2014. Том 55, № 2

Март – апрель

C. 331 – 338

УДК 542.91:546.96:548.736

СТРОЕНИЕ, СИНТЕЗ И ТЕРМИЧЕСКИЕ СВОЙСТВА *mpahc*-[Ru(NO)(NH₃)₄(SO₄)]NO₃·H₂O

А.Н. Махиня^{1,2}, М.А. Ильин^{1,2}, И.А. Байдина¹, П.Е. Плюснин^{1,2}, Н.И. Алферова¹, Д.П. Пищур¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский национальный исследовательский государственный университет E-mail: sas.fen@mail.ru

Статья поступила 19 февраля 2013 г.

При обработке *транс*-[Ru(NO)(NH₃)₄(OH)]Cl₂ концентрированной серной кислотой при нагревании с выходом, близким к количественному, был получен *транс*-[Ru(NO)× ×(NH₃)₄(SO₄)](HSO₄)·H₂O (I). При взаимодействии насыщенного раствора I с насыщенным раствором NaNO₃ образуется осадок *транс*-[Ru(NO)(NH₃)₄(SO₄)]NO₃·H₂O (II), строение которого было установлено методом PCA: пр. гр. $P2_12_12_1$, a = 6,8406(3), b = 12,6581(5), c = 13,3291(5) Å. Монодентатно координированный сульфат-ион находится в *транс*-положении к нитрозогруппе. Соединение II охарактеризовано методами ИК спектроскопии, РФА, СДО. Исследован процесс его термолиза, методом ДСК проведена оценка теплового эффекта реакции дегидратации, происходящей при нагревании до 120 °C ($\Delta H = 58,9 \pm 1,5$ кДж/моль). Конечным продуктом термолиза II является смесь Ru и RuO₂.

Ключевые слова: рутений, нитрозокомплексы, амминокомплексы, сульфатокомплексы, синтез, рентгеноструктурный анализ, термический анализ.

введение

Повышенный интерес к химии нитрозоамминокомплексов рутения обусловлен несколькими активно развивающимися в настоящее время направлениями. Изменения способа координации нитрозогруппы к атому рутения, происходящие при облучении исходного нитрозокомплекса жестким лазерным излучением, открывают перспективу создания на основе этих комплексов полифункциональных фотомагнитных материалов [1, 2].

Открытие ключевой роли молекулы NO во многих физиологических процессах в человеческом организме поставило перед исследователями задачу синтеза и исследования свойств соединений, способных выступать в качестве доноров NO в биологических системах. Перспектива применения этих соединений в качестве компонентов высокоэффективных и низкотоксичных медицинских препаратов также не оставила без внимания нитрозокомплексы рутения [3—6].

Кроме того, нитрозоамминокомплексы рутения могут быть использованы для получения наноразмерных биметаллических и металлоксидных частиц различной дисперсности термическим разложением двойных комплексных солей [7, 8]. Создание таких композиций позволяет существенно снизить содержание благородных металлов, а иногда и повысить активность катализатора. Так, например, сплав Pt—Ru проявляет бо́льшую (по сравнению с чистой платиной) каталитическую активность в процессах электроокисления метанола [9, 10].

Для успешного развития всех этих перспективных направлений необходимо иметь информацию об эффективных методах синтеза, строении и свойствах комплексов-предшественников.

[©] Махиня А.Н., Ильин М.А., Байдина И.А., Плюснин П.Е., Алферова Н.И., Пищур Д.П., 2014

Настоящая работа посвящена разработке методики синтеза *mpahc*-[Ru(NO)(NH₃)₄(SO₄)](HSO₄) \cdot H₂O с близким к количественному выходом, установлению кристаллической структуры нитратной соли этого сульфатоамминокомплекса *mpahc*-[Ru(NO)(NH₃)₄(SO₄)]NO₃ \cdot H₂O и исследованию ее термического разложения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходный *транс*-[Ru(NO)(NH₃)₄(OH)]Cl₂ был синтезирован с выходом ~95 % из $(NH_4)_2[Ru(NO)Cl_5]$ по методике [11].

