2016

<u>№</u> 4

УДК 622.235(088.8): 519.21

ОПРЕДЕЛЕНИЕ ЭНЕРГОЗАТРАТ ОБРАЗОВАНИЯ МАГИСТРАЛЬНОЙ ТРЕЩИНЫ ПРИ ОТДЕЛЕНИИ БЛОЧНОГО КАМНЯ ОТ МАССИВА УДАРНЫМ ВОЗДЕЙСТВИЕМ НА ПЛАСТИЧНОЕ ВЕЩЕСТВО В ШПУРЕ

П. Н. Тамбовцев

Институт горного дела СО РАН, E-mail: tambovskiyp@mail.ru, Красный проспект, 54, 630091, г. Новосибирск, Россия. Новосибирский государственный архитектурно-строительный университет НГАСУ (Сибстрин), ул. Ленинградская, 113, 630008, г. Новосибирск, Россия

На основе экспериментальных данных отделения блоков пород от массива разработана приближенная расчетная схема определения энергозатрат образования магистральной трещины в зависимости от механических свойств породы, геометрических параметров уступа, диаметра и удельного объема бурения шпуров.

Массив, строчка шпуров, пластичное вещество, инструмент, удар, трещина, отделение блока

Научно-технические исследования по направленному разрыву горных пород пластичными веществами (ПВ) проводятся в ИГД СО РАН на протяжении длительного периода времени. Полученные результаты в этой области отражены в ряде статей [1-9; и др.]. В [9] экспериментально установлено, что при отделении от массива блока с соотношением $L/B \ge 5$ (B, L — ширина и длина блока) возникает радиальная трещина (разлом), ориентированная от фронтальной плоскости уступа к месту приложения нагрузки. В рассматриваемом случае отделение блока происходит путем образования магистральной трещины, направленной вдоль строчки шпуров при ударном внедрении инструмента в центральный шпур с ПВ (рис. 1).

Процесс формирования трещины можно разделить на три этапа в зависимости от координаты x продвижения инструмента в шпуре (рис. 1a, e). На первом этапе $(0, ..., x_1)$ происходит уплотнение столба ПВ и рост давления p_1 на стенки шпура до уровня, достаточного для возникновения начальной трещины с раскрытием в зоне шпура на величину δ_1 (координата x_1). На втором этапе $(x_1, ..., x_2)$ формируется магистральная трещина до размера $l_2(x_2)$, ПВ начинает вытесняться в трещину, столб ПВ нагружается до уровня давления p_2 , величина раскрытия трещины в зоне шпура $\delta_2 > \delta_1$. При координате x_2 инструмента магистральная трещина ограничена контуром $\approx a_1a_2d_2d_1$. В начале третьего этапа $(x_2, ..., x_3)$ образуется радиальная трещина l, после чего рост магистральной трещины 4 замедляется, происходит интенсивное вытеснение ПВ из шпура, раскрытие заметно увеличивается.

Рис. 1. Процесс образования магистральной трещины: a — схема сил и деформаций породы (I — область вершины трещины); δ — экспериментальный результат возникновения радиальной трещины; e — участки продвижения инструмента в шпур с ПВ: I — радиальная трещина; 2 — инструмент; 3 — столб ПВ; 4 — магистральная трещина, 5 — строчка шпуров, 6 — область ПВ, вытесненного в трещину; 7-9 — контуры фронта трещины при x_1 , x_2 , x_3 ; I0 — зона действия сил сцепления породы; δ — максимальное раскрытие берегов трещины; A — ударная нагрузка; F_6 — давление ПВ в зазоре на боковую поверхность инструмента; p(x) — распределение давления столба ПВ на стенку шпура

Деформируемый блок ($a_1a_2b_2b_1c_1c_2d_2d_1$) (рис. 1*a*) рассматривается как балка длиной *l* с защемленными концами и нагруженная поперечной силой F_{max} посередине пролета, ее прогиб равен максимальному раскрытию берегов трещины δ . Появление радиальной трещины связывается с тем, что растягивающие напряжения на поверхности уступа достигают предельного значения σ_p .

