2012. Том 53, № 5

Сентябрь – октябрь

C. 927 – 934

УДК 546.137.723

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СПЕКТРЫ КР $[Fe(H_2O)_6]^{3+}(ClO_4^-)_3 \cdot 3H_2O$

Л.С. Скогарева¹, Г.В. Шилов², А.И. Карелин²

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, e-mail: skog@igic.ras.ru ²Институт проблем химической физики РАН, Черноголовка

Статья поступила 9 сентября 2011 г.

С доработки — 29 февраля 2012 г.

Методом РСА исследована структура бесцветных кристаллов, выделенных из насыщенного водного раствора перхлората трехвалентного железа (ПТЖ) в 67,5%-й хлорной кислоте. Установлено, что исследуемое вещество кристаллизуется в тригональной сингонии, параметры гексагональной элементарной ячейки: a = b = 16,079(2) Å, c == 11,369(2) Å, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$, пространственная группа симметрии $R\overline{3}$ (S₆), Z = 6, $\rho_{\text{выч}} = 2,021 \text{ г/см}^3$. Структурная формула кристаллогидрата — [Fe(H₂O)₆]³⁺(ClO₄⁻)₃·3H₂O. В структуре присутствуют два независимых комплексных катиона железа. Каждый из них находится в частном положении 3, но при этом сохраняет правильное октаэдрическое строение: средние значения длин связей равны r (Fe—O) = 1,997(1) Å, валентные углы ∠О—Fe—O отличаются от 90° всего на 0,93°. Независимые катионы [Fe(H₂O)₆]³⁺ образуют короткие H-связи (О...О 2,64 Å) с тремя кристаллизационными молекулами воды и несколько более длинные H-связи (О...О 2,73 Å) с тремя анионами ClO₄. Анион ClO_4^- разупорядочен по двум позициям с заселенностью 0,62(2) и 0,37(2). Обе позиции соответствуют общему положению. Кристаллизационная (внешнесферная) молекула воды отличается тетраэдрической направленностью Н-связей, которые она образует с двумя анионами и с двумя независимыми катионами [Fe(H₂O)₆]³⁺. Все молекулы воды находятся в общем положении. При исследовании поликристаллических образцов методом спектроскопии КР были найдены слабые полосы, принадлежащие внутренним колебаниям двух типов молекул воды. Наименее широкие полосы отнесены к переходам

кристаллизационной молекулы воды, симметрия которой понижается двумя анионмолекулярными Н-связями в очень малой степени. Аномально широкие полосы отнесены к переходам координированной молекулы воды, симметрия которой понижается межмолекулярной и анион-молекулярными Н-связями в большой степени.

Ключевые слова: нонагидрат перхлората железа(III), кристаллическая структура, спектры КР.

введение

Перхлорат трехвалентного железа (ПТЖ) находит применение в органическом синтезе в качестве многофункционального катализатора химических реакций [1, 2]. Результатам, достигнутым в этой области за последние двадцать с лишним лет, посвящена обзорная работа [3]. Существующий интерес к использованию ПТЖ ставит в повестку дня необходимость определения кристаллической структуры. Кристаллогидраты ПТЖ содержат, как правило, 6 или 9 молей воды, хотя применяются также продукты с десятью молями воды, выделяющиеся при перекристаллизации ПТЖ из водного раствора. Кристаллогидраты ПТЖ структурными методами ранее не анализировали.

[©] Скогарева Л.С., Шилов Г.В., Карелин А.И., 2012

Из растворов в концентрированной хлорной кислоте низший гидрат ПТЖ выделяется в виде мелкозернистых кристаллов, не пригодных для проведения РСА. В качестве объекта исследования предпочтителен высший гидрат ПТЖ, выращивание монокристаллов которого удалось осуществить в данной работе. Результаты структурного определения представлены ниже. Соответствующие по составу поликристаллические образцы были исследованы в нашей работе методом спектроскопии КР. Данные РСА, полученные в ходе предварительного исследования, приведены в сообщении [4].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. Перхлорат трехвалентного железа синтезировали, опираясь на методику [5, 6], смешением 10,031 г FeCl₃·6H₂O с 20 мл 44%-й хлорной кислоты. Выделившийся из раствора осадок затем многократно перекристаллизовывали из воды, подкисленной хлорной кислотой, с целью очистки от примеси хлорид-ионов. Состав конечного продукта по данным химического анализа отвечал декагидрату:

	Fe^{3+}	ClO_4^-
Найдено, %:	10,34	55,84
Для Fe(ClO ₄) ₃ ·10H ₂ O вычислено, %:	10,45	55,83

Синтезированное кристаллическое вещество окрашено в бледно-желтый цвет из-за присутствия следов основной соли — продукта гидролитического разложения перхлората железа(III). Кристаллы гигроскопичны, быстро расплываются на воздухе. При выдержке в эксикаторе над серной кислотой наблюдается частичная дегидратация кристаллического осадка.

Раствор 0,507 г Fe(ClO₄)₃ \cdot 10H₂O в 10 мл 67,5%-й HClO₄ в бюксе, накрытом стеклянным фильтром, помещали в холодильник. За счет медленного испарения воды при 5 °C через несколько недель образовались практически бесцветные гигроскопичные монокристаллы, использовавшиеся при определении структуры.

Химический анализ. Содержание Fe(III) определяли комплексонометрически с салициловой кислотой в качестве индикатора, ClO₄⁻ — весовым методом осаждением нитроном.

Рентгенодифракционный эксперимент проводили на автоматическом четырехкружном дифрактометре КМ-4 фирмы KUMA DIFFRACTION (Польша) (графитовый монохроматор, λ (Mo K_{α}) = 0,71073 Å, $\omega/2\theta$ -сканирование) при комнатной температуре (T = 293 K). При проведении эксперимента использовали практически бесцветный прозрачный кристаллический образец в виде пластинки размерами 0,10×0,12×0,3 мм. Параметры элементарной ячейки определены и уточнены по 35 отражениям, найденным в диапазоне углов от 7 до 15 ° θ. Кристаллическая структура расшифрована прямым методом. Позиции и температурные параметры неводородных атомов уточнены в изотропном, а затем в анизотропном приближении полноматричным методом наименьших квадратов (МНК). На разностных синтезах Фурье около позиций атомов кислорода перхлорат-иона выявлены пики электронной плотности, которые были приняты за разупорядоченные позиции атомов кислорода. Уточнение проводили с учетом того, что суммарная заселенность разупорядоченных позиций равна 1. Позиции всех атомов водорода молекул воды получены из разностных синтезов Фурье и уточнены в изотропном приближении с наложением ограничений на длины связей и тепловые параметры. Кристаллографические данные и основные параметры уточнения представлены в табл. 1, координаты атомов в табл. 2 и межатомные расстояния и углы — в табл. 3.

Все расчеты выполнены с использованием комплекса программ SHELXTL 6.14 (Sheld-rick G.M. (8/06/2000). SHELXTL V. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA).

Спектры КР кристаллических порошков в тонкостенной кварцевой ампуле, плотно закрытой тефлоновым колпачком, регистрировали на спектрометре Spex Ramalog 1403 при использо-

Таблица 1

Кристаллографические данные и основные параметры уточнения [Fe(H₂O)₆](ClO₄)₃·3H₂O

Параметр	Значение
$M,$ г · моль $^{-1}$	516,34
Сингония	Тригональная
Пр. гр.	<i>R</i> (-3)
<i>а, b, c,</i> Å; γ, град.	16,079(2), 16,079(2), 11,369(2); 120,00(3)
V, Å ³	2545,5(6)
Z, ρ(выч.), г·см ⁻³	6, 2,021
μ , cm ⁻¹	1,466
F(000)	1578
Размер кристалла, мм	0,10×0,12×0,3
Область сканирования по θ, град.	2,31—39,98
Интервал индексов h, k, l	$-29 \le h \le 24, 0 \le k \le 29, 0 \le l \le 20$
Метод сканирования	ω/2θ
Измер. отражений / независ. отражений (R _{int})	4782 / 3200 (0,0310)
Количество отражений с $I \ge 2\sigma(I)$	1435
Число уточняемых параметров	132
GOOF	0,957
$R_1 I \ge 2\sigma(I)$	0,0470
wR_2 (по всем отражениям)	0,1459
$\Delta \rho(\text{max}) / \Delta \rho(\text{min}), e \cdot \mathring{A}^{-3}$	0,523 / -1,146

