УДК 517.958:537.84

МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ И НАГРЕВА НЕОДНОРОДНОЙ ПЛАЗМЫ

В. Т. Астрелин, А. В. Бурдаков, Н. А. Губер*, В. М. Ковеня**

Институт ядерной физики СО РАН, 630090 Новосибирск

* Новосибирский государственный университет, 630090 Новосибирск

** Институт вычислительных технологий СО РАН, 630090 Новосибирск

Формулируется физико-математическая модель для задачи о нагреве и удержании плазмы на основе некоторых предположений о поведении плотного плазменного облака, находящегося в магнитном поле. Модель учитывает процесс ионизации и нагрева облака плазмы окружающей его дейтериевой плазмой за счет теплопроводности, а также нагрев потоком надтепловых электронов. С использованием некоторых упрощений изучена задача о расширении плазменного облака во внешнем магнитном поле в магнитогидродинамическом приближении. Нагрев плазмы моделируется внешним источником. Исходные уравнения включают уравнения неразрывности, движения, энергии и магнитного поля. Для численного решения задачи разработана конечно-разностная схема типа универсального алгоритма с расщеплением по физическим процессам и пространственным направлениям, что позволило получать независимо решения уравнений магнитной индукции и газовой динамики. Проведены расчеты распространения облака плазмы, нагреваемого источником во внешнем магнитном поле. Получены основные закономерности влияния магнитного поля и теплового источника на расширение облака плазмы, качественно подтверждающие экспериментальные данные.

ВВЕДЕНИЕ

В последние десятилетия задача нагрева и удержания плазмы является одной из важнейших в физике плазмы. Многообразие режимов и широкий диапазон параметров среды, сложность и нелинейность исследуемых процессов делают задачу нагрева и распространения плазмы многопараметрической, требующей использования различных подходов при ее решении. В настоящей работе сделана попытка численного моделирования динамики плазмы в условиях, соответствующих эксперименту, проводимому на установке ГОЛ-3 в Институте ядерной физики СО РАН. На этой установке ведется эксперимент по формированию и нагреву плотного газового облака, возникающего из крупинки (мишени) из дейтерида лития или другого материала, испаряющейся под действием мощного релятивистского электронного пучка (РЭП), и взаимодействующего с фоновой плазмой [1]. Следует отметить, что моделирование процесса нагрева и динамики плазмы на установке ГОЛ-3 проводилось и ранее, но плазма рассматривалась без мишени в рамках одномерной газодинамической модели [2].

Работа выполнена в рамках Федеральной целевой программы "Интеграция" (грант № 274), программы "Университеты России", Федеральной целевой научно-технической программы "Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения" (контракт № 105-22/55(00)-П) при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 99-01-00619, 99-07-90418).

1. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ В МНОГОКОМПОНЕНТНОМ МНОГОСКОРОСТНОМ ПРИБЛИЖЕНИИ

1.1. Описание эксперимента. Установка ГОЛ-3 представляет собой длинный соленоид с торцевыми магнитными пробками. Магнитная индукция в однородной части составляет B = 4,5 Тл, пробочное отношение $H_{\rm max}/H_0 = 2$. Соленоид длиной $L \approx 12$ м заполнен однородной водородной (дейтериевой) плазмой диаметром D = 6 см и плотностью $n \approx 10^{15}$ см⁻³. Плазменный столб нагревается проходящим по нему мощным электронным пучком с энергией до $eU_0 \approx 1$ МэВ, током до $I_0 \approx 30$ кА, длительностью до $\tau_b \approx 8$ мкс. При коллективном взаимодействии пучка с плазмой происходит нагрев электронов плазмы до температуры $T_e \approx 1$ кэВ с образованием группы ускоренных немаксвелловских электронов с плотностью $n_h \approx 10^{13}$ см⁻³ и характерной энергией $\varepsilon_h \approx 10$ кэВ.

В центр соленоида перед включением пучка вбрасывается крупинка твердого материала (дейтерид лития, полиэтилен и т. д.) массой 0,1–0,2 мг, которая при включении пучка испаряется, диссоциирует на атомы и ионизируется, образуя плотную плазму. Как показывают оценки, непосредственный нагрев крупинки электронным пучком незначителен, поскольку длина пробега электронов пучка $l \approx 0.3$ см значительно больше размеров крупинки. Основная энергия нагрева крупинки поступает от тепловых и надтепловых электронов плазмы и замедленных рассеянных электронов пучка. Оценка динамики происходящих процессов показала, что за время $t \approx 0.5$ мкс происходит испарение крупинки, диссоциация молекул и нагрев газового сгустка до температуры $T \approx 0.1 \div 1.0$ эВ при расширении до размера примерно 1 мм со скоростью около 1,5·10⁵ см/с. Это состояние берется в качестве начального для моделирования и численного решения задачи. Как показывает эксперимент, расширение и нагрев плазменного облака крупинки происходит до тех пор, пока эта плотная плазма не замагнитится. Далее происходит поглощение ею энергии горячей плазмы и быстрых электронов, накопленной в 12-метровом соленоиде, аналогично тому, как это имеет место в схеме "двухступенчатого" нагрева [3]. Энергозапаса РЭП достаточно, чтобы поглощенная в плазме крупинки энергия достигала значения порядка 1 кэВ/атом. Моделирование проводится для крупинки дейтерида лития, содержащей изотоп лития с относительной атомной массой, равной 6.

1.2. Столкновительность и замагниченность плазмы. Для определения состояния плазменного облака проведены оценки ряда его параметров, результаты которых приведены ниже.

1. На стадии ионизации газоплазменной смеси температуры всех ее компонентов равны (время установления равновесия $t \approx 10^{-10}$ с). Поскольку плотный газоплазменный сгусток характеризуется высокой частотой столкновений, для расчетов принимается приближенная модель ионизационного равновесия, определяемая при $T_e \leq T_{\alpha}^*$ линейным соотношением $f_{\alpha}(T_e) = \max\{0, (T_e - 1)/(T_{\alpha}^* - 1)\}$, где T_e и T_{α}^* измеряются в электронвольтах, и $f_{\alpha} \equiv 1$ при $T_e > T_{\alpha}^*$. Характерная температура ионизации T^* для дейтерия принята равной примерно 3 эВ (это следует из формулы Саха), для лития $T^* \approx 15$ эВ, т. е. порядка 1/5-1/4 средней энергии ионизации атомов (13,6 эВ для дейтерия и примерно 70 эВ для лития). Плотность электронов выражается как

$$n_e = Z_{\rm D} n_{s\rm D} f_{\rm D}(T_e) + Z_{\rm Li} n_{s\rm Li} f_{\rm Li}(T_e), \tag{1}$$

где Z — зарядовое число ($Z_{\rm D} = 1, Z_{\rm Li} = 3$); n_s — плотность атомов (заряженных и нейтральных); индексы D и Li соответствуют дейтерию и литию.