РАСЧЕТНАЯ СХЕМА

Общие энергозатраты на образование трещины $(a_1a_2d_1d_2)$:

$$A = A_{\rm Tp} + A_{\zeta} + A_{\rm A},\tag{1}$$

где $A_{\rm rp}$ — энергия на преодоление сил трения боковой поверхности инструмента о ПВ в зазоре; A_{ζ} — энергия на преодоление сил сцепления при разрыве породы; $A_{\rm d}$ — затраты энергии на деформацию блока, на внутреннее трение столба ПВ, выдавливание ПВ в зазор, в трещину и т. д.

Оценим основные составляющие энергозатрат. Энергия на боковое трение инструмента:

$$A_{\rm TP} = \int_0^{x_2} F_{\rm f}(x) \,\mu \,dx \,,$$

где $F_6(x)$ — зависимость силы давления ПВ на боковую поверхность инструмента от координаты его внедрения в шпур; μ — коэффициент трения инструмента о ПВ в зазоре; x — координата внедрения инструмента.

Силу F_{δ} можно оценить по формуле

$$F_{\rm f} = \pi dp_z x$$
,

здесь p_z — среднее давление ПВ в зазоре между инструментом и стенкой шпура; d — диаметр шпура. Для приближенной оценки среднее давление в зазоре можно приравнять к давлению, при котором возникает начальная трещина, т. е. давление на контур отверстия (шпура) равняется прочности материала на растяжение $p_z = \sigma_p$ (задача Ламе [10]).

Тогда

$$A_{\rm rp} = \int_{0}^{x_2} F_{\rm f}(x) \mu \, dx = \pi r \, \sigma_{\rm p} \, \mu \, x_2^2 \,. \tag{2}$$

Энергия на преодоление сил сцепления при разрыве породы [4]:

$$A_{\varsigma} = 2\varsigma H l (1 - Q), \qquad (3)$$

где $\varsigma = K_{1C}^2 (1 - v^2)/(2E)$ — удельная поверхностная энергия разрыва породы, Дж/м²; Q = (wd)/S — коэффициент ослабления шпурами плоскости отделения; K_{1C} — вязкость разрушения, Н/м^{3/2}; v — коэффициент Пуассона; E — модуль Юнга при изгибе, Па; w — суммарная длина шпуров в плоскости отделения; S — площадь отделения блока.

Затраты энергии A_{π} могут быть выражены следующим образом:

$$A_{\pi} = A_0 \psi \,, \tag{4}$$

где ψ — коэффициент пропорциональности зависит от свойств ПВ и отношения B/d.

Параметр A_0 принят за единицу измерения энергии и равен работе упругой деформации изгиба блока $(a_1a_2b_2b_1c_1c_2d_2d_1, \text{ рис. } 1a)$: $l_2 = l$; $A_0 = F_{\max}\delta/2 = \sigma_p BH\delta/(1.5\kappa)$, где $F_{\max} = 8M_{\max}/l =$ $= 8\sigma_p J_x/(ly_{\max}) = \sigma_p B \cdot H/(0.75\kappa)$ — усилие, необходимое для прогиба средины блока сечением $H \times B$ на величину раскрытия берегов трещины δ . Здесь M_{\max} — максимальный момент в поперечном сечении блока длиной l; $y_{\max} = B/2$ — расстояние от нейтральной оси поперечного сечения блока до края; $J_x = H \cdot B^3/12$ — момент инерции сечения блока; $\kappa = l/B$ — соотношение, при котором возникает радиальная трещина (определяется из эксперимента, зависит от коэффициента Q и величины B/d).

Раскрытие трещины:

$$\delta = \delta_M + \delta_F, \tag{5}$$

где $\delta_M = F_{\text{max}} l^3 / (192 E J)$ — прогиб блока от изгибающего момента M_{max} ; $\delta_F = 1.2 F_{\text{max}} l / (4G \cdot B \cdot H)$ — прогиб блока от действия поперечной силы; G — модуль сдвига [10].

