АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ТЕЧЕНИЯ ДВУХФАЗНОЙ СМЕСИ В СОПЛЕ С УЧЕТОМ ГАЗОДИНАМИЧЕСКОГО ДРОБЛЕНИЯ

O. B. Ковалев, B. M. Фомин
(Новосибирск)

Рассматриваются одномерная модель течения полидисперсной двухфазной смеси в сопле [1] и ступенчатая модель газодинамического дробления, согласно которой по достижении числом Вебера критического значения шаровая капля распадается на две равные части.

На основе полученного приближенного решения, согласно известному методу линеаризации уравнений при небольшом запаздывании частиц от газа, доказано существование в критическом сечении такого диаметра частиц δ_{cp}, который ограничивает возможность перехода частиц большего размера через критическое сечение, т. е. при $\delta > \delta_{cr}$ в дозвуковой части сопла падает такое сечение, где число Вебера для данной частицы достигает критического значения. При этом δ_{cr} существенно зависит от формы сопла и параметров торможения потока. Получено аналитическое выражение этой зависимости для стоксова режима обтекания частиц. Проведенные численные эксперименты согласуются с теоретическими выводами.

Для описания течения полидисперсной смеси примем метод Лагранжа [1]. Выпишем систему уравнений для i-го компонента частиц, вводя ступенчатую функцию распределения частиц по размерам, коэффициенты захвата G_{ij} и эффективности соударений $\Phi_{ij} = \Lambda m_i \sum_{j=1}^{N} m_j$, где Λm_i и $\sum_{j=1}^{N} m_j$ — изменение массы i-й частицы и масса всех j-х частиц, падающих на i-ю,

$$
\frac{du_i}{dx} = D_i(\omega - \omega_i) + \frac{1}{m_i} \sum_{j=1}^{N} K_{ij} G_{ij} n_i n_j (u_j - u_i) + \\
+ \sum_{j=1}^{N} K_{ij} G_{ij} n_i (1 - \Phi_{ij}) (u_j u_i),
$$

$$
\frac{dT_i}{dx} = Q_i(T - T_i) + \frac{1}{c_{\alpha i}} \sum_{j=1}^{N} K_{ij} G_{ij} m_j n_j E_{ij} + \\
+ \frac{1}{c} \sum_{j=1}^{N} K_{ij} G_{ij} n_j (1 - \Phi_{ij}) E_{ij},
$$

(1)
\[
\frac{d\mu_i}{dx} = \frac{n_i}{\rho \omega} \left(\sum_{j=1}^{i} K_{ij} G_{ij} \Phi_{ij} m_j n_j - m_i \sum_{j=1}^{N} K_{ij} G_{ij} \Phi_{ij} n_j \right)
\]

Здесь \(n_i\), \(T_i\) — скорость и температура \(i\)-й фракции частиц; \(D_i\), \(Q_i\) — коэффициенты сопротивления и теплоотдачи [1]; \(n\) — число частиц в единице объема с массой \(m_i = \pi/6 \delta_i^3 \rho_i\); \(K_{ij} = 4\pi(\delta_i \delta_j)^4 u_i + u_j\) — константа коагуляции, где \(\delta_i\) — диаметр частицы; \(\mu_i = n_i m_i \mu_i / \rho \omega\) — соотношение расходов частиц и газа; \(E_o = c_b (T_i - T_i) + (u_i - u) \delta_i/2\). Дополнив (1) уравнениями неразрывности и состояния газа, а также уравнениями законов сохранения импульса и энергии для смеси, получим замкнутую систему

\[
\rho \omega f = c_1,
\]

\[
\frac{dp}{dx} + \rho \omega \frac{dw}{dx} + \rho \omega \sum_{i=1}^{N} \frac{du_i}{dx} = 0,
\]

(2)

где \(\omega, \rho, T, p\) — скорость, плотность, температура и давление газа; \(f\) — площадь поперечного сечения; \(c_p\) и \(c_v\) — теплоемкости газа и материала частиц; \(R\) — газовая постоянная.