2. Температуры ионов дейтерия и лития практически всегда равны (даже при $r \approx 4$ см время установления равновесия $t < 10^{-6}$ с).

3. Температуры электронов и ионов практически равны при размере сгустка r < 1,5 см (время установления равновесия $t < (0,1 \div 0,3) \cdot 10^{-6}$ с и далее нарастает пропорционально $(rT^{1/2})^3$), а при расширении сгустка могут различаться.

4. На начальной стадии расширения плазма не замагничена. Замагниченность электронов плазмы проявляется при $r > r^* = 1,0 \div 1,5$ см. Следовательно, до этой стадии происходит сферическое расширение облака, а затем поперечное движение определяется скоростью диффузии плазмы поперек магнитного поля. Вдоль магнитного поля происходит свободный газодинамический разлет плазмы, так что сферичность расширения облака нарушается.

1.3. Система уравнений магнитной гидродинамики. Следуя работам [4, 5], составим систему уравнений, описывающих динамику трехкомпонентной плазмы (ионы двух сортов и электроны) в магнитном поле. Запишем уравнение неразрывности для дейтерия и лития, полагая скорости их атомов равными:

$$\frac{\partial n_{s\mathrm{D}}}{\partial t} + \operatorname{div}\left(n_{s\mathrm{D}}\boldsymbol{V}_{i}\right) = 0, \qquad \frac{\partial n_{s\mathrm{Li}}}{\partial t} + \operatorname{div}\left(n_{s\mathrm{Li}}\boldsymbol{V}_{i}\right) = 0.$$
(2)

В соответствии с принятой выше ионизационной моделью плотность ионов определится как $n_{\rm D} = n_{s{\rm D}} f_{\rm D}(T_e), n_{\rm Li} = n_{s{\rm Li}} f_{\rm Li}(T_e)$, электронов — из выражения (1).

Уравнения движения для ионов и электронов с учетом столкновений имеют вид

$$(m_{\rm D}n_{\rm D} + m_{\rm Li}n_{\rm Li}) \left[\frac{\partial \boldsymbol{V}_i}{\partial t} + (\boldsymbol{V}_i \cdot \nabla) \boldsymbol{V}_i \right] = = -\nabla [(n_{\rm D} + n_{\rm Li})kT_i] + e(Z_{\rm D}n_{\rm D} + Z_{\rm Li}n_{\rm Li}) \left[\boldsymbol{E} + (1/c) [\boldsymbol{V}_i \times \boldsymbol{H}] \right] - \boldsymbol{R}_U - \boldsymbol{R}_T; \quad (3)$$
$$m_e n_e \left[\frac{\partial \boldsymbol{V}_e}{\partial t} + (\boldsymbol{V}_e \cdot \nabla) \boldsymbol{V}_e \right] = -\nabla (n_e kT_e) - en_e \left[\boldsymbol{E} + (1/c) [\boldsymbol{V}_e \times \boldsymbol{H}] \right] + \boldsymbol{R}_U + \boldsymbol{R}_T. \quad (4)$$

Выражения для силы трения между электронами и ионами [4]

$$\boldsymbol{R}_{U} = \frac{m_{e}n_{e}}{\tau_{e}} \Big[0.44(\boldsymbol{V}_{i\parallel} - \boldsymbol{V}_{e\parallel}) + (\boldsymbol{V}_{i\perp} - \boldsymbol{V}_{e\perp}) \Big(1 - \frac{5.52(\omega_{e}\tau_{e})^{2} + 0.56}{(\omega_{e}\tau_{e})^{4} + 10.8(\omega_{e}\tau_{e})^{2} + 1.05} \Big) \Big] = en_{e}(\ddot{\sigma}^{-1}\boldsymbol{j})$$
(5)

и термосилы

$$\boldsymbol{R}_{T} = n_{e} \Big(0.91 \nabla_{\parallel} k T_{e} + \frac{4.45(\omega_{e}\tau_{e})^{2} + 0.95}{(\omega_{e}\tau_{e})^{4} + 10.8(\omega_{e}\tau_{e})^{2} + 1.05} \nabla_{\perp} k T_{e} + \frac{(\omega_{e}\tau_{e})(1.5(\omega_{e}\tau_{e})^{2} + 1.78)}{(\omega_{e}\tau_{e})^{4} + 10.8(\omega_{e}\tau_{e})^{2} + 1.05} \left[\boldsymbol{h} \times \nabla k T_{e} \right] \Big) = n_{e} (\ddot{\chi} \nabla k T_{e})$$
(6)

получены для среднего значения заряда ионов Z = 2. Отметим, что в этом приближении, поскольку отношения Z_{α}/m_{α} для ионов обоих сортов равны, при одинаковых начальных скоростях их дальнейшие скорости также будут равны, что использовано в уравнениях непрерывности (2). Здесь $\omega_e = eH/(m_ec)$ — электронная циклотронная частота; $\tau_e = 3\sqrt{m_e}(kT_e)^{3/2}/(4\sqrt{2\pi}\lambda e^4 Z n_e)$ — время рассеяния электронов на ионах; λ — кулоновский логарифм; k — постоянная Больцмана; h — единичный вектор, направленный вдоль магнитного поля; $\mathbf{j} = en_e(\mathbf{V}_i - \mathbf{V}_e) = (c/(4\pi))$ гот \mathbf{H} — плотность тока в плазме. В выражениях (5), (6) определены также тензор проводимости $\ddot{\sigma}$ и безразмерный тензор термосилы $\ddot{\chi}$.

Поскольку расширение плазменного сгустка на начальной стадии, когда процессы определяются столкновениями, имеет сферически-симметричный характер, а проскальзывание плазменных слоев несущественно в течение всего процесса, силой вязкости в (3)–(6) пренебрегается.

