{\rm III}$, полные энтальпии $H_{\rm B}^*$, $H_{\rm III}^*$ и число Маха $M_{\rm BMX} = u/a$ в выходном сечении КД (здесь a — скорость звука в выходном сечении). Решение полной системы уравнений осуществлялось итерационным методом.

Для сравнительного анализа эффективности горения частиц конденсированной фазы в КД с распределенным подводом воздуха относительно базовой однозонной КД был введен критерий

$$\gamma = \frac{\eta_{\rm \kappa p} - \eta_{\rm \kappa 1}}{\eta_{\rm \kappa 1}} \cdot 100 \ \%,\tag{6}$$

где $\eta_{\rm kp}$, $\eta_{\rm k1}$ — максимальные значения коэффициента полноты сгорания частиц конденсированной фазы соответственно в КД с распределенным подводом воздуха и в однозонной КД, полученные при заданных режимах работы. Предложенная математическая модель позволяет определять параметры рабочего тела, а также коэффициенты полноты сгорания газовой и конденсированной фаз ПГ в различных сечениях КД в широком диапазоне режимов горения и температур воздуха на входе.

В работе проведены параметрические исследования эффективности рабочего процесса при распределенном подводе воздуха в диапазоне его температур на входе $T_{\rm B0} =$ $500 \div 2\,000$ К при $\alpha = 1.5 \div 3$. Принято, что в выходном сечении КД М_{вых} = 0.3. Рассмотрены режимы с удельным расходом в КД $\Omega = (G_{\rm B} + G_{\rm nr})/F = 100 \div 1\,000$ кг/(с · м²). Относительная длина канала принята равной $x_{\rm K}\sqrt{\pi/(4F)} = 15$. Указанные значения параметров соответствуют наиболее значимой области практического применения результатов расчетов [1–5].

АНАЛИЗ РЕЗУЛЬТАТОВ

Наиболее важными параметрами, определяющими эффективность горения частиц конденсированной фазы, как известно, являются температура и массовая доля воздуха $g_{\rm B}$ в газовой области вблизи частиц. Примеры их распределения по длине однозонной и двухзонной КД показаны на рис. 6. Из полученных данных следует, что в двухзонной КД может быть реализовано горение частиц при более высокой температуре газа, чем в однозонной КД (рис. 6,а). Это обусловлено тем, что в первой зоне двухзонной КД соотношение компонентов ближе к стехиометрическому, а во второй зоне коэффициент полноты сгорания выше, чем на соответствующих участках однозонной КД. На рис. 6, а температура представлена в безразмерном виде $T/T_{\rm p}$, где $T_{\rm p}$ — термодинамически равновесная температура рабочего тела при полном сгорании ПГ с воздухом. Расчеты и эксперименты [6, 7, 15] показывают, что при относительно низкой температуре и значительном содержании воздуха в газовой смеси (что соответствует первой зоне КД) процесс горения частиц лимитируется кинетикой химических реакций, которая сильно зависит от температуры. Из этого следует, что повышение температуры в первой зоне позволяет реализовать более высокую скорость горения частиц относительно аналогичного участка однозонной КД. По мере протекания хими-

Рис. 6. Распределения температуры (*a*) и массовой доли воздуха (*б*) по длине КД: 1 — двухзонная КД, 2 — однозонная КД

ческих реакций концентрация воздуха уменьшается, после чего лимитирующим фактором скорости горения частиц становится диффузия кислорода вблизи частицы, зависящая от массовой доли $g_{\rm B}$. В этом случае для поддержания высокой интенсивности горения частиц требуется дополнительный воздух, который подается во вторую зону КД, где значение $g_{\rm B}$ скачкообразно повышается (рис. 6, δ).

Отметим, что во всех рассматриваемых случаях коэффициент полноты сгорания газовой фазы ПГ в выходном сечении КД $\eta_{\rm r} > 0.9$ существенно выше коэффициента полноты сгорания конденсированной фазы $\eta_{\rm K}$. Поэтому в дальнейшем эффективность процесса сгорания ПГ будем оценивать только по величине $\eta_{\rm K}$.