Общие энергозатраты на образование магистральной трещины:

$$A = A_{\rm TP} + A_{\mathcal{L}} + A_0 \psi \; ,$$

откуда коэффициент ψ с учетом (2), (3), (4):

$$\psi = \frac{A - A_{\rm rp} - A_{\zeta}}{A_0} = \frac{(A - \pi r \sigma_{\rm p} \,\mu x_2^2 - 2\zeta \,H \,l(1 - Q))1.5\kappa}{\sigma_{\rm p} B \cdot H \,\delta} \,. \tag{6}$$

Значения ψ рассчитываются на основе экспериментальных данных. Из эксперимента определяются общие энергозатраты A и отношение $\kappa = l/B$ при соответствующем объеме бурения (коэффициент Q).

МЕТОДИКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Опишем опыты, проводимые на модели массива из цементно-песчаной смеси. Модель массива: плита размером 2.5×1.3×0.3 м, пескобетон М-300 ОК 5-8 ГОСТ 28013-89. От массива *1* (рис. 2) отделялись блоки 2 в виде продольных панелей размером ($L \times B \times H = 1.3 \times 0.12 \times 0.3$), ($1.3 \times 0.2 \times 0.3$), ($1.3 \times 0.26 \times 0.3$) м. В строчке 3 шпуров диаметром 6 мм, длиной 300 мм имеется центральный шпур длиной 260 мм, заполненный ПВ, в который устанавливается инструмент с торцом в виде клина с углом $2\alpha = 90^{\circ}$. К свободному торцу прикладывается ударная нагрузка 4 сериями по 10-20 ударов (частота 1 Гц) с определенной энергией. После каждой серии фиксируется заглубление инструмента в шпур, длина магистральной трещины вдоль строчки шпуров на поверхности и момент появления радиальной трещины *1* (рис. 1*a*).

Рис. 2. Схема отделения блоков от массива: *1* — часть камня, рассматриваемая как массив; *2* — отделяемый блок; *3* — линия отделения блока вдоль строчки шпуров; *4* — ударная нагрузка

При наблюдении заметного отскока ударника и отсутствия внедрения инструмента в шпур энергия единичных ударов повышалась. Регистрировались количество и величина энергии единичных ударов, затраченных на образование трещины длиной *l*, до момента возникновения радиальной трещины.

Из экспериментальных данных, представленных в табл. 1, следует, что при увеличении *B* растут общие энергозатраты *A* образования трещины. При этом помимо увеличения количества ударов *n* требуется повышать и энергию A_{eg} единичного удара, обеспечивающую внедрение инструмента и рост трещины. При появлении радиальной трещины рост магистральной замедляется, в большей степени растет ее раскрытие δ , впоследствии возникает разлом блока в поперечном сечении (рис. 3). После появления радиальной трещины энергию единичного удара, обеспечивающую дальнейшее внедрение инструмента в шпур, повышать не требуется.

На рис. 4 приведены зависимости общих энергозатрат $A = \sum A_{e,a}n$ от координаты x внедрения инструмента в шпур при трех значениях B. В каждом случае (кривые 1-3) до координаты x_2 происходит существенный рост энергозатрат, а после появления радиальной трещины он незначительный.

В экспериментах основные параметры имели значения: $\sigma_p = 2.4 \cdot 10^6$ Па; $\mu = 0.027$ [7]; H = 0.3 м; Q = 0.16; $K_{1C} = 0.5 \cdot 10^6$ H/м^{3/2}; $\nu = 0.16$; $E = 1.8 \cdot 10^{10}$ Па; $G = E/(2(1+\nu)) = 0.78 \cdot 10^{10}$ Па; $\varsigma = K_{1C}^2(1-\nu^2)/(2E) = 6.8$ Дж/м².