Применяется следующая ступенчатая модель газодинамического дробления [2], согласно которой при достижении числа Бенебера \(W_{eb} = \rho(\omega - u) \delta / \sigma\) критическое значения \(W_{eb}\), т. е. при выполнении соотношения

\[
W_i \geq W_{eb},
\]

шаровая капля распадается на две равные части, так что

\[
\delta_i = \begin{cases} \delta_i, & W_i \leq W_{eb}, \\ \frac{\sqrt{2}}{2}, & W_i \geq W_{eb}. \end{cases}
\]

(3)

(4)

Здесь \(\sigma\) — коэффициент поверхностного натяжения жидкой капли.

Многочисленные экспериментальные данные, приведенные в работах [3, 4], свидетельствуют о зависимости критического числа Бенебера от вязкостного комплекса \(\Gamma = \eta / \delta \rho_b\), где \(\eta\) и \(\rho_b\) — динамическая вязкость и плотность жидкости. В [4] получена эмпирическая зависимость \(W_{eb}\) от определяющих параметров \(\Gamma\) и длины коэффициента \(L\) в широком диапазоне значений \(\eta\) и \(\rho_b\).

\[
W_{eb} = 17,5 \Gamma^{-0.85}, \quad m = \begin{cases} 0.0323, & \Gamma \leq 1, \\ 0.256, & \Gamma > 1. \end{cases}
\]

При этом для \(\Gamma < 10^{-2}\) в условиях увеличивающихся относительных скоростей \(W_{eb} = 20 \div 24\).

Согласно методу линеаризации уравнений двухфазных течений, параметры течения в явном виде могут быть представлены через геометрические характеристики сопла. Ограничимся случаем течения без взаимодействия частиц при стоксевом режиме обтекания частиц, исходные уравнения движения (1) в этом случае примут вид

\[
u_i du_i / dx = D_i (\omega - u_i),
\]

\[
u_i dT_i / dx = Q_i (T_i - T_i),
\]

\[
\mu_i = \text{const},
\]

(1')
где \(D_i = 18 \eta \beta_p \); \(Q_i = 6 \) \(\frac{Nu_{\text{Pr} \cdot \text{c}_p \cdot \eta}}{\beta_p \cdot \eta} \); \(\eta \) — вязкость газа; \(Nu, Fr \) — числа Нуссельта и Фруда. Можно получить решение уравнений движения двухфазной смеси (1'), (2) в разложении по малому параметру \(\varepsilon \), пропорциональному отставанию частиц [1]. При этом искомые функции \(\omega, u_i, T, T_o, p, \rho \) (и \(i = 1, N \)) могут быть записаны в виде

\[
\begin{align*}
\omega &= \omega_e + \varepsilon \omega_e^{(1)} + \varepsilon^2 \omega_e^{(2)} + \ldots, \\
T &= T_e + \varepsilon T_e^{(1)} + \varepsilon^2 T_e^{(2)} + \ldots, \\
p &= p_e + \varepsilon p_e^{(1)} + \varepsilon^2 p_e^{(2)} + \ldots, \\
\rho &= \rho_e + \varepsilon \rho_e^{(1)} + \varepsilon^2 \rho_e^{(2)} + \ldots, \\
\omega - u_i &= \omega_i^{(1)} + \varepsilon^2 u_i^{(2)} + \ldots, \\
T - T_i &= \varepsilon T_i^{(1)} + \varepsilon^2 T_i^{(2)} + \ldots,
\end{align*}
\]

(5)

где \(\omega_e, T_e, p_e, \rho_e \) — параметры равновесного течения; \(\varepsilon = Na_e \sum_{i=1}^{N} D_i \), \(a_e \)

— скорость звука в равновесном заторможенном потоке. Величиной \(\omega_e^{(1)}, T_e^{(2)}, p_e^{(2)}, \rho_e^{(2)}, u_i^{(2)}, T_i^{(2)} \), соответствующие членам \(j \)-го порядка в разложении, могут быть получены из уравнений (1'), (2) при непосредственной подстановке соотношений (5) и приравнивании коэффициентов при одинаковых степенях \(\varepsilon \).