Для повышения значения η_{κ} в первой зоне КД необходимо обеспечить максимальную скорость горения частиц. В рассматриваемом диапазоне температур воздуха на входе эффективное горение в первой зоне КД может быть реализовано при соотношении компонентов, близком к стехиометрическому коэффициенту ($\alpha_1 = 1.0 \div 1.2$). При этом с повышением температуры $T_{\rm B0}$ наблюдается тенденция к увеличению коэффициента α_1 , соответствующего максимальной интенсивности горения частиц. Следует отметить, что при рассматриваемых условиях суммарный коэффициент избытка воздуха в КД α практически не влияет на выбор α_1 .

Важным параметром является координата x_2 , определяющая протяженность первой зоны КД. В частности, при $T_{\rm b0}\,=\,500\,$ K, $\alpha\,=\,2\,$ и надлежащем выборе x_2/x_{κ} значение η_{κ} может быть увеличено на $25 \div 32$ % относительно однозонной КД (рис. 7). Максимальный эффект в результате распределенного подвода воздуха в двухзонной КД может быть получен при условии $u_{\rm y1} \approx u_{\rm y2}$ (см. кривую 3 на рис. 7), где ич1 — скорость горения частиц в конце первой зоны КД, u_{u2} — скорость горения частиц в начале второй зоны КД. При $u_{q1} > u_{q2}$ (см. линию 2 на рис. 7) в начале второй зоны реализуется температура, недостаточная для эффективного горения частиц, поэтому требуется увеличивать протяженность первой зоны КД, где температура газа существенно выше, чем в начале второй зоны. Если $u_{y1} < u_{y2}$ (см. кривую 4 на рис. 7), то реализуется режим, при

котором для эффективного горения конденсированной фазы ПГ в конце первой зоны воздуха недостаточно. В этом случае необходимо уменьшить протяженность первой зоны, чтобы повысить эффективность горения частиц путем увеличения массовой доли воздуха в потоке. При низкой температуре потока полученный эффект подтверждается данными работы [13].

В рассматриваемом диапазоне параметров максимум величины η_{κ} соответствует значениям $x_2/x_{\kappa} < 0.4$ (рис. 8). С увеличением температуры воздуха на входе относительная координата x_2/x_{κ} , соответствующая максимальному значению η_{κ} , уменьшается, что указывает на необходимость сокращения протяженности первой зоны. В частности, при $T_{\rm B0} = 2\,000$ К необходимая протяженность первой зоны близка к нулю, что свидетельствует о возможности организации эффективного процесса горения частиц в однозонной КД. Следует отметить, что при росте температуры воздуха на входе эффективность горения частиц конденсированной фазы ПГ увеличивается.

Расчеты показали, что эффективность двухзонной КД, определяемая критерием γ (6), значительно зависит от параметров $T_{\rm B0}$ и α (рис. 9). При $T_{\rm B0} \ge 2\,000$ К использование распределенного подвода воздуха представляется нецелесообразным, так как практически не обеспечивает прироста коэффициента $\eta_{\rm K}$. Кроме того, существует тенденция снижения кри-

Рис. 7. Распределение коэффициента полноты сгорания по длине КД:

Рис. 8. Зависимость коэффициента $\eta_{\rm K}$ от относительной координаты $x_2/x_{\rm K}$ при различных температурах воздуха на входе:

 $1-T_{\rm b0}=500$ K, $2-T_{\rm b0}=1\,000$ K, $3-T_{\rm b0}=1\,500$ K, $4-T_{\rm b0}=2\,000$ K

Рис. 9. Зависимость критерия γ от температуры воздуха на входе $T_{\rm B0}$:

 $1 - \alpha = 1.5, 2 - \alpha = 2.0, 3 - \alpha = 2.5, 4 - \alpha = 3.0$

терия γ при уменьшении коэффициента избытка воздуха α .