ИК спектры образцов в таблетках КВг регистрировали на ИК—Фурье спектрофотометре Scimitar FTS 2000 в области 4000—375 см⁻¹.

Электронные спектры диффузного отражения регистрировали на сканирующем спектрофотометре Shimadzu UV-3101PC в области 240—800 нм при комнатной температуре. Полученные спектры отражения трансформировали в спектры Кубелка—Мунка [12, 13].

Спектры ЯМР ¹⁴N растворов были записаны на спектрометрах Bruker Avance 500 на частоте 36,14 МГц. Химические сдвиги отсчитывали относительно внешнего эталона 1 M NaNO₃.

Калориметрические измерения проводили на дифференциальном сканирующем калориметре (ДСК) NETZSCH DSC 204 F1 Phoenix. Измерение образцов комплекса проводили методом теплового потока при постоянной скорости нагрева 6 К/мин в открытом алюминиевом тигле в токе Ar 25 мл/мин. Из экспериментальных результатов вычитали сигнал базовой линии, полученной при нагреве двух пустых тиглей. Значения температуры T_{onset} и энтальпии ΔH усредняли по трем измерениям. Массы навесок составляли ~8 мг.

Синхронный термический анализ (СТА), который включал в себя одновременное проведение *термогравиметрических определений (ТГ)*, *дифференциальной сканирующей калориметрии (ДСК)* и *масс-спектрометрического анализа выделенного газа (АВГ-МС)* проводили на приборе STA 409 PC Luxx® фирмы NETZSCH (масса навески ~17 мг, скорость нагрева 10 град./мин в токе гелия 60 мл/мин, тигель Al_2O_3), совмещенном с газовым анализатором QMS 100 Series. Обработку экспериментальных данных проводили с использованием пакета программ Proteus analysis [14].

Обработку спектроскопических данных и данных СТА проводили с использованием пакета программ OriginPro 7,5 [15].

Рентгенофазовый анализ измельченных кристаллов проведен на дифрактометре ДРОН-3М (R = 192 мм, Си K_{α} -излучение, Ni-фильтр, детектор сцинтилляционный с амплитудной дискриминацией). Образцы наносили тонким слоем на гладкую сторону стандартной кварцевой кюветы.

Рентгеноструктурное исследование. Определение параметров элементарных ячеек и получение набора экспериментальных интенсивностей проведено на автоматическом дифрактометре X8 APEX фирмы Bruker (Мо K_{α} -излучение, графитовый монохроматор, двухкоординатный ССД-детектор, температура 150 К, диапазон сбора данных по в от 2,22 до 30,45°, измеренных рефлексов 12911; независимых рефлексов 3469, размеры монокристалла 0,18×0,07× ×0,06 мм). Структура решена прямым методом и уточнена в анизотропном (изотропном для Н) приближении, положения всех атомов водорода локализованы из разностного синтеза. Все расчеты проведены по комплексу программ SHELX-97 [16]. СІГ-файл, содержащий полную информацию по исследованной структуре, был депонирован в ССDС под номером 854834, откуда может быть свободно получен по запросу следующем на интернет-сайте: www.ccdc.cam.ac.uk/data request/cif.

Параметры эксперимента РСА: стехиометрическая формула RuN₆H₁₄SO₉ (II), молекулярный вес 375,30, сингония ромбическая, пр. гр. $P2_12_12_1$, параметры элементарной ячейки a = 6,8406(3), b = 12,6581(5), c = 13,3291(5) Å, объем 1154,15(8) Å³, Z = 4, плотность (расчетная) 2,160 г/см³, коэффициент поглощения 1,591 мм⁻¹, F(000) = 752, полнота сбора данных по $\theta = 25,00$ (99,7 %), макс. и мин. пропускание 0,9106 и 0,7627, метод уточнения полноматричный МНК по F^2 , S-фактор по $F^2 = 1,119$, R-фактор $[I > 2\sigma(I)]$ R1 = 0,0276, wR2 = 0,0441, R-фактор

332

(все данные) R1 = 0,0327, wR2 = 0,0450, параметр абсолютности структуры 0,00(3), коэффициент экстинкции 0,0012(2); макс. и мин. остаточной эл. плотности 0,452 и -1,062 е/Å³.