Зависимость $\kappa = l_2 / B$ от B / d показана на рис. 5*a* и построена на основе данных табл. 1. Значения соотношения $\kappa = 6$; 5.3; 4.5 при B = 0.12, 0.2, 0.26 м соответственно.

n	$A_{\rm ed}$, Дж	А, Дж	х, мм	<i>l</i> , м	δ, мм	$\kappa = l/B$	Примечание			
		Размер	р блока 1	$L \times B \times H = 1$.3×0.12×0	0.3 м, Q=	= 0.16			
-			15			~~~				
1 - 20	3	60	19	_``_						
21 - 50	6	240	30	0.2			Заметный отскок ударника			
51 - 70	9	420		0.35						
71 - 80	9	510	$x_2 = 60$	$l_2 = 0.72$	≈ 0.1	6				
81 - 88	9	582	95	1.24	≈ 0.8		Радиальная трещина (рис. 3а)			
89-92	9	618	135	1.24	≈ 1	—				
93-102	9	708	250	—						
Отделение		—	—		—		Полный отрыв (рис. 36)			
Размер блока 2 $L \times B \times H = 1.3 \times 0.2 \times 0.3$ м, $Q = 0.16$										
			12							
1 - 20	3	60	15	-"-						
21 - 40	6	180	20	_``_			—			
41 - 60	6	300	23	-"-			—			
61 - 70	9	390	27	-"-			—			
71-90	9	570	32	-"-			—			
91-100	9	660	35	0.18			—			
101 - 120	9	840	37	-"-						
121 - 130	9	930	38				Заметныи отскок ударника			
131 - 150	12	11/0	45				 			
151-170	12	1410	48	0.4			заметный отскок ударника			
1/1 - 190	15	1/10	00 - 75	0.4	≈ 0.05	<u> </u>				
191 - 200	15	1025	$x_2 = 75$	$l_2 = 1.04$	≈ 0.1	5.5				
201 - 203 206 215	15	2085	240	1.2	≈ 1 ~ 1.5		Радиальная трещина (рис. 58)			
Отлеление		2005	240	1.22	~ 1.5		Полный отрыв (рис 32)			
		Размег	о блока 3 [.]	$L \times B \times H = 1$	3×0.26×0) 3 м О =	= 0.16			
		1 usinep	12	L. D. II						
1 - 20	3	60	15	_``_						
21 - 40	6	189	20	_``_						
41 - 60	6	300	25	_``_						
61 - 80	9	480	28	_``_						
81-110	9	750	33	_``_						
111-130	0	930	36	_``_						
131 - 140	12	1050	39	_``_						
141 - 160	12	1290	45	_``_			_			
161 - 170	12	1410	46				Заметный отскок ударника			
171 - 190	15	1710	51							
191 - 210	15	2010	56							
211 - 220	15	2100	59							
221 - 240	18	2520	66							
241 - 250	21	2730	72			—	Заметный отскок ударника			
251 - 260	24	2970	82			—				
261 - 270	27	3240	93	—	—	—	Заметный отскок ударника			
271 - 274	32	3368	96	0.34			—			
275 - 285	35	3753	100	—	—	—	—			
286 - 291	38	3981	113	0.84			—			
292 - 298	41	4268	$x_2 = 123$	$l_2 = 1.18$	≈ 0.1	4.5				
299 - 302	41	4432	153	1.2	≈ 0.6	—	Радиальная трещина (рис. 3д)			
303 - 307	41	4637	250	1.22	≈ 1.2	—				
Отделение	—	—	—	—	—	—	(рис. 3е)			

ТАБЛИЦА 1. Параметры процесса отбойки блока от массива внедрением инструмента в шпур с ПВ

Примечание. Жирным выделена серия ударов и параметры процесса отбойки блока, при которых возникла радиальная трещина.

