УДК 539.3

МОДИФИЦИРОВАННЫЕ ТРЕХМЕРНЫЕ ПОСТАНОВКИ ЗАДАЧ ИЗГИБА ОДНОРОДНЫХ ПЛАСТИН И БАЛОК СО СЛОЖНЫМ ЗАКРЕПЛЕНИЕМ

А. Д. Матвеев

Институт вычислительного моделирования СО РАН, 660036 Красноярск

Рассматриваются модифицированные трехмерные постановки задач изгиба однородных упругих пластин и балок. Модификация известных трехмерных постановок сводится к использованию дополнительных условий на функции перемещений. Преимущество предлагаемых постановок состоит в том, что они учитывают сложное крепление пластин и балок.

Ключевые слова: модифицированные теории пластин, метод конечных элементов.

Введение. Известные теории изгиба однородных упругих пластин и балок построены на ряде гипотез [1–4]. Введение гипотез, с одной стороны, упрощает процедуру решения таких задач (уменьшается их размерность), с другой — накладывает определенные ограничения на поля перемещений, деформаций и напряжений, что порождает неустранимую погрешность в решениях. Кроме того, существующие теории изгиба однородных пластин и балок не способны учитывать их сложное крепление, например, в случае частично защемленной по торцу пластины. Конечно-элементные трехмерные модели однородных пластин и балок учитывают любое крепление и обеспечивают заданную погрешность сеточных решений, однако эти модели имеют большую размерность.

В данной работе рассматриваются модифицированные трехмерные постановки задач изгиба однородных упругих пластин и балок. Модификация трехмерных постановок сводится к использованию дополнительных условий на функции перемещений [5, 6]. Следует отметить, что выполнение этих условий в дискретных моделях пластин и балок приводит к значительному уменьшению их размерности. Предлагаемые дополнительные условия на функции перемещений задаются только в той области пластины (балки), которая удалена от закрепленной части границы. Таким образом, в окрестности крепления для полей перемещений, деформаций и напряжений никакие гипотезы не вводятся, т. е. в ней реализуется трехмерное напряженное состояние.

Преимущество предлагаемых постановок состоит в том, что реализация метода конечных элементов (МКЭ) для модифицированных постановок задач изгиба пластин и балок требует существенно меньшего объема памяти ЭВМ и времени счета, чем реализация МКЭ для трехмерных постановок. При этом предлагаемые постановки описывают трехмерное напряженное состояние в окрестности границ крепления пластин и балок, что позволяет учитывать сложные кинематические граничные условия.

1. Модифицированные трехмерные постановки задач изгиба пластин и балок. 1.1. Рассмотрим изотропную однородную линейно-упругую тонкую пластину, которая в декартовой системе координат xyz занимает область V. Срединная плоскость пластины совпадает с плоскостью xOy. Перемещения, деформации и напряжения пластины удовлетворяют соотношениям Коши и закону Гука [1]. Пластина нагружена поверхностными силами $q_z = q_z(x, y)$ и закреплена на границах S_α : u = v = w = 0, где u, v, w функции перемещений; $\alpha = 1, \ldots, M$ (M — общее число границ). Обозначим через V_α подобласть, представляющую собой окрестность границы S_{α} . Подобласть V_{α} можно рассматривать как совокупность шаров радиуса $R_{\alpha} \ge C_{\alpha}$ (C_{α} — некоторые числа), центры которых являются точками границы S_{α} . Как показывают расчеты, на практике целесообразно использовать значения $C_{\alpha} \ge 2h_0$ (h_0 — толщина пластины), при этом выбирается такая форма области V_{α} , которая удобна для расчетов. Пусть $S_r = \sum S_{\alpha}, V_0 = V - V_r$, где $V_r = \sum V_{\alpha}$ ($V_0 \ne \emptyset$). Модифицированная постановка трехмерной задачи упругости в перемещениях для пластины V включает следующие уравнения:

в V:
$$A(\boldsymbol{u}) = \boldsymbol{p};$$
 (1)

ha
$$S_q$$
: $B(\boldsymbol{u}) = \boldsymbol{q}$, ha S_r : $u = v = w = 0$; (2)