С использованием уравнений (3)–(6) с учетом равенства температур и скоростей ионов можно записать уравнение движения для плазмы (уравнение одножидкостной магнитной гидродинамики)

$$n_e M \frac{d\mathbf{V}}{dt} = -\nabla \left[(n_{\rm D} + n_{\rm Li}) k T_i + n_e k T_e \right] + \frac{1}{c} \left[\mathbf{j} \times \mathbf{H} \right],$$

при этом последний член в уравнении можно привести к виду $-\nabla H^2/(8\pi) + (\boldsymbol{H} \cdot \nabla)\boldsymbol{H}/(4\pi)$ (см. [5]). Здесь d/dt — полная производная; M, \boldsymbol{V} — средние масса и скорость частицы плазмы:

$$M = \frac{m_{\rm D}n_{\rm D}}{n_e} + \frac{m_{\rm Li}n_{\rm Li}}{n_e} + m_e, \qquad \mathbf{V} = \frac{1}{M} \left[\left(\frac{m_{\rm D}n_{\rm D}}{n_e} + \frac{m_{\rm Li}n_{\rm Li}}{n_e} \right) \mathbf{V}_i + m_e \mathbf{V}_e \right]$$

Аналогично [5] получим уравнение для магнитного поля. Разделим (3) на $m_e n_e$, а (4) на $m_{\rm D} n_{\rm D} + m_{\rm Li} n_{\rm Li}$ и вычтем одно из другого, пренебрегая инерционными членами и членами порядка m_e/m_i . Найдем связь электрического поля и плотности тока, аналогичную закону Ома. Далее, произведя операцию гоt и используя уравнения Максвелла

$$\operatorname{rot} \boldsymbol{E} = -\frac{1}{c} \left(\frac{\partial \boldsymbol{H}}{\partial t} \right) \tag{7}$$

и rot $\boldsymbol{H} = 4\pi \boldsymbol{j}/c$, получим искомое уравнение

$$\frac{\partial \boldsymbol{H}}{\partial t} = \operatorname{rot}\left[\boldsymbol{V} \times \boldsymbol{H}\right] - \frac{c}{4\pi e} \operatorname{rot} \frac{\left[\operatorname{rot} \boldsymbol{H} \times \boldsymbol{H}\right]}{n_e} - \frac{c}{en_e} \left[\nabla n_e \times \nabla kT_e\right] + \frac{c^2}{4\pi} \ddot{\sigma}^{-1} \Delta \boldsymbol{H} + \frac{c^2}{4\pi en_e} \operatorname{rot}\left(\ddot{\chi} \nabla kT_e\right).$$
(8)

Уравнение баланса энергии записывается с учетом нагрева облака электронами пучка и надтепловыми электронами фоновой плазмы, затрат энергии на ионизацию облака и передачу тепловой энергии ионам облака [2]:

$$\frac{3}{2} \frac{\partial (n_s k T_i)}{\partial t} + \frac{3}{2} \operatorname{div} (n_s k T_i \mathbf{V}_i) + n_s k T_i \operatorname{div} \mathbf{V}_i = \operatorname{div} (\ddot{\mathbf{x}}_i \nabla k T_i) + Q_i,$$

$$\frac{3}{2} \frac{\partial (n_e k T_e)}{\partial t} + \frac{3}{2} \operatorname{div} (n_e k T_e \mathbf{V}_e) + n_e k T_e \operatorname{div} \mathbf{V}_e = \operatorname{div} (\ddot{\mathbf{x}}_e \nabla k T_e) + Q_e.$$
(9)

Здесь источник нагрева электронов сгустка

$$Q_e = \frac{\partial E}{\partial t} - \frac{\partial (\varepsilon_i^{\rm D} + \varepsilon_i^{\rm Li})}{\partial t} + \frac{1}{2} \frac{n_e}{\tau_e} \frac{m_e}{M} k(T_i - T_e)$$

содержит указанные выше составляющие, причем

$$\varepsilon_i^{\rm D} \approx n_{\rm D} \left[30 - 16.4 \exp\left(-\frac{5 \cdot 10^{13}}{n}\right) \right] \frac{5.45}{T \exp\left((n/(1.37 \cdot 10^{14}))^{0.26}\right)}$$
(10)

есть цена ионизации атомов дейтерия; $\varepsilon_i^{\rm Li} \approx 70$ эВ — цена ионизации атомов лития, т. е. поглощаемая атомами облака энергия, идущая на возбуждение и ионизацию при их нагреве; $\partial E/\partial t$ — нагрев облака за счет торможения в нем надтепловых плазменных электронов и электронов пучка с энергией 5 ÷ 1000 кэВ, взаимодействующих с плазмой. В (10) размерность $\varepsilon_i^{\rm D}$ и T — эВ, $n_{\rm D}$ — см⁻³. Нагрев облака описывается выражением

$$\frac{\partial E(nl,t)}{\partial t} = \frac{P(t)\eta_h}{S} \int_{\varepsilon_{\min}}^{\infty} f(nl,\varepsilon) \, \frac{\varphi(\varepsilon) \, d\varepsilon}{\varepsilon},$$

где P(t) — мощность РЭП, передаваемая надтепловым электронам с эффективностью η_h ; S — сечение пучка; $\varphi(\varepsilon)$ — спектр энергии надтепловых электронов; $f(nl,\varepsilon)$ — функция поглощения электронов с энергией ε на длине, соответствующей линейной плотности $nl = \int n \, dl$ (приведена с нормировкой $\int f(nl,\varepsilon) \, d(nl) = \varepsilon$). В рассматриваемой физической

Рис. 1. Результаты экспериментов по исследованию поглощения электронов в водородном облаке и графитовой мишени:

1 — распределение энергии, поглощенной водородным облаком; 2 — распределение энергии, поглощенной графитовой мишенью; 3 — энерговклад надтепловых электронов; 4 — энерговклад тепловых (максвелловских) электронов; 5 — энерговклад электронов пучка

модели нагрев облака описывается измеренным в специальных экспериментах распределением выделяющегося тепла по глубине мишени $\mathcal{R}(nl)$ за один импульс РЭП (рис. 1), что позволяет непосредственно учесть реальный энергетический спектр электронов фоновой плазмы и пучка:

$$\frac{\partial E}{\partial t} = \frac{P(t)}{\int P(t) dt} \mathcal{R}(nl), \tag{11}$$

где P(t) — мощность пучка; nl отсчитывается от границы расчетной области.

Член $Q_i = (1/2)(n_e/\tau_e)(m_e/M)k(T_e - T_i)$ описывает нагрев ионов за счет электронионных столкновений.