Рис. 3. Образование радиальной трещины при отделении блока (указано стрелкой); размер блока *L*×*B*×*H*, м: *a*, *б* — 1.3×0.12×0.3; *в*, *г* — 1.3×0.2×0.3; *д*, *e* — 1.3×0.26×0.3

Рис. 4. Общие энергозатраты *А* процесса отделения блока от координаты *х* внедрения инструмента в шпур с ПВ (табл. 1) при ширине блока *B*, м: *1* — 0.12; *2* — 0.2; *3* — 0.26; *x*₂ — координата инструмента, после которой образовалась радиальная трещина

Найдем зависимость ψ от B/d. В экспериментах $\delta = \delta_3 \approx 0.1$ мм определялась с погрешностью. Для вычисления ψ использовались расчетные значения раскрытия $\delta = \delta_p$ по (5). При отделении блока шириной B = 0.12 м (табл. 1): A = 510 Дж, $x_2 = 0.06$ м, l = 0.72 м, $\delta_p = 0.062$ мм. Тогда $\psi = 850$. Для блока с B = 0.20 м: A = 1860 Дж, $x_2 = 0.075$ м, l = 1.04 м, $\delta_p = 0.082$ мм. Коэффициент $\psi = 1248$. Для блока с B = 0.26 м: $A_1 = 4268$ Дж, $x_2 = 0.123$ м, l = 1.18 м, $\delta_p = 0.092$ мм. Коэффициент $\psi = 1668$.

Рис. 5. Зависимости коэффициентов: $\kappa = l/B$ (*a*), ψ (б) и безразмерной координаты $\bar{x}_2 = x_2/d$ (*в*) от величины B/d (при Q = 0.16)

График $\psi = f(B/d)$ представлен на рис. 56. С увеличением соотношения B/d значения коэффициента ψ возрастают, стремясь к бесконечности. Так, при $B/d \ge 50$ разорвать породу одиночным инструментом становится практически невозможно, ПВ будет выдавливаться через зазор на поверхность шпура, не образуя трещину.

При увеличении B/d повышается относительное заглубление $\bar{x}_2 = x_2/d$ инструмента в шпур, при котором образуется разрыв длиной l_2 (рис. 5*в*).

ПРИМЕР РАСЧЕТА ЭНЕРГОЗАТРАТ ОБРАЗОВАНИЯ МАГИСТРАЛЬНОЙ ТРЕЩИНЫ

Исходными данными для расчета являются технологические параметры B, H, d, Q и механические характеристики породы σ_p, E, ν, K_{1C} . По кривым рис. 5 находятся значения κ, ψ, \bar{x}_2 ; определяются размер трещины $l_2 = B\kappa$ и координата $x_2 = \bar{x}_2 \cdot d$; по формулам (1)–(4) рассчитываются общие энергозатраты A. Необходимая энергия единичного удара A_{eg} приближенно оценивается в процентном отношении от A (в экспериментах она не превышает 0.8–1.74%).

В табл. 2 для условий экспериментов (рис. 3, табл. 1) приведены расчетные значения $A_{\rm Tp}$, A_0 , A_{ζ} при различных *B*. На боковое трение инструмента $A_{\rm Tp}$ расходуется 1.1-2.5 %, на образование поверхностного разрыва породы $A_{\zeta} - 0.1-0.5$ %. Остальная часть энергии затрачивается на процессы, связанные с вытеснением столба ПВ из шпура (внутреннее трение слоев, выдавливание в зазор, в трещину), на деформации и колебания породы, обусловленные воздействием ударной нагрузкой. Выделить в эксперименте каждое значение этих энергозатрат затруднительно.

В, м	$\delta_{ m p}$, мм	ψ	$A^*_{ m ed}$		A _{rp}		A ₀		A_{ζ}		Ад		A	
			Дж	%	Дж	%	Дж	%	Дж	%	Дж	%	Дж	%
0.12	0.062	850	9	1.74	13	2.50	0.59	0.11	2.5	0.48	501.5	98.2	517	100
0.2	0.082	1248	15	0.80	20	1.07	1.48	0.08	3.6	0.19	1847	98.8	1870	100
0.26	0.092	1668	41	0.95	55	1.27	2.55	0.06	4.0	0.09	4253	98.6	4312	100