Использование КД с непрерывным по длине канала подводом воздуха позволяет реализовать в каждом сечении проточного тракта условия, соответствующие максимально возможной скорости горения частиц в заданном режиме работы. Это достигается путем надлежащего распределения подводимого в КД воздуха, которое характеризуется функцией Ψ .

Для произвольного сечения КД выбор функции Ψ определяется условием локального максимума скорости горения частиц следующего вида: $\frac{\partial u_{\mathbf{q}}}{\partial \Psi} = 0$. Здесь $u_{\mathbf{q}}$ вычисляется из системы уравнений (1)–(3) и в конечном итоге для заданного режима работы зависит от Ψ и $\eta_{\rm K}$ в рассматриваемом сечении. При этом в расчетах требуется обеспечить выполнение необходимого условия (5).

Полученное в расчете распределение параметра Ψx_{κ} по длине КД при различных значениях $T_{\rm B0}$ при $\alpha = 2$ представлено на рис. 10. Видно, что при относительно низкой температуре воздуха на входе $(T_{\rm B0} = 500 \text{ K})$ максимальная эффективность горения частиц получена в случае подвода воздуха практически по всей длине КД (при $x = (0 \div 0.9) x_{\kappa}$). По мере удаления от входного сечения КД величина Ψ снижается. С увеличением температуры протяженность участка КД, в пределах которого осуществляется подвод воздуха, сокращается. В результате при $T_{\rm b0} > 1500$ К подвод возду-

 $1\,-\,T_{\rm b0}\,=\,500$ K, $2\,-\,T_{\rm b0}\,=\,1\,000$ K, $3\,-\,T_{\rm b0}\,=\,$

0.4

0.6

0.8

 $x/x_{\rm K}$

3

длине КД:

 $0.15x_{\kappa}$.

2

0.2

 $1500 \text{ K}, 4 - T_{b0} = 2000 \text{ K}$

Показано, что при непрерывном по длине КД подводе воздуха полнота сгорания частиц в выходном сечении в рассматриваемых диапазонах параметров выше, чем в двухзонной КД, на 2÷6 %. С увеличением температуры воздуха до значений $T_{\rm b0} > 1\,500~{\rm K}$ различие эффективности рабочего процесса в двухзонной КД и в многозонной КД с непрерывным по длине подводом воздуха нивелируется.

Из анализа полученных данных следует, что в диапазоне $T_{\rm B0} = 500 \div 2\,000$ К при $\alpha =$ 1.5÷3 можно выделить следующие области эффективности КД с распределенным подводом воздуха (как двухзонной КД, так и многозонных КД с непрерывным по длине подводом воздуха):

— высокая эффективность, $\gamma > 25 \%$ (при $T_{\rm B0} < 1\,200$ K, $\alpha \ge 2$);

— средняя эффективность, $\gamma \approx 10 \div 25 \%$ (при $T_{\rm b0}$ < 1200 K, α < 2 и при $T_{\rm b0}$ = $1200 \div 1700$ K, $\alpha \ge 2$);

— низкая эффективность, $\gamma < 10 \%$ (при $T_{\rm B0} = 1\,200 \div 1\,700$ К, $\alpha < 2$ и при $T_{\rm B0} > 1\,700$ К во всем диапазоне α).

Полученные результаты позволяют оценить эффективность использования КД с распределенным подводом воздуха и провести предварительный выбор ее геометрических и режимных параметров для энергосиловых установок.

Y, %

40

30

20

10

0

выводы

В результате расчетно-параметрических исследований горения борсодержащих частиц со средним диаметром 40 мкм в воздушном потоке внутри канала постоянного сечения можно сделать следующие выводы.