Здесь не будут выписываться выражения для этих величин, так как они аналогичны приведенным в работе [1] для случая однодисперсной смеси. Нас интересует запаздывание частиц, поскольку именно эта величина входит в выражение для числа Вебера и влияет на характер газодинамического дробления. Так, для разности скоростей \(\omega - u_i \), учитываю только члены до первого порядка, имеем

\[
\omega - u_i = \omega_e / D_i \frac{d \omega_e}{dx}.
\]

(6)

Известно, что параметры равновесного течения, которое характеризуется условиями \(\omega = \omega_e, T = T_e \), выполненными во всей области, удовлетворяют уравнениям обычной газодинамики с эффективными значениями \(\rho_e = (1 + W) \rho, R_e = R/(1 + W), \) \(c^{\text{e}_p} = (c_p + c_b W)/(1 + W), \) где \(W = \sum_{\mu=1}^{N} \mu . \)

Очевидно, что решение этих уравнений может быть выражено через величину \(\lambda \) и параметры торможения равновесного потока

\[
\begin{align*}
\omega_e &= a_e^{\lambda} \left(\frac{2}{\kappa_e + 1} \right)^{1/2}, \\
p_e &= p_e^{\lambda} \left(1 - \frac{k_e - 1}{\kappa_e + 1} \frac{\lambda^2}{(\kappa_e - 1)} \right), \\
\rho_e &= \rho_e^{\lambda} \left(1 - \frac{k_e - 1}{\kappa_e + 1} \right).
\end{align*}
\]

(7)

Причем связь приведенной скорости \(\lambda = \omega_e / a_e^{\lambda} \) с контуром сопла задается уравнением

\[
\frac{f/f_{\text{пр}}}{\lambda} = \frac{\left(\frac{2}{\kappa_e + 1} \right)^{1/(\kappa_e - 1)}}{\left(1 - \frac{k_e - 1}{\kappa_e + 1} \frac{\lambda^2}{(\kappa_e - 1)} \right)}.
\]

Используя уравнение (6) и выражая плотность газа \(\rho \) через равновесное значение, из соотношения (3) получим такое \(\omega(x) \), что для всех
диаметр \(i \)-й частицы изменяется в соответствии с уравнением (4).

Таким образом, показано, что в каждом сечении сопла существует некоторый диаметр частиц \(\delta(x) \), который ограничивает возможность перехода частиц большего размера через это сечение. В связи с этим может быть указано следующее утверждение. Пусть движение полидисперсной двухфазной смеси мало отличается от равновесного, т. е. справедливо представление решения системы уравнений (1')—(4) в виде (5). Тогда для заданного контура сопла существует критический диаметр частиц \(\delta_{кр} \), равный минимальному значению \(\delta(x) \), которое достигается в критическом сечении и зависит от параметров торможения равновесного течения, геометрических характеристик контура:

\[
\delta_{кр} = \left\{ \frac{W_{кр} (18 \eta^2 \nu (1 + W))^{0.2}}{\rho_0 \nu_0 (\omega e)^2 \int_{x}^{x+2} \left(\frac{k_z + 1}{k_z - 1} \right)^{1/2} dx} \right\}^{1/2},
\]

где \(r_*, R_* \) — радиус и радиус кривизны критического сечения.

Для доказательства в соотношении (8) подставим \(\rho_*, \omega_ * \) из (7). Тогда с учетом уравнения

\[
\frac{d \omega}{dx} = \frac{- \omega e}{1 - M_e^2} \frac{d f}{dx}
\]

(\(M_e \) — число Маха) величина \(\delta(x) \) может быть выражена через \(\lambda \) и \(\xi = -dr/dx \), где \(r = r(x) \) — контур сопла. Если положить \(\xi = const \), то в случае бесконечно малого радиуса кривизны можно показать, что функция \(\delta(x) = \delta(\lambda) \) достигает минимума в критическом сечении.