Синтез *транс*-[Ru(NO)(NH₃)₄(SO₄)](HSO₄)·H₂O (I). Навеску ~0,5 г *транс*-[Ru(NO)× \times (NH₃)₄(OH)]Cl₂ помещали в стакан и добавляли по каплям при перемешивании ~2 мл концентрированной H₂SO₄. После прекращения выделения HCl (спустя ~3 ч) проводили нагревание раствора на кипящей водяной бане в течение ~5 ч. Затем к полученной реакционной массе при охлаждении в ледяной бане добавляли ~1 мл H₂O, спустя несколько минут выпадал яркожелтый осадок I (~0,57 г), который отделяли фильтрованием.

Для выделения дополнительного количества I к маточному раствору добавляли ~10 мл ацетона и отфильтровывали полученный осадок (~0,12 г) на том же фильтре. Объединенные осадки промывали ацетоном и сушили в токе воздуха. Суммарный выход I ~95 %.

Соединение I было охарактеризовано электронной спектроскопией диффузного отражения и идентифицировано методами ИК спектроскопии и РФА.

Синтез *транс*-[Ru(NO)(NH₃)₄(SO₄)]NO₃·H₂O (II). К насыщенному раствору I, приготовленному растворением ~0,5 г I в ~1 мл дистиллированной воды, добавляли ~1 мл насыщенного раствора NaNO₃. Спустя ~1 ч отфильтровывали выпавший ярко-желтый осадок II, промывали его 5—10 мл ацетона и сушили в токе воздуха. Выход составил ~80 %.

Соединение было охарактеризовано методами ИК спектроскопии, РФА, электронной спектроскопии диффузного отражения и СТА.

Монокристалл, пригодный для исследования методом PCA, был получен медленным испарением водного раствора II.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез сульфатотетраамминокомплексов I и II. Ранее [17] в литературе сообщалось о получении сульфатокомплекса рутения нитрозотетраамминового ряда *транс*-[Ru(NO)× \times (NH₃)₄(SO₄)](HSO₄)·H₂O с выходом ~70 %. Это соединение было получено в результате нагревания *транс*-[Ru(NO)(NH₃)₄(H₂O)](HSO₄)SO₄ до 186 °C:

 $[Ru(NO)(NH_3)_4(H_2O)](HSO_4)SO_4 \xrightarrow{186 \,^{\circ}C} [Ru(NO)(NH_3)_4(SO_4)](HSO_4) + H_2O.$

В настоящей работе мы предлагаем методику синтеза этого соединения с близким к количественному выходом без использования термолиза:

 $[\operatorname{Ru}(\operatorname{NO})(\operatorname{NH}_3)_4(\operatorname{OH})]\operatorname{Cl}_2 + \operatorname{H}_2\operatorname{SO}_{4 \operatorname{KOHIL}} \xrightarrow{t^\circ} [\operatorname{Ru}(\operatorname{NO})(\operatorname{NH}_3)_4(\operatorname{SO}_4)](\operatorname{HSO}_4) + \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl}^{\uparrow}.$

Для получения I к твердому *транс*-[Ru(NO)(NH₃)₄(OH)]Cl₂ мы добавляли концентрированную H₂SO₄ и выдерживали реакционную смесь при комнатной температуре в течение ~3 ч. Эта предварительная подготовка необходима для того, чтобы образующийся хлороводород был максимально удален перед нагреванием. Если реакционную смесь нагревать сразу же после добавления H₂SO₄, образуется значительное количество нерастворимого *транс*-[Ru(NO)× ×(NH₃)₄Cl]Cl₂, а выход комплекса I заметно снижается.