Таблица 2

Координаты атомов (×10⁴, Å) и их тепловые параметры (×10³, Å²) в структуре [Fe(H₂O)₆](ClO₄)₃·3H₂O

Атом	x	У	Ζ	$U_{ m 3KB}$	Атом	x	У	Ζ	$U_{ m _{3KB}}$
Fe(1)	0	0	25(1)	0	O(6)	7815(4)	1410(4)	5260(6)	67(1)
O(1)	-737(1)	430(1)	998(1)	34(1)	Cl(1')	7478(1)	811(1)	4166(1)	45(1)
Fe(2)	0	0	5000	25(1)	O(3′)	6686(8)	677(10)	3603(10)	94(4)
O(2)	737(1)	1164(1)	3998(1)	34(1)	O(4′)	7334(10)	7(8)	4717(12)	89(4)
Cl(1)	7478(1)	811(1)	4166(1)	45(1)	O(5′)	8266(8)	1054(9)	3453(16)	90(4)
O(3)	6538(2)	677(2)	3845(5)	46(1)	O(6′)	7751(11)	1641(7)	4727(14)	105(5)
O(4)	7341(2)	-130(3)	4478(5)	49(1)	OW1	5205(1)	-1461(1)	4170(1)	35(1)
O(5)	8054(5)	1162(5)	3073(7)	78(2)					

Таблица З

Основные длины связей (d, Å) и валентные углы (ω, град.) в кристаллическом нонагидрате перхлората трехвалентного железа

Связь	d	Угол	ω	Угол	ω
Fe(1)—O(1)	1,9974(11)	O(1)#1—Fe(1)—O(1)	89,07(6)	O(3)—Cl(1)—O(4)	107,4(2)
Fe(2)—O(2)	1,9962(11)	O(1)#2-Fe(1)-O(1)	90,93(6)	O(3)—Cl(1)—O(6)	108,5(3)
Cl(1)—O(3)	1,461(3)	O(1)—Fe(1)—O(1)#4	180,0	O(4)—Cl(1)—O(6)	106,4(3)
Cl(1)—O(4)	1,460(4)	O(2)#2—Fe(2)—O(2)	90,67(6)	O(3)—Cl(1)—O(5)	104,5(3)
Cl(1)—O(6)	1,499(5)	O(2)—Fe(2)—O(2)#8	89,32(6)	O(4)—Cl(1)—O(5)	109,9(3)
Cl(1)—O(5)	1,483(6)	O(2)—Fe(2)—O(2)#6	180,0	O(6) - Cl(1) - O(5)	119,6(5)

Примечание. #1 *x*-*y*, *x*, *-z*, #2 -*y*, *x*-*y*, *z*, #3 *y*, -*x*+*y*, -*z*, #4 -*x*, -*y*, -*z*, #5 -*x*+*y*, -*x*, *z*, #6 -*x*, -*y*, -*z*+1, #7 *x*-*y*, *x*, -*z*+1, #8 *y*, -*x*+*y*, -*z*+1.

рата [Fe(H₂O)₆](ClO₄)₃·3H₂O (I) с нумерацией атомов

Рис. 1. Строение кристаллогид-

вании счетчика фотонов в диапазоне $\Delta v = 1500-4000 \text{ см}^{-1}$ при спектральной ширине щели 2—5 см⁻¹ с возбуждением линией $\lambda = 514,5$ нм аргонового лазера ILA-120-1 (100—300 мВт).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Независимая часть кристаллической структуры $[Fe(H_2O)_6]^{3+}(ClO_4^-)_3 \cdot 3H_2O$ (I) включает два кристаллографически неэквивалентных атома железа Fe(1) и Fe(2), находящихся в частных позициях $\overline{3}$, разупорядоченный ClO_4^- -анион и три молекулы воды в общей позиции (рис. 1).