Действительно, из (8) достаточно исследовать на экстремум функцию

\[
\Phi(\lambda, \xi) = i \cdot \nu \left. \left(\frac{d \omega}{dx} \right)^2 \right|_{x}^{x+2} = c_D \left(\frac{1 - \lambda^2}{\lambda^2} \left(1 - \frac{k_z - 1}{k_z + 1} \lambda^2 \right)^{-2h_0/k_0 - 1} \right),
\]

где \(c_D = \frac{r_*^2 \frac{\partial a_*}{\partial \xi}}{\left(\frac{\partial \omega}{\partial \xi} + 1 \right)^{1/2}} \).

Точки экстремума находим из условия \(\Phi' = 0 \) при \(\xi = const \), откуда получаем уравнения

\[
\frac{5k_z - 1}{k_z + 1} \lambda^4 - \frac{10k_z - 4}{k_z + 1} \lambda^2 + 5 = 0,
\]

Исследуя уравнение, убедимся, что первое уравнение не имеет действительных корней, так как при \(k_z > 1 \) имеет отрицательный дискриминант. Из второго уравнения получаем одну точку экстремума: \(\lambda = 1 \).

Теперь определям значение производной \(d \omega_0 /dx \) в критическом сечении. Очевидно, что при \(M_e = 1 \) и \(dr/dx = 0 \) правая часть уравнения (10) не определена. Представим (10) в виде

\[
\frac{d \omega}{dx} = \frac{\psi_1(\lambda, x)}{\psi_2(\lambda, x)},
\]

где

\[
\psi_1(\lambda, x) = 2a_0^2 \xi \left(\frac{2}{k_z + 1} \right)^{1/2} \left(\frac{\xi + 1}{\xi - 1} \right)^{1/2} \left(1 - \frac{k_z - 1}{k_z + 1} \lambda^2 \right)^{-2h_0/k_0 - 1},
\]

\[
\psi_2(\lambda, x) = r_* \left(\lambda^2 - 1 \right).
\]

Пользуясь методами качественной теории (5), положим 86
где \(\omega - \omega^* = K (x - x_*) \),

(13)

где \(\omega^* = \omega^* (x_*) \); \(x_* \) — координата критического сечения. Разлагая в ряд функции \(\varphi_1 \) и \(\varphi_2 \) в точке \((x_*, \omega^*) \) и ограничиваясь членами первого порядка, из (11) получим

\[
\frac{d\omega}{dx} \bigg|_{x=x_*} = K,
\]

(12)

Подставляя в (14) соотношения (12) и (13), после вычисления производных в точке \((x_*, \omega^*) \) получим квадратное уравнение для \(K \), из которого с учетом условия \(\frac{d^2\omega}{dx^2} = 1/R_\star \) находим

\[
K = \frac{d\omega}{dx} \bigg|_{x=x_*} = \frac{2\omega^*}{(k_\star + 1) \sqrt{R_\star \omega^*}}.
\]

(15)

Теперь, подставляя (7) и (15) при \(\lambda = 1 \) в (8) с учетом выражения \(a^\star = \sqrt{k_\star R_\star / \rho_\star} \), окончательно получаем соотношение (9).

Таким образом, при известном контуре сошла и параметрах торможения равновесного потока соотношение (9) позволяет заранее предсказать характер двухфазного течения и вычислить значение критического диаметра частиц \(\delta_{\text{кр}} \) для данного сошла. Причем из (9) видно, что величина \(\delta_{\text{кр}} \) существенно зависит от давления торможения смеси \(p_\star \).