Коэффициенты электронной теплопроводности в облаке для Z = 2 задаются следующим образом [4]:

— продольный:

$$x_{e\parallel} = 4.9 \, \frac{n_e k T_e \tau_e}{m_e};$$

— поперечный:

$$x_{e\perp} = \frac{n_e k T_e \tau_e}{m_e} \frac{4(\omega_e \tau_e)^2 + 5.1}{(\omega_e \tau_e)^4 + 10.8(\omega_e \tau_e)^2 + 1.05};$$

— "косой":

$$x_{e\wedge} = \frac{n_e k T_e \tau_e}{m_e} \frac{(\omega_e \tau_e)(2,5(\omega_e \tau_e)^2 + 15,4)}{(\omega_e \tau_e)^4 + 10,8(\omega_e \tau_e)^2 + 1,05}$$

так что тепловой поток равен $q_T^e = -\omega_{e\parallel} \nabla_{\parallel} kT_e - \omega_{e\perp} \nabla_{\perp} kT_e - \omega_{e\wedge} [\mathbf{h} \times \nabla kT_e]$. Следует отметить, что при коллективном взаимодействии пучка с плазмой экспериментально и в расчетах [2] обнаружено подавление коэффициента электронной теплопроводности в $\zeta_{\text{max}} \approx 10^2 \div 10^3$ раз, что объяснялось возрастанием эффективной частоты электронных столкновений при развитой ленгмюровской турбулентности. Локальный уровень турбулентности зависит от мощности пучка и плотности плазмы из-за стабилизирующего влияния электронных столкновений на развитие пучковой неустойчивости [2], причем при плотности плазмы выше некоторого критического значения $n_c \approx 3 \cdot 10^{15} \text{ см}^{-3}$ коллективное взаимодействие пучка с плазмой практически отсутствует. Эти эффекты учитываются в модели феноменологически численным коэффициентом, зависящим от мощности пучка P и плотности электронов n_e : $\ddot{w}_e^* = \ddot{w}_e/(1 + \zeta_{\max}\sqrt{P(t)/P_{\max}} \max\{0, \lg(n_c/n_e)\}).$

Аналогично ионная теплопроводность определяется как

$$\begin{aligned} \boldsymbol{x}_{i\parallel} &= 3.9 \, \frac{n_s k T_i \tau_i}{m_i}, \qquad \boldsymbol{x}_{i\perp} = 2 \, \frac{n_s k T_i \tau_i}{m_i} \, \frac{2(\omega_i \tau_i)^2 + 2.6}{(\omega_i \tau_i)^4 + 2.7(\omega_i \tau_i)^2 + 0.677} \\ \boldsymbol{x}_{i\wedge} &= 2 \, \frac{n_s k T_i \tau_i}{m_i} \, \frac{(\omega_i \tau_i)(2.5(\omega_i \tau_i)^2 + 4.65)}{(\omega_i \tau_i)^4 + 2.7(\omega_i \tau_i)^2 + 0.677}. \end{aligned}$$

Подавление ионной теплопроводности в модели не учитывается, поскольку оно в эксперименте не обнаружено.

1.4. Начальные условия. Начальные условия задачи определяются состоянием системы в эксперименте через 0,5 мкс после включения пучка. Плотность и температура фоновой плазмы составляют: $n \approx 10^{15}$ см⁻³, $T_e \approx 10$ эВ, скорость $\mathbf{V} = 0$; параметры облака плазмы: $n_s \approx 0.5 \cdot 10^{21}$ см⁻³, $r_0 \approx 1$ мм, $T_0 \approx 1$ эВ, $V_0(r) \approx 1.5 \cdot 10^5 (r/r_0)$ см/с. Мощность пучка к этому моменту достигает $P \approx 10$ ГВт (максимальная мощность $P_{\text{max}} \approx 30$ ГВт в момент $t_{\text{max}} \approx 3$ мкс) при длительности пучка 6 мкс и полном энергосодержании около 150 кДж (данные типичного эксперимента).

1.5. Граничные условия. Граничные условия на оси системы имеют обычный вид: $\partial/\partial r = 0$; на границах области моделирования по координате z $\partial(T_e, T_i, n_e, n_i, V_e, V_i, H)/\partial z = 0$. Электронная температура в рассматриваемой области определяется энерговкладом от надтепловых и пучковых электронов по зависимостям (11) с использованием рис. 1, а также уравнений (9). На наружной границе плазмы, расположенной близко к металлической поверхности вакуумной трубы установки, граничные условия для плазмы зависят от того, насколько близко к трубе находится граница. Магнитное поле внутри трубы должно удовлетворять условию сохранения потока поля в трубе

$$\Phi = \int_{0}^{R} 2\pi r H(r) \, dr$$

Решение полной задачи заключается в совместном решении уравнений (2)–(4), (7)–(9) при заданных начальных и граничных условиях.

2. ОДНОЖИДКОСТНАЯ МОДЕЛЬ

2.1. Постановка задачи. Рассматривается задача о распространении плотного плазменного облака, нагреваемого дополнительным источником, во внешнем магнитном поле. В начальный момент облако плазмы предполагается осесимметричным с плотностью, превышающей на несколько порядков плотность фоновой плазмы, окружающей облако. Под воздействием сил гидродинамического и магнитного давлений, а также внешнего теплового источника облако плазмы начинает расширяться в фоновой плазме. Течение предполагается осесимметричным и моделируется как распространение плазменного облака в некотором цилиндрическом объеме, заполненном плазмой низкой плотности и помещенном в продольное магнитное поле. В магнитогидродинамическом приближении исходные уравнения для нагрева и распространения плазмы могут быть представлены в векторной форме

$$\frac{\partial n_s}{\partial t} + \operatorname{div}\left(n_s \boldsymbol{V}\right) = 0,$$

$$n_s M\left(\frac{\partial \boldsymbol{V}}{\partial t} + (\boldsymbol{V} \cdot \nabla)\boldsymbol{V}\right) = \frac{1}{c} \left[\boldsymbol{j} \times \boldsymbol{H}\right] - \nabla(n_s T), \qquad (12)$$

$$\frac{3}{2} \frac{\partial (n_s T)}{\partial t} + \frac{3}{2} \operatorname{div} (n_s T \mathbf{V}) + (n_s T) \operatorname{div} \mathbf{V} = \operatorname{div} (k_e \nabla T) + Q;$$
$$\frac{\partial \mathbf{H}}{\partial t} = \operatorname{rot} \left[\mathbf{V} \times \mathbf{H} \right] + \frac{c}{e n_s} \left[\nabla n_s \times \nabla T \right] + \frac{c^2}{4\pi\sigma} \Delta \mathbf{H}.$$
(13)

Здесь n_s — плотность плазмы; M — масса частицы; V — скорость; c — скорость света; H — магнитное поле; $j = (c/(4\pi))$ rot H — плотность тока; T — температура плазмы; σ — продольная проводимость плазмы; k_e — электронная теплопроводность; e — заряд электрона; Q — внешний источник тепла, моделирующий нагрев плазмы релятивистским электронным пучком.

Внешнее магнитное поле направлено вдоль оси z. В силу симметрии течения задача не зависит от угловой координаты φ , но содержит все компоненты скорости и магнитного поля по направлениям z, r и φ цилиндрической системы координат. Для замыкания системы уравнений (12), (13) задано уравнение состояния в виде $p = n_s T$, коэффициент теплопроводности принят постоянным, как и коэффициент продольной проводимости σ .