Октаэдры Fe(O)₆ имеют расстояния Fe—O и углы, близкие к идеальным (см. табл. 3). В тетраэдре ClO₄ межатомные расстояния одинаковы в пределах ошибок.

Н-связи обозначены пунктирными линиями на двух проекциях фрагмента структуры (рис. 2, *а* и б).

Каждая молекула OW1 кристаллизационной воды участвует в H-связях с двумя соседними ClO₄ анионами в плоскости *ab*. Эти связи имеют следующие параметры: OW1—HW1 0,878, HW1—O6'B 1,949 Å, ∠OW1HW1O6'B 138,80°, OW1…O6'B 2,672, OW1—HW1 0,878, HW1—O6'B 2,004 Å, ∠OW1HW1O6B 147,39°, OW1…O6B 2,783 и OW1—HW2 0,907, HW2—O5'A

Рис. 2. Фрагменты кристаллической структуры I (*a*) и схема водородных связей (штриховые линии) в кристалле (б)

Таблица 4

Н-связь	<i>d</i> (O—H)	<i>d</i> (HO)	ω(O—H…O)	<i>d</i> (00)
01—H1A03	0,891	1,863	162,92	2,727
O1—H1AO3′	0,891	2,081	163,06	2,945
O1—H1AO6′	0,891	2,257	138,39	2,983
O1—H1BOW1	0,890	1,822	150,31	2,633
O2—H2AOW1	0,895	1,747	174,78	2,639
O2—H2BO4	0,900	1,832	176,81	2,731
O2—H2BO4′	0,900	2,049	174,24	2,946
O2—H2BO5′	0,900	2,438	121,97	3,013
OW1—HW1O6'	0,878	1,949	138,80	2,672
OW1—HW1O6	0,878	2,004	147,39	2,783
OW1—HW1O4	0,878	2,388	129,71	3,025
OW1—HW1O4′	0,878	2,490	126,97	3,098
OW1—HW2O5′	0,907	2,045	122,76	2,647
OW1—HW2O5	0,907	2,162	128,61	2,819
OW1—HW2O3	0,907	2,257	142,87	3,029
OW1—HW2O3′	0,907	2,350	142,25	3,117

Геометрические параметры H-связей в структуре I (d, Å u ω, град.)

HW2—O5'A 2,045 Å, ∠OW1HW2O5A 122,76°, OW1… O5'A 2,647, OW1—HW2 0,907, HW2—O5A 2,162 Å, ∠OW1HW2O5A 128,61°, OW1… O5A 2,819 Å (табл. 4).

Обозначения атомов см. на рис. 2, *а*. Неподеленные пары электронов молекулы OW1 направлены на две молекулы воды, из которых одна координируется ионом Fe(1), а другая ионом Fe(2). Независимые ионы железа находятся друг над другом на тройных осях.

Параметры короткой Н-связи, образующейся между атомом водорода координированной молекулы воды и атомом кислорода OW1, несколько различаются у независимых ионов железа: O1—H1B 0,890, H1B—OW1 1,822 Å, ∠O1H1BOW1 150,31°, O1…OW1 2,633 и O2—H2A 0,895, H2AOW1 1,747 Å, ∠O2H2AOW1 174,78°, O2… OW1 2,639 Å (см. табл. 4).

Координированная молекула образует H-связь также с анионом ClO_4^- , в чем принимает непосредственное участие ее второй атом водорода (см. рис. 2, *a*). Соответствующие анионмолекулярные H-связи имеют следующие параметры: O1—H1A 0,891, H1A—O3 1,863, \angle O1H1AO3 162,96°, O1...O3 2,727 и O2—H2B 0,900, H2B—O4 1,832, \angle O2H2BO4 176,81°, O2...O4 2,731 Å (см. табл. 4). Каждый анион ClO_4^- участвует в формировании водородных связей с [Fe(H₂O)₆]³⁺ и с двумя молекулами OW1 (А и В) (см. рис. 2, *б*).

На рис. 3 показана проекция кристаллической структуры на кристаллографическую плоскость *ab*.