ТАБЛИЦА. 2. Расчетные значения характеристик образования магистральной трещины

* Экспериментальные значения

Работоспособность предлагаемой схемы оценки энергозатрат проверена в эксперименте на гранитном негабарите, имеющем форму и размеры, имитирующие рабочий уступ (рис. 6). В эксперименте использовались следующие значения параметров: B = 0.14 м, H = 0.5 м, d = 8 мм, Q = 0.16, $\mu = 0.027$, $\sigma_{\rm p} = 8.3 \cdot 10^6$ Па, $E = 1.97 \cdot 10^{10}$ Па, $\nu = 0.15$, $K_{\rm 1C} = 2.49 \cdot 10^6$ H/m^{3/2}, $G = 0.86 \cdot 10^{10}$ Па [11].

 $a \qquad 6$ $1 \rightarrow 0$ $1 \rightarrow$

Рис. 6. Образование магистральной трещины в породе гранита: *a*, *б* — общий вид эксперимента; *в*, *г* — локальные области: *I* — молот; *2* — инструмент; *3* — строчка шпуров; *4*, *5* — магистральная и радиальная трещины

Параметр	Расчет	Эксперимент	Отклонение, %
Общие энергозатраты А, Дж	12127	13526	11.5
Энергия единичного удара, А _{ед} , Дж	97-211	196	—
Длина магистральной трещины <i>l</i> , м	0.854	0.75	12
Внедрение инструмента x_2 , м	0.08	0.165	106
Раскрытие берегов трещины δ , мм	0.24	0.3-0.4	25-66

ТАБЛИЦА 3. Сравнение расчетных и экспериментальных данных

Ударная нагрузка на инструмент осуществлялась пневмомолотом с энергией единичного удара $A_{e_{d}} = 196$ Дж и частотой f = 1.15 Гц. За 60 с молот погрузился в шпур (Ø 8 мм) на 165 мм, размер магистральной трещины составил $l_2 = 0.75$ м, раскрытие берегов трещины $\delta \approx 0.3-0.4$ мм. При этом обнаружена слабозаметная радиальная трещина (рис. $6\delta, c$). Сравнение расчетных и экспериментальных данных представлено в табл. З. Предложенная расчетная схема позволяет определить энергозатраты образования магистральной трещины в зависимости от механических свойств породы.

При решении задач применения этой технологии в промышленности важным является вопрос: какой энергией единичного удара должна обладать ударная машина, используемая для внедрения инструмента в шпур с ПВ. Размеры высоты уступа реальной рабочей площадки карьера составляют 2–2.5 м [12]. На основе предложенной методики для гранитных блоков с H = 2.5 м и $B \le 2.5$ м оценены общие энергозатраты. На рис. 7 приведены зависимости A_{eq} энергии единичного удара от *B*. Линия *I* соответствует условию $A_{eq} \approx 0.08A$, а линия 2 — $A_{eq} \approx 0.17A$. Отсюда следует, что гранитные блоки шириной $B \le 1.5$ м можно отделять от массива, используя мощные ударные машины, например свайные молоты с энергией удара 90-180 кДж. При B > 2 м образовать от одиночного инструмента магистральную трещину нужных размеров затруднительно, так как требуется сверхмощные ударные установки (с энергией удара 205-445 кДж) и высокопрочные инструменты для передачи таких нагрузок на стенки шпура через ПВ. Для снижения удельной нагрузки на инструмент при отделении блоков целесообразно увеличить количество одновременно внедряемых инструментов [9].

Рис. 7. Область значений расчетной энергии единичного удара A_{ed} , необходимой для образования магистральной трещины, в зависимости от ширины *В* отделяемых гранитных блоков при высоте уступа рабочей площадки H = 2.5 м

При разработке технологического процесса отделения цельных блоков от массива и выборе параметров следует учитывать отношение $\kappa = l/B$ (рис. 5*a*). Так, для схемы рис. 8*a*, при которой блок отделяется внедрением нескольких инструментов, установленных с шагом *t*, должно соблюдаться условие: $t \le l$, где $l = \kappa B$ — расчетное значение длины фронта магистральной трещины. Для схемы рис. 8*b*, где цельный блок отделяется от массива за счет внедрения одиночного инструмента, рекомендуется принять $L \le l$ (L — длина блока).