Расчетная область выбрана в виде сечения цилиндра длиной L и радиусом R с размещенным в ее центре плотным облаком плазмы. В силу симметрии задачи на оси r = 0 задавались условия

$$\frac{\partial n_s}{\partial r} = \frac{\partial v_z}{\partial r} = \frac{\partial p}{\partial r} = \frac{\partial H_z}{\partial r} = v_r = v_\varphi = H_r = H_\varphi = 0.$$

Верхние и боковые границы цилиндра задавались достаточно далеко от центра, и полагалось, что возмущения от облака из-за влияния магнитогидродинамических сил не распространяются до границ. На них задавались условия для фоновой плазмы $H_r = H_{\varphi} = v_r = v_z = v_{\varphi} = 0, \ p = p_{\infty}, \ n_s = n_{s\infty}, \ H_z = H_{z\infty}.$

В процессе решения варьировались начальная плотность облака, внешнее магнитное поле и мощность теплового источника Q. Решение данной задачи было нестационарным и находилось в области $L \times R$ в различные моменты времени. При отсутствии магнитного поля и теплового источника решение находилось до момента времени, пока возмущения от плазменного облака не доходили до границ области, а при их наличии — до формирования основной структуры течения.

Для построения численного алгоритма исходные уравнения (12), (13) удобнее представить в векторной форме в виде двух систем уравнений

$$\frac{\partial \boldsymbol{U}}{\partial t} = -(\boldsymbol{W}_r^0 + \boldsymbol{W}_z^0) + \boldsymbol{R}^0 = -\boldsymbol{W}^0; \qquad (14)$$

$$\frac{\partial \boldsymbol{f}_1}{\partial t} = -(\boldsymbol{W}_r^1 + \boldsymbol{W}_z^1) + \boldsymbol{R}^1 = -\boldsymbol{W}^1.$$
(15)

Система уравнений (14) описывает гидродинамические процессы, a (15) представляет собой уравнения магнитного поля. Здесь

$$\begin{split} \boldsymbol{U} &= \begin{pmatrix} n_s \\ n_s v_r \\ n_s v_z \\ n_s v_z \\ p \end{pmatrix}, \qquad \boldsymbol{W}_r^0 &= \begin{pmatrix} \frac{1}{r} \frac{\partial (rn_s v_r)}{\partial r} + \frac{1}{M} \frac{\partial p}{\partial r} - \frac{n_s v_\varphi^2}{\partial r} \\ \frac{1}{r} \frac{\partial (rn_s v_r v_g)}{\partial r} + \frac{n_s v_r v_\varphi}{\partial r} + \frac{n_s v_r v_\varphi}{r} \\ \frac{1}{r} \frac{\partial (rn_s v_r v_g)}{\partial r} + \frac{n_s v_r v_g}{\partial r} \\ \frac{1}{r} \left(\frac{\partial (rn_s v_r v_g)}{\partial r} \right) - \frac{2}{3} \frac{1}{r} \frac{\partial}{\partial r} \left(rk_e \frac{\partial T}{\partial r} \right) \end{pmatrix}, \\ \boldsymbol{W}_z^0 &= \begin{pmatrix} \frac{\partial (n_s v_z)}{\partial z} \\ \frac{\partial (n_s v_z v_\varphi)}{\partial z} \\ \frac{\partial (n_s v_z v_\varphi)}{\partial z} \\ \frac{\partial (n_s v_z)}{\partial z} + \frac{1}{M} \frac{\partial p}{\partial z} \\ \frac{\partial (n_s v_z)}{\partial z} \\ \frac{\partial (n_s v_z)}{\partial z} + \frac{2}{3} p \frac{\partial (rk_r)}{\partial r} \end{pmatrix} \end{pmatrix}, \\ \boldsymbol{R}^0 &= \begin{pmatrix} 1 \\ \frac{4\pi M}{4\pi M} \left(H_z \frac{\partial H_r}{\partial z} - H_z \frac{\partial H_z}{\partial r} - \frac{H_\varphi}{r} \frac{\partial (rH_\varphi)}{\partial r} \right) \\ \frac{1}{4\pi M} \left(-H_\varphi \frac{\partial H_\varphi}{\partial z} - H_r \frac{\partial H_r}{\partial r} + H_z \frac{\partial H_z}{\partial r} \right) \\ \frac{1}{4\pi M} \left(-H_\varphi \frac{\partial (rv_s)}{\partial z} - H_r \frac{\partial H_r}{\partial z} + H_r \frac{\partial H_z}{\partial r} \right) \\ 2Q/3 \end{pmatrix}, \\ \boldsymbol{f}_1 &= \begin{pmatrix} H_r \\ H_\varphi \\ H_z \end{pmatrix}, \qquad \boldsymbol{W}_r^1 &= \begin{pmatrix} -\frac{c^2}{4\pi \sigma} \frac{1}{r} \frac{\partial}{r} (r \frac{\partial H_r}{\partial r}) \\ -\frac{1}{r} \frac{\partial}{\sigma r} (rv_z H_r - rv_r H_z) - \frac{c^2}{4\pi \sigma} \frac{1}{r} \frac{\partial}{\sigma r} (r \frac{\partial H_z}{\partial z}) \\ -\frac{\partial}{dz} (v_\varphi H_z - v_z H_\varphi) - \frac{c^2}{4\pi \sigma} \frac{\partial}{\partial z} \left(\frac{\partial H_r}{\partial z} \right) \\ -\frac{\partial}{dz} (v_\varphi H_z - v_z H_\varphi) - \frac{c^2}{4\pi \sigma} \frac{\partial}{\partial z} \left(\frac{\partial H_r}{\partial z} \right) \\ \end{pmatrix}, \end{aligned}$$

$$\boldsymbol{R}^{1} = \left(\begin{array}{c} 0\\ \frac{c}{en_{s}} \frac{1}{r} \left(\frac{\partial T}{\partial r} \frac{\partial n_{s}}{\partial z} - \frac{\partial T}{\partial z} \frac{\partial n_{s}}{\partial r}\right)\\ 0\end{array}\right).$$

Заметим, что уравнения неразрывности, движения и магнитной индукции записаны в дивергентной форме, а уравнение энергии — в недивергентной.