Для получения **II** к насыщенному раствору **I** добавляли NaNO₃, за счет меньшей растворимости нитратная соль выпадала в осадок в виде желтых игольчатых кристаллов.

Исследование термического разложения II. Исследование процесса термолиза II проведено в атмосфере гелия, кривые термического анализа представлены на рис. 1.

Первая ступень потери массы в интервале температур 60—120 °C сопровождается эндоэффектом и отвечает удалению кристаллизационной воды (вычислено 4,8 %, найдено по TG-кривой 4,8 %), что подтверждается масс-спектрометрическим исследованием газовой фазы. В результате образуется безводный сульфатотетраамминокомплекс:

 $mpahc-[Ru(NO)(NH_3)_4SO_4]NO_3 \cdot H_2O \xrightarrow{60-120 \circ C} mpahc-[Ru(NO)(NH_3)_4SO_4]NO_3 + H_2O.$

По данным ИК спектроскопии и РФА, процесс дегидратации **II** является обратимым и при хранении на воздухе безводная соль вновь превращается в гидрат.

Рис. 1. Кривые термического разложения II

Рис. 2. Дифференциальная сканирующая калориметрия для **II**

С целью оценки теплоты, поглощаемой на первой стадии, дополнительно проведено калориметрическое исследование образца комплекса **II**. Завершенность процесса дегидратации проверяли повторным нагревом образцов сразу после первого измерения. Образцы комплекса массой 6—7 мг исследованы в температурном интервале от –90 до 200 °C. В исходных образцах комплекса **II** на температурной зависимости сигнала ДСК (рис. 2) наблюдается тепловая аномалия, соответствующая потере молекул воды при $T_{onset} = 109,0 \pm 0,5$ °C; энтальпия реакции дегидратации составляет $\Delta H = 58,9\pm1,5$ кДж/моль.

Дальнейшее разложение II имеет сложный характер и протекает в интервале температур 250—480 °С. По данным масс-спектрометрии, на этих стадиях термолиза среди газообразных продуктов обнаруживается N_2 , H_2O , оксиды азота N_2O , NO и NO₂, а также SO₂, образующийся при температурах выше 380 °С.

С целью установления возможного состава и строения промежуточного соединения, образующегося при 250—380 °С, мы нагрели навеску **II** до 270 °С и выдержали полученный продукт в течение 3 ч. Потеря массы при этом составила ~33 % (найдено по TG-кривой при 380 °С 34 %). Относительная молекулярная масса полученного продукта, рассчитанная по этим данным, составляет ~250 а.е.м.

По данным РФА, полученный продукт термолиза рентгеноаморфен. Частичное растворение его в воде происходит очень медленно и лишь при нагревании на кипящей водяной бане значение рН полученного раствора ~3. Эти данные могут указывать на полимерное строение полученного продукта. Ранее [18, 19] при исследовании промежуточных продуктов термического разложения нитрозоамминокомплексов рутения уже сообщалось об образовании полимерных амидокомплексов [Ru(NO)Cl(µ-NH₂)(µ-Cl)]_n. В ИК спектре полученного нами продукта термолиза присутствуют те же полосы, что и для описанного $[Ru(NO)Cl(\mu-NH_2)(\mu-Cl)]_n$: помимо полос колебаний координированной нитрозогруппы ($v(NO) = 1880 \text{ см}^{-1}$), явно содержатся полосы, обычно относимые к колебаниям молекул координированного аммиака (v(NH) = 3280и 3120 см⁻¹; δ (NH₃) = 1632 и 1235 см⁻¹), а также интенсивные полосы при 3231, 1528, 1020 и 654 см⁻¹, отнесенные к колебаниям мостиковых амидогрупп. Похожие полосы поглощения присутствуют также в полимерном амидохлориде ртути: 3200, 3175 см⁻¹ (v(NH₂)), 1530 см⁻¹ $(\delta(NH_2))$ и 1022, 668 см⁻¹ ($\rho(NH_2)$) [20]. Кроме того, в ИК спектре полученного нами продукта термолиза присутствуют также полосы v(SO) = 1234, 1128, 961 см⁻¹ и $\delta(O-S-O) = 1632$ и 1234 см⁻¹, которые могут указывать на присутствие дисульфат-ионов. Полосы нитрат-ионов и воды в спектре отсутствуют.