Чтобы оценить величину \(\delta_{\text{кр}} \) частиц \(\text{Al}_2\text{O}_3 \), для которых при температуре плавления \(\rho_\star = 2700 \text{ кг/м}^3 \), \(\sigma = 0,914 \text{ Н/м} \), выберем следующие параметры торможения и геометрические характеристики сошла: \(R_\star = r_* = 0,24 \text{ м} \), \(W = 0,1 \), \(W_{\text{ср}} = 24 \), \(\rho^* = 5,75 \text{ кг/м}^3 \), \(p_\star = 60 \cdot 10^4 \text{ Н/м}^2 \), \(k_\star = 1,117 \), \(\eta = 8,85 \cdot 10^{-3} \text{ Н·с/м}^2 \). Подставляя эти значения в (9), получим \(\delta_{\text{кр}} = 10,19 \cdot 10^{-4} \text{ м} \).

Для оценки приведенных выше теоретических выводов проведены численные эксперименты, в которых исследовано влияние геометрических характеристик сошла на величину среднемассового диаметра частиц в критическом сечении и на выходе.

Изменя, что при расчете параметров течения в сошла заданного контура система уравнений имеет особую точку в критическом сечении, что создает определенные трудности в вычислениях. В связи с этим целесообразно решить обратную задачу [6], т. е. вместо функции \(f(x) \) задавать распределение плотности газа по длине сошла. Для определения этой зависимости предварительно рассчитывается равновесное течение смеси в заданном сошла. Далее численно интегрируется система (1) — (4). Площадь сошла после каждого шага интегрирования находится из уравнения неразрывности по известным параметрам и расходу газа.

В расчетах варьировались значения диаметра, радиуса кривизны критического сечения и ступенчатая функция распределения частиц по размерам в начальном сечении сошла, которая характеризуется средненарановым диаметром \(\delta_{13} \). Так, для \(p_\star = 60 \cdot 10^3 \text{ Н/м}^2 \) и \(z = 0,09 \) (з = \(W/(1 + W) \), где \(z \) — массовая концентрация конденсата) в широком диапазоне начальных значений \(\delta_{13} \) (4,67 = \(\delta_{13} \leq 294 \text{ мкм} \)) получены кривые изменения средненаранового диаметра \(\delta_{13}(x) \) в геометрически по-добных сошах (см. рисунок и таблицу).

Следует отметить, что эффекты газодинамического дробления характерны для функций распределения с достаточно большим значением \(\delta_{13} \) (см. рисунок) и проявляются только в дозвуковой части сошла. Ук-
Изменение среднемассового диаметра по оси сопла.

а) $\delta_{33}^0 < \delta_{кр}^0$; б) $\delta_{33}^0 > \delta_{кр}^0$.

Разрушение при коагуляции частиц становится заметным и преобладает для функций распределения с $\delta_{33}^0 < 8,78$ мкм (кривые 1, 2). Причем значение δ_{33} в критическом сечении существенно зависит от геометрических характеристик контура. Так, например, для сопел с одинаковыми значениями $r_0 = 0,1$ м и разными R_0 при прочих равных условиях получаются разные значения δ_{33} в критическом сечении (кривые 1, 3). Если віднять у коагуляцию (9), то можно сравнить растические значения δ_{33} с $\delta_{кр}$ в критическом сечении для различных контуров (см. таблицу). Кривые 1 и 7, среднечисловые диаметры которых в начальном сечении различаются в порядок, в критическом сечении имеют близкие значения $\delta_{кр}$. Расхождение δ_{33} и $\delta_{кр}$ для кривых 3 и 4 объясняется тем, что шаг $\Delta x = 0,02$, с которым проводились все расчеты, превосходит значение радиуса кривизны $R_0 = 0,001$.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_0, м</td>
<td>0,1</td>
<td>0,24</td>
<td>0,1</td>
<td>0,1</td>
<td>0,49</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>R_0, м</td>
<td>0,1</td>
<td>0,12</td>
<td>0,001</td>
<td>0,001</td>
<td>0,05</td>
<td>0,245</td>
<td>0,1</td>
</tr>
<tr>
<td>δ_{33}, мкм</td>
<td>9,8</td>
<td>11,1</td>
<td>7</td>
<td>7</td>
<td>13,5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>$\delta_{кр}$, мкм</td>
<td>7,3</td>
<td>9,02</td>
<td>2,906</td>
<td>2,906</td>
<td>6,36</td>
<td>12</td>
<td>7,3</td>
</tr>
</tbody>
</table>

Таким образом, результаты расчетов по общей модели с учетом коагуляции и газодинамического дробления частиц Al_2O_3 показали хорошее качественное и количественное согласование с теоретическими выводами. При этом если в начальном сечении сопла $\delta_{33}^0 > \delta_{кр}$, то преобладает газодинамическое дробление, и наоборот, если $\delta_{33}^0 < \delta_{кр}$, то преобладает укрупнение частиц за счет коагуляции.