Наряду с представлением уравнений в виде (14), (15) рассмотрим уравнения в операторно-векторной форме в недивергентном виде

$$\frac{\partial \boldsymbol{f}}{\partial t} = -(\Omega_1^0 + \Omega_2^0)\boldsymbol{f} + \boldsymbol{S} = -(A^{-1})\boldsymbol{W}^0; \tag{16}$$

$$\frac{\partial \boldsymbol{f}_1}{\partial t} = -(\Omega_1^1 + \Omega_2^1)\boldsymbol{f}_1 + \boldsymbol{R}^1 = -\boldsymbol{W}^1, \qquad (17)$$

где $A = \partial U / \partial f$; $f = (n_s, v_r, v_{\varphi}, v_z, p)^{\mathrm{T}}$; $\Omega_1^0 f = A^{-1} W_z^0$; $\Omega_2^0 f = A^{-1} W_z^0$; S = R/M; $\Omega_1^1 f_1 = W_r^1$; $\Omega_2^1 f_1 = W_z^1$.

2.2. Численный алгоритм. В расчетной области $L \times R$ введем разностную сетку с постоянными шагами по пространству $h_r = R/I$, $h_z = L/J$, где I, J — число шагов сетки по направлениям r и z соответственно. Дифференциальные операторы $\partial/\partial r$ и $\partial/\partial z$ аппроксимируем разностными операторами Λ_1^k и Λ_2^k с порядком k (индекс k далее опущен), где $k = 1, 2, \ldots$. Конвективные члены уравнений $v_r \partial/\partial r$ и $v_z \partial/\partial z$ в (16), (17) аппроксимируем односторонними разностными операторами с учетом знака скорости v_r и v_z с первым порядком (k = 1), члены с давлением (магнитным и газодинамическим) — по сопряженным к конвективным членам формулам (см. [6]), а вторые производные — симметричными трехточечными разностными операторами со вторым порядком. Например, формулы аппроксимации в направлении r примут вид

$$v_r \frac{\partial}{\partial r} \approx v_r \Lambda_1, \qquad v_r \Lambda_1 = \begin{cases} v_r \Lambda_{1-}, & v_r \ge 0, \\ v_r \Lambda_{1+}, & v_r < 0, \end{cases}$$
(18)
$$\Lambda_{1-} f_l = \frac{f_l - f_{l-1}}{h_r}, \qquad \Lambda_{1+} f_l = \frac{f_{l+1} - f_l}{h_r}, \qquad \bar{\Lambda}_1 = \begin{cases} \Lambda_{1+}, & v_r \ge 0, \\ \Lambda_{1-}, & v_r < 0, \end{cases}$$
(18)
$$\Lambda_{1a} \Lambda_1 f_l = [a_{l+1/2}(f_{l+1} - f_l) - a_{l-1/2}(f_l - f_{l-1})]/h_r^2, \quad a_{l\pm 1/2} = (a_l + a_{l\pm 1})/2.$$

Аналогично дифференциально аппроксимируются векторные операторы W_r^s , W_z^s , R^s (s = 0, 1) в (14), (15) с первым или вторым порядком.

С учетом введенных обозначений (18) разностные матричные операторы Ω_1^0 и Ω_2^0 могут быть представлены в виде

$$\Omega_1^0 = \begin{pmatrix} (1/r)\Lambda_1 r v_r & 0 & 0 & 0 & 0 \\ 0 & v_r \Lambda_1 & -v_{\varphi}/r & 0 & (1/(Mn_s))\bar{\Lambda}_1 \\ 0 & v_{\varphi}/r & v_r \Lambda_1 + v_r/r & 0 & 0 \\ 0 & 0 & 0 & v_r \Lambda_1 & 0 \\ 0 & (5/3)(p/r)\Lambda_1 & 0 & 0 & v_r \Lambda_1 - (2/3)\Lambda_1 r k_e \Lambda_1(1/n_s) \end{pmatrix},$$

$$\Omega_2^0 = \begin{pmatrix} \Lambda_2 v_z & 0 & 0 & 0 & 0 \\ 0 & v_z \Lambda_2 & 0 & 0 & 0 \\ 0 & 0 & v_z \Lambda_2 & 0 & 0 \\ 0 & 0 & 0 & v_z \Lambda_2 & (1/(Mn_s))\bar{\Lambda}_2 \\ 0 & 0 & 0 & (5/3)p\Lambda_2 & v_z \Lambda_2 - (2/3)\Lambda_2 k_e \Lambda_2(1/n_s) \end{pmatrix}$$

Аналогично могут быть представлены матричные операторы Ω_1^1 и Ω_2^1 , аппроксимирующие уравнения магнитной индукции в дивергентной форме.

Для построения экономичной разностной схемы введем расщепление операторов Ω_j^0 по физическим процессам, т. е. представим их в виде

$$\Omega_1^0 = \Omega_{11}^0 + \Omega_{12}^0,$$

где

$$\Omega_{11}^{0} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -v_{\varphi}/r & 0 & (1/(Mn_{s}))\bar{\Lambda}_{1} \\ 0 & v_{\varphi}/r & v_{r}/r & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & (5/3)(p/r)\Lambda_{1} & 0 & 0 & v_{r}\Lambda_{1} - (2/(3r))\Lambda_{1}rk_{e}\Lambda_{1}(1/n_{s}) \end{pmatrix}$$

Оператор Ω_{11}^0 содержит члены с давлением, свободные члены в уравнениях движения и все члены в уравнении энергии по направлению r, а оператор

$$\Omega_{12}^{0} = \begin{pmatrix} (1/r)\Lambda_{1}rv_{r} & 0 & 0 & 0 & 0 \\ 0 & v_{r}\Lambda_{1} & 0 & 0 & 0 \\ 0 & 0 & v_{r}\Lambda_{1} & 0 & 0 \\ 0 & 0 & 0 & v_{r}\Lambda_{1} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

содержит конвективные члены в уравнениях движения и все члены в уравнении неразрывности. Заметим, что уравнение неразрывности аппроксимируется в дивергентной форме. Аналогично вводится расщепление по физическим процессам и по направлению z, т. е. оператор Ω_2^0 представляется в виде $\Omega_2^0 = \Omega_{21}^0 + \Omega_{22}^0$.