1. Использование КД с распределенным подводом воздуха (как двухзонной КД, так и многозонной КД с непрерывным по длине подводом воздуха) позволяет увеличить эффективность горения частиц конденсированной фазы по сравнению с однозонной КД. Максимальный положительный эффект достигается при температуре воздуха на входе $T_{\rm B0} < 1200$ К и коэффициенте избытка воздуха $\alpha \ge 2$. В этом случае коэффициент полноты сгорания частиц конденсированной фазы увеличивается более чем на 25 % относительно однозонной КД с локализованным в начальном сечении подводом воздуха.

2. При температуре воздуха $T_{\rm B0} \ge 2\,000$ К использование распределенного подвода воздуха представляется нецелесообразным, так как он практически не обеспечивает прироста полноты сгорания частиц конденсированной фазы.

3. Полнота сгорания частиц в выходном сечении многозонной КД выше, чем в двухзонной КД, на $2 \div 6$ %. При высокой температуре ($T_{в0} > 1500$ K) различие в эффективности рабочего процесса в двухзонной КД и в КД с непрерывным по длине подводом воздуха нивелируется.

4. В двухзонной КД эффективное горение частиц реализуется при соотношении компонентов в первой зоне, близком к стехиометрическому ($\alpha_1 = 1.0 \div 1.2$). Протяженность первой зоны должна быть не более 40 % от общей длины КД. С увеличением температуры $T_{\rm в0}$ протяженность первой зоны целесообразно сокращать.

Полученные данные могут быть использованы на этапе проектирования и экспериментального исследования перспективных атмосферных энергосиловых установок с использованием в качестве горючего борсодержащих энергоконденсированных составов.

ЛИТЕРАТУРА

1. Van Wie D., D'Alessio S., White M. Hypersonic airbreathing propulsion // Johns Hopkins APL Technical Digest. — 2005. — V. 26, N 4. — P. 30–437.

- Вареных Н. М., Шабунин А. И., Сарабьев В. И. и др. Основные направления разработки твердых пиротехнических топлив для воздушно-реактивных двигателей с повышенными энергобаллистическими характеристиками // Боеприпасы и спецхимия. 2013. № 1. С. 44–50.
- 3. Kurth G., Bauer C., Hopfe N. Performance assessment for a throttleable ducted rocket powered lower tier interceptor // 51st AIAA/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum. AIAA 2015-4234.
- Александров В. Н., Быцкевич В. М., Верхоломов В. К. и др. Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах. Основы теории и расчета / под ред. Л. С. Яновского. — М.: Академкнига, 2006.
- 5. Францкевич В. П., Яновский Л. С., Бакулин В. Н. и др. Энергоемкие горючие для авиационных и ракетных двигателей. — М.: Физматлит, 2009.
- Арефьев К. Ю., Воронецкий А. В., Прохоров А. Н., Яновский Л. С. Экспериментальное исследование полноты сгорания двухфазных продуктов газификации борсодержащих энергоемких конденсированных составов в высокоэнтальпийном воздушном потоке // Физика горения и взрыва. — 2017. — Т. 53, № 3. — С. 42–52.
- 7. Воронецкий А. В. Метод сравнительной оценки эффективности горения мелкодисперсного конденсированного горючего в камерах РПД произвольной геометрии // Наука и образование: электрон. науч.-техн. изд. 2016. № 1. http://technomag.bmstu.ru/ doc/830993.htm.
- Вовчук Я. И., Золотко А. Н., Клячко Л. А., Полищук Д. И., Шевчук В. Г. Газификация окиси бора // Физика горения и взрыва. — 1974. — Т. 10, № 4. — С. 615–618.
- Вовчук Я. И., Золотко А. Н., Клячко Л. А., Полищук Д. И. Высокотемпературное горение неподвижной частицы бора в кислородсодержащей среде // Физика горения и взрыва. — 1975. — Т. 11, № 4. — С. 556–563.
- Ягодников Д. А. Воспламенение и горение порошкообразных металлов. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2009.
- 11. Vigot C., Bardelle L., Nadaud L. Improvement of boron combustion in a solid-fuel ramrocket // AIAA-86-1590. — P. 1–10.
- Sosounov V. A. Research and development of ramjets/ramrockets. Pt 1. Integral solid propellant ramrockets // Research and Development of Ram/Scramjets and Turboramjets in Russia. — Loughton, 1994. — P. 10–12. — (AGARD Lect. Ser.; AGARD-LS-194 Dec. 1993).
- 13. Рашковский С. А., Милехин Ю. М., Федорычев А. В. Повышение полноты сгорания частиц бора в ракетно-прямоточном двигателе на