Возможное присутствие мостиковых амидогрупп в полученном продукте термолиза подтверждается также методом ЯМР^{14} N. В спектре раствора, полученного после обработки про-

Рис. 3. Электронные спектры поглощения **I** и **II**

дукта термолиза концентрированной соляной кислотой, содержатся сигналы координированных молекул аммиака (-398 м.д.), нитрозогруппы (-17 м.д.), катионов аммония (-354 м.д.), а также сигнал при -325 м.д., который может быть отнесен к µ-NH₂.

Таким образом, полученный полимерный продукт, вероятнее всего, содержит мостиковые амидогруппы и мостиковые дисульфат-ионы (на присутствие которых указывают данные ИК

спектроскопии, а также подкисление раствора при растворении продукта термолиза в воде). Необходимость сохранения наиболее характерного для нитрозокомплексов рутения координационного числа 6, а также значение относительной молекулярной массы полученного продукта ~250 а.е.м. позволяют для полученного полимерного продукта термолиза предположить следующее строение [{Ru(NO)(μ -NH₂)₂}(μ -S₂O₇){Ru(NO)(μ -NH₂)₂}]_n ($M_r = 251$ а.е.м.):

Конечным продуктом термолиза II по данным РФА является смесь Ru и RuO_2 с мольным содержанием металла ~40 %.

Электронная спектроскопия диффузного отражения. Спектры диффузного отражения (ЭСДО) были трансформированы в спектры поглощения с использованием преобразования Кубелки—Мунка (Kubelka—Munk) [12, 13]:

$$F(R) = (1 - R)^2 / 2R = K / S,$$

где *R*, *K* и *S* — отражение, поглощение и рассеяние соответственно.

Электронные спектры для твердых образцов I и II изображены на рис. 3 и содержат три полосы поглощения. Интенсивные полосы около 250 нм главным образом относятся к электронным переходам переноса заряда с металла на лиганд, в меньшей степени они обусловлены переносом заряда между лигандами. Вторая полоса поглощения в области 350—300 нм может быть отнесена к разрешенному по спину d—d-переходу. Третья слабая и широкая полоса поглощения около 430 нм отвечает смеси двух переходов: один запрещенный по спину по спину d— $\pi^*(NO)$. Эти отнесения согласуются с литературными данными для октаэдрических *транс*-тетраамминокомплексов нитрозорутения: *транс*-[Ru(NO)(NH₃)₄(L)]^{n+1</sub>, L = NH₃, OAc⁻, Cl⁻, OH⁻ [21], SO²⁻₃ или NO⁻₂ [22], P(OEt)₃ [23].}

Описание кристаллической структуры II. Координаты атомов и изотропные параметры атомных смещений приведены в табл. 1. Кристаллическая структура относится к островному типу, построена из изолированных комплексных катионов [Ru(NO)(NH₃)₄(SO₄)]⁺, внешнесферных нитрат-анионов и молекул кристаллизационной воды. Строение структурных единиц с нумерацией атомов и эллипсоидами тепловых колебаний показано на рис. 4. Основные межатомные расстояния и углы представлены в табл. 2.

CIF-файл, содержащий полную информацию по исследованной структуре, был депонирован в CCDC под номером 854834, откуда может быть свободно получен по запросу на следующем интернет-сайте: www.ccdc.cam.ac.uk/data_request/cif.