Для численного решения уравнений газовой динамики (14) или (16) рассмотрим схему приближенной факторизации с расщеплением операторов по физическим процессам и пространственным направлениям вида [7]

$$\prod_{j=1}^{2} (I + \tau \alpha \Omega_{j1}^{0}) (I + \tau \alpha \Omega_{j2}^{0}) \frac{f^{n+1} - f^{n}}{\tau} = -(A^{-1})^{n} (W^{0})^{n}$$
(19)

или эквивалентную ей схему в дробных шагах

$$\xi^{n} = -(A^{-1})^{n} (W^{0})^{n}, \qquad (I + \tau \alpha \Omega_{11}^{0}) \xi^{n+1/4} = \xi^{n}, \qquad (I + \tau \alpha \Omega_{12}^{0}) \xi^{n+2/4} = \xi^{n+1/4}, \qquad (I + \tau \alpha \Omega_{21}^{0}) \xi^{n+3/4} = \xi^{n+2/4}, \qquad (I + \tau \alpha \Omega_{22}^{0}) \xi^{n+1} = \xi^{n+3/4}, \qquad f^{n+1} = f^{n} + \tau \xi^{n+1}, \qquad (20)$$

где τ — временной шаг; n — номер временного шага; $0 \leq \alpha \leq 1$ — весовой параметр. Разностная схема (19) или (20) аппроксимирует исходные уравнения (12) с порядком $O(\tau + h)$ и, как следует из вида операторов Ω_{jl}^0 , на дробных шагах реализуется скалярными трехточечными прогонками подобно схеме расщепления [7]. Уравнения в правой части схемы аппроксимируются в консервативной форме, что приводит к повышению точности расчета. Заметим, что вектор $(A^{-1})^n (W^0)^n$ наряду с газодинамическими членами содержит члены с магнитным давлением и аппроксимируется на n-м известном слое. Тем самым в разностной схеме (19) магнитогидродинамические члены аппроксимируются явно. При отсутствии магнитного поля разностная схема (19) безусловно устойчива (в линейном приближении), что позволяет варьировать шаги сетки (временной и пространственные) для получения численного решения с требуемой точностью. При ненулевом магнитном поле безусловная устойчивость схемы нарушается, однако, как показали проведенные расчеты, шаг τ может выбираться в широком диапазоне значений. После нахождения газодинамических параметров на новом (n + 1)-м временном слое решаются уравнения магнитной индукции (15). Для их численного решения построена схема приближенной факторизации с расщеплением операторов по пространственным направлениям

$$(I + \tau \alpha \Omega_1^1)(I + \tau \alpha \Omega_2^1) \frac{f_1^{n+1} - f_1^n}{\tau} = -(W^1)^n$$
(21)

или эквивалентная ей схема в дробных шагах

$$\xi_1^n = -(W^1)^n, \qquad (I + \tau \alpha \Omega_1^1) \xi_1^{n+1/2} = \xi_1^n, (I + \tau \alpha \Omega_2^1) \xi_1^{n+1} = \xi_1^{n+1/2}, \qquad f_1^{n+1} = f_1^n + \tau f_1^{n+1}.$$
(22)

Как следует из вида операторов Ω_j^1 , разностная схема (22) на дробных шагах реализуется скалярными прогонками и безусловно устойчива при $\alpha \ge 0.5$.

Явный учет магнитного поля в схеме (19) приводит к нарушению безусловной устойчивости схем (19), (21), но позволяет в свою очередь эффективно находить решение уравнений скалярными прогонками, что делает данный алгоритм экономичным. Более того, эта схема вычислений может применяться и для более сложных моделей.

2.3. Результаты расчетов. Предложенная выше разностная схема тестировалась на решении упрощенных задач с целью получения оценок точности расчета и устойчивости алгоритма. Проведенные расчеты подтвердили теоретические оценки устойчивости схемы. Это позволяет варьировать параметры сеток в широком диапазоне для получения решения с минимальными временными затратами. Решение с достаточной точностью (порядка точности физико-математической модели) может быть получено на расчетных сетках, содержащих примерно 300×150 узлов. Дальнейшее двукратное увеличение числа узлов по каждому направлению практически не приводило к изменению решения, а погрешность расчета составляла не более 5 %. Наибольшее отличие наблюдалось у оси симметрии, что объясняется выбором системы координат (цилиндрической), которая имеет математическую особенность при r = 0.

В первой серии расчетов исследовалось распространение газового облака, помещенного в центре расчетной области, при отсутствии магнитного поля. В начальный момент времени в области задавались невозмущенные значения (здесь и далее все величины приведены в безразмерных единицах; счетные плотность и давление получены нормированием на соответствующие значения фоновой плазмы, характерные время и расстояние приняты равными соответственно 1 мкс и 1 см): $n_{s\infty} = 1,0, p_{\infty} = 1,0, v_{r\infty} = v_{z\infty} = 0,$ $H_{r\infty} = H_{\varphi\infty} = H_{z\infty} = 0$, а в газовом облаке значения плотности и давления менялись от фоновых до $n_{sc}, p_c \equiv 10^2 \div 10^3$ (рис. 2). За счет начального градиента давления облако начинало расширяться. Заметим, что для явной схемы реализация такого режима течения с градиентом давления и плотности порядка 10^3 представляется почти невозможой, так как требует очень малого шага по времени. Задача имела два вида симметрии — осевую симметрию относительно оси расчетной области при r = 0 и зеркальную симметрию относительно плоскости, проходящей через центр газового облака перпендикулярно оси z.

Типичная картина течения в момент времени t = 0,5 приведена на рис. 3 при перепаде давления и плотности в начальный момент $p_c/p_{\infty} = n_{sc}/n_{s\infty} = 10^3$. Полученный результат с достаточной точностью описывает сферически-симметричное распространение облака.

Рис. 3. Разлет в отсутствие магнитного поля: *a* — распределение плотности, *б* — давления

Отметим, что наблюдаемые нерегулярности в области максимальной плотности связаны с погрешностями алгоритмов при визуализации данных. Наблюдается формирование двух волн плотности, которые находятся в областях с максимальными градиентами давления. При этом внутри облака образуется область пониженной плотности, сопоставимой по величине с плотностью фоновой плазмы, и с температурой на несколько порядков ниже начальной. Температура плазмы падает на участке между фронтами волн. Отметим, что в этих расчетах коэффициент теплопроводности задавался равным нулю. Безразмерная фазовая скорость фронта наружной волны составляет $V_{ph} = 2,07$, внутренней — 1,29. Скорость звука C_s в начальном состоянии также равна 1,29. Таким образом, в системе при данных начальных условиях наблюдается формирование ударной волны с числом Маха $V_{ph}/C_s \approx 1,6$.

Для сравнения на рис. 4 приведено распределение плотности в тот же момент времени при тех же начальных условиях для плоской задачи, соответствующей расширению плазменного цилиндра бесконечной протяженности (а не сферы, как на рис. 3). В отличие от сферического случая здесь остаточная плотность в центре облака остается значительно выше фоновой.