твердом топливе за счет распределенной подачи воздуха в камеру дожигания // Докл. АН. — 2016. — № 6. — С. 686–691.

- 14. Яновский Л. С., Разносчиков В. В., Шаров М. С. и др. Влияние форсирования прямоточного воздушно-реактивного двигателя на твердом горючем на летно-технические характеристики летательного аппарата // Вестн. Моск. авиац. ин-та. 2013. Т. 20, № 4. С. 90–98.
- Александров В. Ю., Арефьев К. Ю., Прохоров А. Н., Федотова К. В., Шаров М. С., Яновский Л. С. Методика экспериментальных исследований эффективности рабочего процесса в высокоскоростных ПВРД газогенераторной схемы на твердых топливах // Изв. вузов. Машиностроение. — 2016. — № 2. — С. 65– 74.
- Аннушкин Ю. М. Основные закономерности выгорания турбулентных струй водорода в воздушных каналах // Физика горения и взрыва. — 1981. — Т. 17, № 4. — С. 59–71.
- Третьяков П. К. Некоторые особенности формирования тракта ГПВРД // Механика композиционных материалов и конструкций, сложных и гетерогенных сред: сб. тр. 6-й Всерос. науч. конф. с междунар. участием им. И. Ф. Образцова и Ю. Г. Яновского. 2016. Т. 23, № 4. С. 26–33.
- 18. Александров В. Ю., Кукшинов Н. В. Модифицированная кривая выгорания для модельных высокоскоростных камер сгорания, интегрированных с воздухозаборным устройством // Физика горения и взрыва. — 2016. — Т. 52, № 3. — С. 32–36.

- Арефьев К. Ю., Кукшинов Н. В., Серпинский О. С. Методика экспериментального определения полноты сгорания потоков топливной смеси в каналах переменного сечения // Изв. РАН. МЖГ. — 2017. — № 5. — С. 90–102.
- Ягодников Д. А., Лапицкий В. И., Сухов А. В., Томак В. И. Результаты морфологического, химического и дисперсного анализа конденсированных продуктов сгорания пиротехнических составов // Инж. вестн. — 2014. — № 11. — URL: http://engsi.ru/doc/743675.html (дата обращения 15.05.2017).
- 21. Лю Цз.-Чж., Лян Д.-Л., Сяо Цз.-У, Чэнь Б.-Х., Чжан Я. В., Чжоу Цз.-Х., Цэнь К.-Ф. Состав и характеристики первичных продуктов горения топлив на основе бора // Физика горения и взрыва. — 2017. — Т. 53, № 1. — С. 64–74.
- Maček A., Semple J. M. K. Combustion of boron particles at atmospheric pressure // Combust. Sci. Technol. — 1969. — V. 1, N 3. — P. 181– 191.
- Li S. C. Optical measurement of size histories of boron particles in ignition and combustion stages // Combust. Sci. Technol. — 1991. — V. 77, N 1-3. — P. 149–169.
- Yeh C. L., Kuo K. K. Ignition and combustion of boron particles // Prog. Energy Combust. Sci. — 1996. — V. 22, N 6. — P. 511–541.
- 25. **Трусов Б.** Г. Программная система TERRA для моделирования фазовых и химических равновесий при высоких температурах // III Междунар. симпоз. «Горение и плазмохимия», 24–26 августа 2005, Алма-Ата, Казахстан. — 2005. — С. 52–57.

Поступила в редакцию 10/XI 2017 г., в окончательном варианте — 18/IV 2018 г.