Таблица 1

Атом	x	У	Ζ	$U_{ m eq}*$
Ru(1)	-0,00289(3)	0.040450(14)	0,571824(12)	0,00924(5)
S(1)	0,36464(8)	0,04230(5)	0,41393(4)	0,01106(12)
N	-0,1969(3)	0,00346(18)	0,64786(16)	0,0145(5)
0	-0,3226(3)	-0,02270(17)	0,69876(15)	0,0275(5)
N(1)	0,1809(4)	-0,0781(2)	0,62876(18)	0,0139(5)
N(2)	-0,1560(4)	0,1640(2)	0,50294(19)	0,0149(5)
N(3)	0,1101(4)	0,1481(2)	0,67697(18)	0,0135(5)
N(4)	-0,0908(4)	-0,0604(2)	0,45511(18)	0,0144(5)
O(11)	0,2232(2)	0,09409(14)	0,48766(12)	0,0110(4)
O(12)	0,4916(4)	0,12609(14)	0,37646(12)	0,0181(4)
O(13)	0,2479(3)	-0,00621(17)	0,33374(13)	0,0185(4)
O(14)	0,4756(3)	-0,03857(16)	0,46888(13)	0,0196(4)
N(5)	0,0815(3)	0,27611(19)	0,25529(18)	0,0177(5)
O(51)	0,0383(3)	0,29520(18)	0,34279(14)	0,0311(6)
O(52)	0,2478(3)	0,30047(17)	0,22124(16)	0,0282(5)
O(53)	-0,0385(3)	0,2360(2)	0,19553(19)	0,0414(7)
O(1W)	-0,1159(4)	-0,24831(18)	0,57933(19)	0,0290(5)

Координаты атомов и изотропные параметры атомных смещений (Ų) для II

* U_{eq} определяется как одна треть следа ортогонализованного U_{ii} тензора.

Геометрия комплексного катиона очень близка к найденной ранее для *mpahc*-[Ru(NO)× ×(NH₃)₄(SO₄)](HSO₄)·H₂O [17]. Координационный полиэдр рутения — слегка искаженный октаэдр RuN₅O. Сульфат-ион монодентатно координирован к атому рутения в *mpahc*-положении к нитрозогруппе. Расстояние Ru—OSO₃ 2,028 Å, угол N_{NO}—Ru—OSO₃ составляет 175,9°. Фрагмент Ru—NO практически линейный (угол Ru—N—O равен 178,5°), расстояния Ru—N и N—O равны 1,735 и 1,144 Å соответственно. В экваториальной плоскости октаэдра находятся четыре молекулы аммиака со средним значением длин связей Ru—N_{NH₂} 2,10 Å. Валентные углы,

образованные атомами в экваториальной плоскости координационной сферы типа N_{NH_3} —Ru— N_{NH_3} , отклоняются от 90° не более чем на 0,8°, все углы типа N_{NO} —Ru— N_{NH_3} несколько больше 90° и находятся в пределах 92,8—94,3°, наблюдаемое отклонение обусловлено стерическим влиянием координированного сульфат-иона. Атом рутения смещен из экваториальной плоскости N_4 в сторону нитрозогруппы на ~0,1 Å. В координированном сульфат-ионе длина связи S—O(11) с координированным кислородом

Рис. 4. Строение комплексного катиона *транс*- $[Ru(NO)(NH_3)_4(SO_4)]^+$ и внешнесферных частиц NO_3^- и H_2O в соединении **II**