В дальнейших расчетах изучалось влияние магнитного поля на распространение облака плазмы. Это влияние характеризовалось коэффициентом Φ (равным для рассматриваемых начальных условий удвоенному отношению давления магнитного поля к газокинетическому давлению), который изменялся в широких пределах ($0 \leq \Phi < 10^2$). Так как магнитное поле направлено вдоль оси z, то возникающие магнитодинамические силы действуют поперек оси z в направлении радиуса. Они сдерживают поперечное расширение замагниченного плазменного облака, которое может проникать через магнитное поле

за счет столкновительной диффузии, зависящей от электронной проводимости. На рис. 5 показано распределение давления в момент времени t = 0,5 для значений $\Phi = 5, 15, 30$. Возрастание магнитного поля (увеличение Φ) приводит к увеличению скорости ударной волны в радиальном направлении, что вызвано ростом упругости плазмы за счет вмороженности магнитного поля [8]. При этом амплитуды давления и плотности на фронте ударной волны на один-два порядка падают. Большая часть плазмы, задержанная магнитным полем, остается в области внутреннего фронта, поперечная скорость которого с ростом магнитного поля уменьшается (рис. $5, a, \delta$). Наконец, в случае $\Phi = 30$ (рис. 5, 6) поперечное расширение облака практически прекращается, и оно разделяется на две части, разлетающиеся вдоль оси.

На рис. 6 приведена зависимость среднего радиуса облака δ от величины магнитного поля при t = 0.5 (средний радиус облака определялся областью, в которой достигалась половина его максимальной плотности). Рост параметра Φ приводит к уменьшению области разлета, и при больших значениях Φ распространение плазмы происходит в основном в направлении оси z.

На рис. 7 при фиксированных значениях магнитного поля ($\Phi = 0, 10, 15, 30$) показано изменение среднего радиуса облака δ во времени. Как следует из рис. 7, при появлении магнитного поля поперечное расширение облака ограничивается, причем его максимальный радиус уменьшается с ростом коэффициента Φ .

Рис. 6. Зависимость среднего радиуса облака δ от Φ при t=0,5

Рис. 7. Зависимость среднего радиуса δ от времени: 1 — $\Phi = 0$; 2 — $\Phi = 10$; 3 — $\Phi = 15$; 4 — $\Phi = 30$

Рис. 8. Результаты расчетов с введением источника тепла: $a - Q_0 = 10^5; \ \delta - Q_0 = 2 \cdot 10^5$

В эксперименте [1] фотографировался разлет облака в ультрафиолетовом спектре. Поперечный размер облака, определенный по снимкам в моменты времени t = 2, 4, 6 мкс, составляет соответственно 0,5–1,0; \approx 1,5; \approx 1,5 см. Таким образом, и в эксперименте наблюдается ограничение поперечного расширения облака магнитным полем. В продольном направлении происходит свободный газодинамический разлет плазмы.

В последней серии расчетов проведено численное моделирование разлета облака плазмы при наличии дополнительного источника

$$Q = \begin{cases} \tau n_s Q_0, & n_s \ge 1, 5, \\ 0, & n_s < 1, 5. \end{cases}$$
(23)

Формула (23) в простейшем приближении моделирует поглощение плазмой энергии релятивистского электронного пучка.

Как следует из физических соображений, при наличии дополнительного источника тепла газодинамические процессы в облаке должны протекать с большей скоростью. Это связано с тем, что в данном случае увеличивается градиент давления, а значит, и газодинамические силы. Указанный эффект подтверждают представленные на рис. 8,*a* результаты расчета с введением источника тепла с $Q_0 = 10^5$ (все расчеты в данной серии выполнены на сетке 150 × 300 при $\Phi = 15$). Как показано на рис. 8,*a*, возмущение за расчетное время достигает границ расчетной области (ср. с рис. 5,*б*). При увеличении мощности теплового

Рис. 9. Зависимость среднего радиуса δ от Q_0

источника (т. е. Q_0) с возрастанием в процессе расчета температуры облака и давления внутренний фронт волны останавливается и начинает перемещаться в обратную сторону (рис. $8, \delta$), заполняя плазмой находящуюся в центре область пониженной плотности.

На рис. 9 приведена зависимость среднего радиуса облака от мощности дополнительного источника тепла в момент времени t = 0.5. Упрощенная модель задачи не позволяет описать процесс нагрева ионов газового облака надтепловыми электронами фоновой плазмы, поэтому для получения более подробных количественных характеристик необходимо проведение исследований по общей модели.

3. ВЫВОДЫ

Таким образом, в данной работе предложена математическая модель для описания формирования и разлета газового облака, возникшего из крупинки дейтерида лития, испаряющегося под действием релятивистского электронного пучка.

В рамках упрощенной модели в магнитогидродинамическом приближении рассмотрена осесимметричная задача о распространении плотного облака плазмы в разреженную фоновую плазму во внешнем магнитном поле при отсутствии и наличии внешнего источника.

На основе численного моделирования получены основные закономерности влияния магнитного поля на разлет плазменного облака. Оценено влияние внешнего источника на характеристики разлета облака.

ЛИТЕРАТУРА

- 1. Akentjev R. Yu., Arzhannikov A. V., Astrelin V. T., et al. Experiments directed to creation of hot plasma with $\beta \sim 1$ at the GOL-3-II facility // 3rd Intern. conf. on open magnetic systems for plasma confinement: Program and book of abstr., Tsukuba, 2000. Tsukuba: Tsukuba Univ., 2000. P. 33.
- Астрелин В. Т., Бурдаков А. В., Поступаев В. В. Подавление теплопроводности и генерация ионно-звуковых волн при нагреве плазмы электронным пучком // Физика плазмы. 1998. Т. 24, № 5. С. 450–462.
- 3. Аржанников А. В., Бурдаков А. В., Брейзман Б. Н. и др. Исследования нагрева плазмы мощными релятивистскими электронными пучками // Тр. VII Междунар. конф. по физике плазмы и проблеме управляемых термоядерных реакций, Инсбрук, 1978 г. Вена: Междунар. агентство по атом. энергетике, 1979. Т. 2. С. 623–627.
- 4. Брагинский С. И. Вопросы теории плазмы. М.: Атомиздат, 1963. Т. 1. С. 191–195.
- 5. Арцимович Л. А., Сагдеев Р. З. Физика плазмы для физиков. М.: Атомиздат, 1979. С. 156–164.

- 6. Ковеня В. М. Схемы расщепления в методе конечных объемов // Журн. вычисл. математики и мат. физики. 2001. Т. 41, № 1. С. 100–113.
- 7. Ковеня В. М., Тарнавский Г. А., Черный С. Г. Применение метода расщепления в задачах аэродинамики. Новосибирск: Наука. Сиб. отд-ние, 1990.
- 8. Лонгмайр К. Физика плазмы. М.: Атомиздат, 1966.

Поступила в редакцию 30/VII 2001 г.