Катионы $[Fe(H_2O)_6]^{3+}$ на тройных осях объединяются вдоль тройных осей H-связями через молекулы OW1. Катионы $[Fe(H_2O)_6]^{3+}$ объединяются, кроме того, в плоскости *ab* через H-связи с ClO_4^- . Тем же способом объединяются вдоль кристаллографической оси *Z* находящиеся на разном уровне молекулы OW1. Таким образом, структурные единицы связаны между собой в кристаллической структуре трехмерной сеткой H-связей.

По данным PCA, кристаллогидрат [Fe(H₂O)₆](ClO₄)₃·3H₂O может быть отнесен к структурному типу [Fe(H₂O)₆](NO₃)₃·3H₂O. Нитратный аналог характеризуется пространственной группой симметрии $P2_1/c$ (Z = 4) [7]. Исследованный кристаллогидрат родственен также структурному типу железных квасцов [Fe(H₂O)₆][Cs(H₂O)₆](SO₄)₂ (*Pa*3, Z = 4 [8]). В структуре каждого кристаллогидрата имеется комплексный октаэдрический катион [Fe(H₂O)₆]³⁺ правильной геометрической формы с межатомным расстоянием Fe—O 1,99 Å. Между [Fe(H₂O)₆]³⁺ и кристаллиза-

Рис. 3. Упаковка молекул в структуре I (проекция на плоскость элементарной ячейки ab)

ционными молекулами воды у всех кристаллогидратов образуются практически одинаковые короткие межмолекулярные H-связи, о чем свидетельствует сравнение расстояний О...О (надстрочный символ означает координацию молекулы трехвалентным (III) и одновалентным (I) катионом или же отсутствие координации (0) — здесь и далее межатомные расстояния приводятся в Å):

	$H_2O^{III}H_2O^0$	$H_2O^{III}H_2O^{I}$	
$[Fe (H_2O)_6](ClO_4)_3 \cdot 3H_2O$	2,63		
$[Fe(H_2O)_6](NO_3)_3 \cdot 3H_2O$	2,63—2,71		[7]
$[Fe (H_2O)_6][Cs(H_2O)_6](SO_4)_2$		2,63	[8]

Расстояния О...О заметно возрастают против межмолекулярных при образовании молекулой H₂O^{III} анион-молекулярных H-связей (ссылки см. выше):

	$H_2O^{III} \dots A^{n-}$	$H_2O^0A^{n-}$	$H_2O^1A^{n-1}$
$[Fe (H_2O)_6](ClO_4)_3 \cdot 3H_2O$	2,73	2,65—2,82	
$[Fe(H_2O)_6](NO_3)_3 \cdot 3H_2O$	2,69—2,74	2,78—2,79	
$[Fe (H_2O)_6][Cs(H_2O)_6](SO_4)_2$	2,69		2,76—2,82

Сокращение межмолекулярной Н-связи является следствием поляризации электронной оболочки молекулы воды, координированной трехвалентным катионом, — поляризация придает молекуле кислотные свойства. Нижеследующий пример увеличения межатомных расстояний Fe—O и $H_2O^{II}...H_2O^0$ показывает, в сущности, что при понижении валентности иона железа на единицу степень поляризации заметно уменьшается:

Рис. 4. Спектр КР желтого кристаллического порошка нонагидрата перхлората трехвалентного железа (показана область частот колебаний v₁, v₂ и v₃ молекул воды)

Анион ClO_4^- — очень слабый донор электронов, поэтому наблюдается закономерное увеличение расстояния О...О при переходе от $H_2O^{III}...SO_4^{2-}$ и $H_2O^{III}...NO_3^-$ к $H_2O^{III}...ClO_4^-$. РСА свидетельствует о том, что величина рас-

стояния О...О практически не зависит от ориентации перхлорат-иона в кристаллической структуре. С другой стороны, если значение О...О относится к Н-связи ClO_4^- не с $\text{H}_2\text{O}^{\text{III}}$, а с H_2O^0 (OW1), зависимость все же возникает. Заселенности ClO_4^- , равной 0,62, например, отвечают длинные расстояния О...О 2,783 и 2,819 Å. Заселенности 0,37 отвечают короткие расстояния О...О 2,647 и 2,672 Å, чему, однако, трудно найти приемлемое объяснение. Короткие расстояния между OW1 и перхлорат-ионом явно выпадают из ряда, если последовательность анионмолекулярных H-связей $\text{H}_2\text{O}^0...\text{ClO}_4^-$, $\text{H}_2\text{O}^0...\text{NO}_3^-$ и $\text{H}_2\text{O}^0...\text{SO}_4^{2-}$ рассматривать как ряд.