B
$$V_0$$
:

$$\begin{array}{l}
u(x,y,z) = -u(x,y,-z), & v(x,y,z) = -v(x,y,-z), \\
u(x,y,0) = v(x,y,0) = 0 & w(x,y,z) = w(x,y,0)
\end{array}$$
(3)

u(x, y, 0) = v(x, y, 0) = 0, w(x, y, z) = w(x, y, 0),где $\boldsymbol{u} = \{u, v, w\}^{\mathrm{T}}; A$ — оператор уравнений равновесия; $\boldsymbol{p} = \{0, 0, 0\}^{\mathrm{T}}$ — вектор объемных сил; B — оператор статических граничных условий; $\boldsymbol{q} = \{0, 0, q_z\}^{\mathrm{T}}$ — вектор поверхностных сил; S_q — граница, на которой задана нагрузка $\boldsymbol{q}; S = S_r + S_q$ — граница области V;w — прогиб пластины.

Как показывают расчеты, для трехмерных однородных пластин равенства (3) выполняются приближенно, т. е.

в V₀:
$$\begin{aligned} &|u^{+} - u^{-}| < \varepsilon_{1}, \qquad |v^{+} - v^{-}| < \varepsilon_{2}, \\ &|w^{+} - w^{-}| < \varepsilon_{3}, \qquad |u(x, y, 0)| < \varepsilon_{4}, \quad |v(x, y, 0)| < \varepsilon_{4}. \end{aligned}$$
(4)

Здесь $\varepsilon_1, \ldots, \varepsilon_4$ — малые числа; $u^+ = |u(x, y, z)|$; $u^- = |u(x, y, -z)|$; $v^+ = |v(x, y, z)|$; $v^- = |v(x, y, -z)|$; $w^+ = |w(x, y, z)|$; $w^- = |w(x, y, 0)|$.

В силу (4) решение, полученное при условиях (3), отличается от точного решения с погрешностью δ . Эта погрешность зависит от размеров подобластей V_{α} , которые определяются (для конкретного вида крепления пластины) с помощью численных экспериментов из условия, что погрешность решения δ не превышает заданной величины. Расчеты показывают, что с увеличением геометрических размеров подобластей V_{α} погрешность δ стремится к нулю.

Итак, модифицированная постановка трехмерной задачи упругости для однородной тонкой пластины отличается от трехмерной постановки (1), (2) введением для функций перемещений пластины дополнительных условий (3). При этом в областях V_{α} для полей перемещений, деформаций и напряжений не вводится никаких гипотез, т. е. в $V_r = \sum V_{\alpha}$ реализуется трехмерное напряженное состояние.

Рассмотрим модифицированную трехмерную конечно-элементную модель пластины V. Вначале построим дискретную (базовую) модель пластины, используя известную постановку трехмерной задачи упругости, т. е. соотношения (1), (2). Базовая модель состоит из конечных элементов V_e^h первого порядка, имеющих форму куба со стороной h; $e = 1, \ldots, N$ — общее число конечных элементов [7, 8]. Узловыми неизвестными элементов V_e^h являются значения перемещений u, v, w. Базовое разбиение пластины порождает трехмерную узловую сетку V_h с шагом h по осям x, y, z и размерностью $n_1 \times n_2 \times n_3$, где $n_3 = 2k_0 + 1$; k_0 — целое число. Для узлов сетки V_h введем целочисленную систему координат ijk (рис. 1). На рис. 1 $n_1 = 81$, $n_2 = 51$, $n_3 = 9$, a = 80h, b = 50h, $h_0 = 8h$, $k_0 = 4$. Реализация условий (3) для узлов сетки V_h , входящих в область V_0 , сводится к выполнению следующих равенств:

$$\forall (i, j, k) \in V_0: \qquad \begin{aligned} u(i, j, k) &= -u(i, j, n_3 - k + 1), \\ v(i, j, k) &= -v(i, j, n_3 - k + 1), \\ u(i, j, k_0 + 1) &= v(i, j, k_0 + 1) = 0, \\ w(i, j, k) &= w(i, j, k_0 + 1), \\ k &= 1, \dots, n_3, \quad k \neq k_0 + 1, \end{aligned}$$
(5)

Рис. 1

где u(i, j, k), v(i, j, k), w(i, j, k) — значения перемещений u, v, w узла (i, j, k) сетки V_h , координаты которого заданы в целочисленной системе координат ijk.