Таблица 2

Межатомное расстояние, Å		Валентный угол, град.				
Ru(1)—N	1,735(2)	N—Ru(1)—O(11)	175,87(9)	N(1)—Ru(1)—N(3)	90,14(10)	
Ru(1)—O(11)	2,0279(17)	N—Ru(1)—N(2)	94,30(11)	N(4)— $Ru(1)$ — $N(3)$	173,27(10)	
Ru(1)—N(2)	2,094(2)	O(11)— $Ru(1)$ — $N(2)$	83,63(9)	O(12)—S(1)—O(13)	112,24(11)	
Ru(1)—N(1)	2,100(2)	N—Ru(1)—N(1)	93,09(10)	O(12)—S(1)—O(14)	111,68(12)	
Ru(1)—N(4)	2,100(2)	O(11)—Ru(1)—N(1)	89,01(9)	O(13)—S(1)—O(14)	110,62(12)	
Ru(1)—N(3)	2,102(2)	N(2)—Ru(1)—N(1)	172,61(10)	O(12)—S(1)—O(11)	106,58(11)	
S(1)—O(12)	1,459(2)	N - Ru(1) - N(4)	92,85(10)	O(13) - S(1) - O(11)	107,67(11)	
S(1)—O(13)	1,4688(19)	O(11)—Ru(1)—N(4)	90,69(8)	O(14) - S(1) - O(11)	107,78(10)	
S(1)—O(14)	1,4698(19)	N(2) - Ru(1) - N(4)	89,18(10)	O—N—Ru(1)	178,5(2)	
S(1)—O(11)	1,5268(17)	N(1) - Ru(1) - N(4)	90,27(10)	S(1) - O(11) - Ru(1)	134,08(11)	
N—O	1,144(3)	N - Ru(1) - N(3)	93,84(10)	O(51)—N(5)—O(53)	121,8(2)	
N(5)—O(51)	1,227(3)	O(11)—Ru(1)—N(3)	82,60(8)	O(51) - N(5) - O(52)	120,7(2)	
N(5)—O(53)	1,252(3)	N(2)— $Ru(1)$ — $N(3)$	89,55(10)	O(53) - N(5) - O(52)	117,5(2)	
N(5)—O(52)	1,263(3)					

Основные межатомные расстояния и углы в II

равна 1,527 Å, длины связей S—O с терминальными атомами кислорода несколько короче, их среднее значение составляет 1,466 Å. Разброс в валентных углах при атоме серы укладывается в интервал 106,6—112,2°. Все полученные значения углов и длин связей являются обычными для нитрозоамминокомплексов рутения [24—26].

Геометрические характеристики внешнесферных нитрат-ионов обычные для комплексов нитрозорутения [27, 28]: длины связей N—O и валентные углы O—N—O лежат в интервалах 1,227—1,263 Å и 117,5—121,8° соответственно.

В кристаллах структурные фрагменты связаны между собой водородными связями (рис. 5). Молекулы кристаллизационной воды образуют водородные связи с атомами кислорода нитрати сульфат-ионов, а также с координированными молекулами аммиака. Оценки расстояний

Рис. 5. Упаковка частиц в кристалле **II** (проекция вдоль оси *X*)

О...О лежат в интервале 1,96—2,84 Å, расстояний N...О — 2,18—3,03 Å. Кратчайшие расстояния между центрами комплексных катионов Ru...Ru составляют 6,596 Å.

Таким образом, были предложены методики получения *mpahc*-[Ru(NO)(NH₃)₄(SO₄)]× \times (HSO₄)·H₂O и *mpahc*-[Ru(NO)(NH₃)₄(SO₄)]NO₃·H₂O с высокими выходами. Строение соединения с нитрат-ионом во внешней сфере установлено методом PCA. Термическое разложение этого соединения проходит через стадии образования *mpahc*-[Ru(NO)(NH₃)₄(SO₄)]NO₃ — полимерного продукта, содержащего мостиковые амидогруппы и дисульфат-ионы, и приводит к образованию смеси металлического рутения и его диоксида. Методом ДСК проведена оценка теплового эффекта реакции дегидратации, происходящей при нагревании до 120 °C ($\Delta H = 58,9 \pm 1,5$ кДж/моль).

Авторы выражают благодарность к.х.н. И.В. Королькову за проведение дифракционного эксперимента, С.В. Ткачеву за регистрацию спектра ЯМР ¹⁴N, И.В. Юшиной за регистрацию спектров СДО.

Исследования проведены при финансовой поддержке Российского фонда фундаментальных исследований (проект 14-03-31314).