Кристаллические порошки, способ приготовления которых указан в экспериментальной части, были проанализированы методом спектроскопии КР с целью получения дополнительной информации о природе H-связей. Наиболее крупные кристаллы извлекались из приготовленных образцов и анализировались методом PCA с целью подтверждения состава. Параметры элементарной ячейки проверенных выборочно кристаллов совпадают с установленными для [Fe(H₂O)₆](ClO₄)₃·3H₂O.

Спектр КР кристаллического порошка, близкого по составу к $[Fe(H_2O)_6](ClO_4)_3 \cdot 3H_2O$, показан на рис. 4. При его регистрации мы ограничились областью частот внутренних колебаний молекул воды, наиболее информативной с точки зрения возможности оценки спектроскопических параметров Н-связей. Наблюдаются два набора полос, один из которых принадлежит фиксированной катионом железа молекуле воды, а другой — кристаллизационной молекуле. Каждый такой набор отражает реально существующие особенности координационных и водородных связей. В рамках модели ориентированного газа [11] два типа молекул воды должны были бы иметь 6 полос внутренних колебаний (по три полосы в индивидуальном наборе). Реально найдены 4 полосы — максимумы при 1609 (1), 2950 (2), 3220 (3) и 3469 (4) см⁻¹. Наименее широкие контуры принадлежат полосам (1) и (4). Эти полосы смещены менее других относительно соответствующих линий свободной (газообразной) молекулы воды под влиянием возмущений H-связями. Происхождение данной пары полос, следовательно, обусловлено внутренними колебаниями кристаллизационной (внешнесферной) молекулы воды. Низкое значение частоты указывает на принадлежность полосы (1) к деформационному колебанию v₂ молекулы H₂O⁰. Полоса (4) отнесена к валентному симметричному колебанию v₁ этой же молекулы.

Следует отметить, что все основные колебания v_1 , v_2 и v_3 свободной молекулы воды активны в спектре КР, но при этом линия оптически активного валентного антисимметричного v_3 колебания имеет, по существу, нулевую интенсивность [12]. Колебательные частоты H_2O^0 слабо возмущены H-связями с ClO_4^- , поэтому они подчиняются фактически правилам отбора для частот свободной молекулы. Наличие симметричной конфигурации у молекулы H_2O^0 подтверждается, в частности, нулевой интенсивностью линии v_3 . Высокая частота колебания v_1 фактически означает, что H-связь молекулы является слабой, а расстояние О...О соответственно должно быть достаточно длинным.

Полосы (2) и (3) имеют чрезвычайно широкие контуры. Именно такие нечасто встречаются у кристаллических координационных соединений воды. Обе смещены в очень большой степени к низким частотам относительно исходных линий v_1 и v_3 свободной молекулы воды под влиянием возмущений Н-связями, следовательно, должны принадлежать валентным колебаниям

молекулы воды H₂O^{III}. Как мы уже отмечали, в спектре КР свободной молекулы воды при изучении области частот валентных колебаний ОН экспериментально обнаруживается линия v₁, тогда как линия v_3 не обнаруживается, будучи очень слабой. Кроме того, линия v_3 не обнаруживается даже у слабо деформированной молекулы H₂O⁰. Присутствие в области частот валентных колебаний ОН не одной, как обычно, а двух почти одинаково интенсивных полос может рассматриваться как признак значительного понижения симметрии (деформации) молекулы H₂O^{III}. В случае значительной деформации отнесение широких полос по неприводимым представлениям точечной группы симметрии С2v свободной молекулы теряет физический смысл. Структурная причина понижения симметрии достаточно очевидна — деформирующее влияние двух неравноценных Н-связей, из которых одна является сильной межмолекулярной, а другая — средней силы анион-молекулярной. Деформация способствует развязке осцилляторов ОН. В приближении свободных осцилляторов полоса с максимумом при 2950 см⁻¹ может быть отнесена к v(O^{III}—H...OH₂⁰), а полоса с максимумом при 3220 см⁻¹ — к v(O^{III}— H...OClO₃). Понижение симметрии способствует уменьшению интенсивности полосы деформационного колебания δ(H—O^{III}—H) — в данном случае методом спектроскопии КР она не обнаруживается.