Рис. 8. Схемы и результаты физического моделирования отделения цельных блоков при внедрении нескольких инструментов (*a*, *b*), одиночного инструмента (*б*, *c*): *1* — инструмент; *2* — массив; *3* — торцевая щель; *4* — линия откола; *5* — отделяемый блок

выводы

На основе анализа экспериментальных данных предложена методика приближенной оценки энергозатрат, необходимых на образование магистральной трещины в процессе отделения блочного камня от массива с высотой уступа 2.0-2.5 м. Расчеты показали, что 1.1-2.5% от общих энергозатрат ударной нагрузки расходуется на боковое трение, а 0.1-0.5% — на поверхностную энергию разрыва породы. Остальная часть энергии 97-99% затрачивается на процессы, связанные с вытеснением столба ПВ из шпура (внутреннее трение слоев, выдавливание в зазор, в трещину), на деформации и колебания породы.

Установлено, что блок породы при отрыве от массива путем формирования магистральной трещины вдоль строчки шпуров под действием ударной нагрузки в центральном шпуре с ПВ испытывает упругую деформацию изгиба, которая приводит к появлению радиальной трещины на поверхности уступа. Получено соотношение длины магистральной трещины к ширине отделяемого блока. Это позволяет оценить максимальную длину откола на один инструмент и ввести допустимый шаг установки рабочих инструментов.

Автор благодарен к. ф-м. н. П. А. Мартынюку и д. т. н. Л. В. Городилову за полезные советы при подготовке статьи.

СПИСОК ЛИТЕРАТУРЫ

- Алексеенко О.П. К расчету характеристик флюидоразрыва труднообрушающей кровли пластическим флюидом // Взаимодействие механизированных крепей с боковыми породами. Новосибирск: ИГД СО АН СССР, 1987. С. 72–79.
- **2.** Чернов О. И., Кю Н. Г. О флюидоразрыве породных массивов // ФТПРПИ. 1988. № 6. С. 81–92.
- 3. Чернов О. И., Кю Н. Г. Экспериментальное изучение ориентированного разрыва твердых тел высоковязким флюидом // ФТПРПИ. 1996. № 5. С. 28–35.
- **4.** Пат. 2131032 РФ. Способ разрушения горных пород / Н. Г. Кю, О. И. Чернов // Опубл. в БИ. 1999. № 15.
- 5. Кю Н. Г., Фрейдин А. М., Чернов О. И. Добыча блочного камня методом флюидоразрыва горных пород // Горн. журн. — 2001. — № 3. — С. 71–75.
- **6.** Тамбовцев П. Н. Экспериментальные исследования процесса флюидоразрыва породных блоков ударным способом // ФТПРПИ. 2004. № 3. С. 52–59.
- 7. Петреев А. М., Тамбовцев П. Н. Ударное нагружение твердой породы через пластичное вещество в шпуре // ФТПРПИ. 2006. № 6.— С. 79–86.
- **8.** Кю Н. Г. Особенности разрушения горных пород при флюидоразрыве пластичными веществами // ФТПРПИ. — 2011. — № 4. — С. 57–67.
- **9.** Тамбовцев П. Н. Физическое моделирование процесса отделения блочного камня от массива ударным воздействием на пластичное вещество в шпуре // ФТПРПИ. 2015. № 1. С. 79-87.
- **10. Беляев Н. М.** Сопротивление материалов. М.: Наука, 1965. 856 с.
- 11. Каркашадзе Г. Г. Механическое разрушение горных пород. М.: МГГУ, 2004. 222 с.
- **12. Карасев Ю. Г., Бака Н. Т.** Природный камень, добыча блочного и стенового камня: учеб. пособие. СПб.: СПбГГУ, 1997. 428 с.

Поступила в редакцию 7/V 2016