СПИСОК ЛИТЕРАТУРЫ

- 1. Kusch L.A., Golhen S., Cador O. et al. // J. Cluster Sci. 2007. 17. P. 303.
- 2. Schaniel D., Woike T., Kusch L., Yagubskii E. // Chem. Phys. 2007. 340, N 1-3. P. 211.
- 3. Clarke M.J. // Coord. Chem. Rev. 2002. 232. P. 69.
- 4. Torsoni A.S., Barros B.F., Toledo J.C. et al. // Nitric Oxide Biol. Chem. 2002. 6, N 3. P. 247.
- 5. Barros B.F., Toledo J.C., Franco D.W. et al. // Nitric Oxide Biol. Chem. 2002. 7, N 1. P. 50.
- *Canichelli P.G., Estrela H.F.G., Spadari-Bratfisch R.C. et al.* // Nitric Oxide Biol. Chem. 2007. 16, N 2. P. 189.
- 7. Плюснина О.А., Емельянов В.А., Байдина И.А. и др. // Журн. структур. химии. 2007. **48**, № 1. С. 114.
- 8. Il'in M.A., Kuratieva N.V., Kirichenko O.A. et al. // Acta Crystallogr. 2005. E61, Part 06. P. i126.
- 9. Pozio A., Silva R.F., Franchesco M.D. et al. // Electrochim. Acta. 2002. 48. P. 255.
- 10. Chu D., Gilman S. // J. Electrochem. Soc. 1996. 143, N 5. P. 1685.
- 11. Ильин М.А., Емельянов В.А., Беляев А.В. и др. // Журн. неорган. химии. 2008. 53, № 7. С. 1152.
- 12. *Kubelka P., Munk F.Z.* // Tech. Phys. 1931. **12**. P. 593.
- 13. Tauc J. // Mater. Res. Bull. 1970. 5. P. 721.
- 14. NETZSCH Proteus Thermal Analysis v.4.8.1. NETZSCH-Gerätebau Bayern, Germany, 2005.
- 15. OriginPro 7,5. SR0 v.7.5714 B(714). OriginLab Corporation Northampton, USA, 2003.
- 16. Sheldrick G.M. SHELX-97, Release 97-1, University of Göttingen, 1997.
- 17. *Махиня А.Н., Шушарина Е.А., Байдина И.А., Ильин М.А. //* Журн. структур. химии. 2011. **52**, № 5. С. 973.
- 18. Ильин М.А., Емельянов В.А., Байдина И.А. и др. // Журн. неорган. химии. 2007. 52, № 1. С. 71.
- 19. Ильин М.А., Емельянов В.А., Байдина И.А. // Журн. структур. химии. 2008. 49, № 6. С. 1128.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5-th Edition. Part B. – N. Y.—Chichester-Weinheim etc.: Wiley-Interscience, 1997. – P. 13.
- 21. Schreiner A.F., Lin S.W., Hauser P.J. et al. // Inorg. Chem. 1972. 11. P. 880.
- 22. Gomes M.G., Davanzo C.U., Silva S.C. et al. // J. Chem. Soc., Dalton Trans. 1998. P. 601.
- 23. Lopes L.G.F., Castellano E.E., Ferreira A.G. et al. // Inorg. Chim. Acta. 2005. 358. P. 2883.
- 24. Gorelsky S.I., Silva S.C., Lever A.B.P., Franco D.W. // Inorg. Chim. Acta. 2000. 300-302. P. 698.
- 25. *Емельянов В.А., Байдина И.А., Ильин М.А., Громилов С.А. //* Журн. структур. химии. 2006. **47**, № 2. С. 385.
- 26. Емельянов В.А., Байдина И.А., Громилов С.А. и др. // Журн. структур. химии. 2000. **41**, № 6. С. 1242.
- 27. Ильин М.А., Кабин Е.В., Емельянов В.А. и др. // Журн. структур. химии. 2009. 50, № 2. С. 341.
- 28. Кабин Е.В., Емельянов В.А., Байдина И.А. и др. // Журн. структур. химии. 2010. 51, № 7. С. 78.