Поступила в редакцию 19/V 1981, после доработки — 2/II 1982

ЛИТЕРАТУРА

2. В. И. Гарькуша, А. Л. Спасенкин. Изв. АН СССР. Энергетика и транспорт, 1979, 3, 88.
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ
В РЕЗОНАТОРЕ НЕПРЕРВНОГО ХИМИЧЕСКОГО HF-ЛАЗЕРА
НА ОСНОВЕ УРАВНЕЙ НАВЬЕ — СТОКСА

Ю. В. Лапин, М. Х. Стрелец, М. Л. Шур
(Ленинград)

В работе [1] предложен эффективный конечно-разностный метод численного интегрирования полной системы уравнений Навье — Стокса для многокомпонентных химически реагирующих газовых смесей при наличии релаксационных процессов и когерентного излучения, открывающий благодаря своей экономичности широкие возможности для моделирования различных неуравновешенных систем с когерентным излучением. В данной работе этот метод используется для исследования процессов, протекающих в резонаторе непрерывного сверхзвукового химического лазера на молекуле HF. При этом особое внимание уделяется вопросам, которые не могут быть проанализированы в рамках широко распространенников в настоящее время приближенных моделей течения в резонаторе [2—5].

Постановка задачи

При описании течения в резонаторе непрерывно действующего химического HF-лазера с плоской или цилиндрической геометрией соплового блока (см., например, [6]) используются следующие основные допущения: 1) течение можно считать двумерным (плоским или осесимметричным); 2) смешение сверхзвуковых струй горючего (H₂) и окислителя (F₂, He) в полости резонатора имеет ламинарный характер; 3) эффекты термодиффузии и бародиффузии можно пренебречь, а диффузионный поток массы k-го компонента в многокомпонентной газовой смеси может быть выражен в форме общепринятого закона Фика \[\vec{j}_k = -\rho D_k \nabla c_k, \]
где \(\rho \) — плотность смеси; \(c_k \) — относительная массовая концентрация k-го компонента; \(D_k \) — эффективный коэффициент диффузии (7); 4) на каждом колебательном уровне \(\nu \) молекул фтористого водорода HF(\(\nu \)), обраzuющихся в потоке в результате реакций накачки F + H₂ = HF(\(\nu \)) + H, \(H + F_2 = HF(\nu) + F \), имеем место вращательное равновесие при локальной термодинамической температуре смеси; в этом случае молекулы HF(\(\nu \)), \(\nu = 0, 1, \ldots, N_v \) формально можно рассматривать как отдельные химические компоненты (им присвоено номер \(k = 1, 2, \ldots, N_v + 1 \) соответственно), а элементарные процессы, протекающие с их участием, как отдельные химические реакции (8); 5) генерация для каждой колебательной полосы \(\nu + 1 \to \nu \) может иметь место лишь в P-ветви колебательно-вращательных переходах \(\nu + 1, \nu \) (9), и \(j_\nu = 1 \to (\nu, j_\nu) \), где \(j_\nu \) — значение вращательного квантового числа, при котором интегральный оптический коэффициент усиления для данной колебательной полосы принимает максимальное значение [2, 8].

В рамках сформулированных допущений система уравнений Навье — Стокса, описывающая течение в лазерном резонаторе [6, 9, 10], может быть записана в следующей форме:

\[\frac{\partial \vec{F}}{\partial t} + \nabla \vec{W} + \vec{Q}_e + \vec{Q}_R = 0, \]