Степень соответствия спектроскопических параметров структурным параметрам H-связей оценивали с помощью графика [13—15], на котором приведена эмпирически установленная зависимость частоты колебания v(OH) от расстояния O...O. Вычисленные этим способом по частоте колебаний v(O^{III}—H...OH₂⁰) и v(O^{III}—H...OClO₃⁻) расстояния O...O 2,64 и 2,70 Å близки к O1...OW1 2,633 и O1...O3 2,727 Å соответственно, а также к O2...OW1 2,639 и O2...O4 2,731 Å соответственно. Вычисленное по частоте колебания v₁ расстояние O...O 2,84 Å достаточно близко к OW1...O6B 2,783 и OW1...O5A 2,819 Å, но заметно отличается от O1...OW1 2,633 и O2...OW1 2,639 Å.

выводы

Рентгеноструктурным методом определена кристаллическая структура нонагидрата перхлората трехвалентного железа — перспективного катализатора органических реакций. Зарегистрирован спектр КР поликристаллических образцов с целью уточнения структурной информации о характере водородных связей.

Экспериментально установленные различия в силе водородных связей достаточно велики, в частности, они позволяют однозначно определить методами колебательной спектроскопии присутствие в структуре исследованного кристаллогидрата двух типов молекул воды.

СПИСОК ЛИТЕРАТУРЫ

- 1. Heravi M.M., Behbahani F.K., Oskooie H.A. et al. // Tetrahedron Lett. 2005. 46, N 15. P. 2543 2545.
- 2. Wang M., Song Z.-G., Gong H. et al. // Monatsh. Chem. 2009. 140, N 2. P. 177 179.
- 3. Heravi M.M., Behbahani F.K. // J. Iran. Chem. Soc. 2007. 4, N 4. P. 375 392.
- 4. Шилов Г.В., Карелин А.И., Скогарева Л.С. // Тез. докл. XXII Международной Чугаевской конф. по координационной химии. Кишинев, 2005. С. 555.
- 5. Weinland R., Loebich O. // Z. Anorg. Allg. Chem. 1926. 151, N 3. S. 271 288.
- 6. Lindstrand F. // Z. Anorg. Allg. Chem. 1936. 230, N 1-2. S. 187 208.
- 7. Hair N.J., Beattie J.K. // Inorg. Chem. 1977. 16, N 2. P. 245 250.
- 8. Beattie J.K., Best S.P., Skelton B.W. et al. // J. Chem. Soc. Dalton Trans. 1981. N 10. P. 2105 2111.
- 9. Baur W.H. // Acta Crystallogr. 1964. 17, N 9. P. 1167 1174.
- 10. Cotton F.A., Daniels L.M., Murillo C.A. et al. // Inorg. Chem. 1993. 32, N 22. P. 4861 4867.
- 11. *Савуа Р*. Спектры комбинационного рассеяния молекулярных кристаллов. В кн. "Применение спектров комбинационного рассеяния" / Под ред. А. Андерсона. М.: Мир, 1977. С. 355 407.
- 12. Свердлов М.А., Ковнер Л.М., Крайнов Е.П. Колебательные спектры многоатомных молекул. М.: Наука, 1970.
- 13. Novak A. // Structure and Bonding. Berlin, Heidelberg, N.Y.: Springer Verlag, 1974. 18. P. 177 216.
- 14. Mikenda W. // J. Mol. Struct. 1986. 147, N 1-2. P. 1 15.
- 15. Bratos S., Leicknam J.-C., Pommeret S. // Chem. Phys. 2009. 359, N 1-3. P. 53 57.