Выражение для потенциальной энергии П базовой модели пластины запишем в матричной форме [7]

$$\Pi(\{\delta_h\}) = \{\delta_h\}^{\mathrm{T}}[K_h]\{\delta_h\}/2 - \{\delta_h\}^{\mathrm{T}}\{P_h\},\tag{6}$$

где $[K_h]$ — матрица жесткости базовой модели; $\{P_h\}$, $\{\delta_h\}$ — векторы узловых сил и узловых неизвестных.

Структуру вектора $\{\delta_h\}$ представим в виде

$$\{\delta_h\} = \{\{\delta_+^{uv}\} \ \{\delta_0^{uv}\} \ \{\delta_0^w\} \ \{\delta_0^w\} \ \{\delta\}\}^{\mathrm{T}},\tag{7}$$

где $\{\delta_{-}^{uv}\}, \{\delta_{+}^{uv}\}, \{\delta_{0}^{uv}\}$ — векторы перемещений u, v узлов сетки V_h , лежащих соответственно в областях $V_0^1 = \{x, y, z \in V_0, z < 0\}, V_0^2 = \{x, y, z \in V_0, z > 0\}$ и в плоскости $S_0 = \{x, y, z \in V_0, z = 0\}; \{\delta_0^w\}, \{\delta^w\}$ — векторы перемещений w узлов сетки V_h , расположенных в плоскости S_0 и в области $V_0^3 = \{x, y, z \in V_0, z \neq 0\}; \{\delta\}$ — вектор остальных узловых неизвестных базовой модели пластины.

Выполняя равенства (5) для узловой сетки V_h, получим

$$\{\delta_0^{uv}\} = 0, \qquad \{\delta_-^{uv}\} = [A]\{\delta_+^{uv}\}, \qquad \{\delta^w\} = [B]\{\delta_0^w\}, \tag{8}$$

где [A] — квадратная матрица, каждый элемент которой равен либо нулю, либо -1; [B] — прямоугольная булева матрица.

С учетом $\{\delta_0^{uv}\} = 0$ вектор (7) представим в виде

$$\{\delta_h\} = \{\{\delta_+^{uv}\} \ \{\delta_-^{w}\} \ \{\delta_0^w\} \ \{\delta^w\} \ \{\delta\}\}^{\mathrm{T}}.$$
(9)

Введем вектор узловых неизвестных модифицированной трехмерной дискретной модели пластины

$$\{\delta_0\} = \{\{\delta_+^{uv}\} \ \{\delta_0^w\} \ \{\delta\}\}^{\mathrm{T}}.$$
 (10)

Используя (8), (9), установим связь между векторами $\{\delta_h\}$ и $\{\delta_0\}$

$$\{\delta_h\} = [K]\{\delta_0\},\tag{11}$$

где [K] — прямоугольная матрица:

$$[K] = \begin{bmatrix} [E_1] & 0 & 0\\ [A] & 0 & 0\\ 0 & [E_2] & 0\\ 0 & [B] & 0\\ 0 & 0 & [E_3] \end{bmatrix}$$

 $[E_k]$ — единичная матрица (k = 1, 2, 3). Подставляя (11) в (6), из условия $\partial \Pi / \partial \{\delta_0\} = 0$ получаем систему уравнений $[K_0]\{\delta_0\} = \{P_0\}$, где $[K_0] = [K]^{\mathrm{T}}[K_h][K]$ — матрица жесткости; $\{P_0\} = [K]^{\mathrm{T}}\{P_h\}$ — вектор узловых сил модифицированной трехмерной дискретной модели пластины.

Из сравнения (7) и (10) следует, что размерность вектора $\{\delta_0\}$ меньше размерности вектора $\{\delta_h\}$. Таким образом, размерность модифицированной дискретной модели пластины меньше размерности дискретной модели, построенной на основе трехмерной постановки (уравнений (1), (2)).

1.2. Рассмотрим изотропную однородную линейно-упругую балку, которая в декартовой системе координат xyz занимает область V. Ось балки совпадает с осью Ox, плоскости xOy и xOz являются горизонтальной и вертикальной плоскостями геометрической симметрии балки. Перемещения, деформации и напряжения балки удовлетворяют соотношениям Коши и закону Гука [1]. Балка нагружена поверхностными силами q_z , причем $q_z(x, y, z) = q_z(x, -y, z)$, т. е. функция q_z симметрична относительно плоскости zOx. Балка закреплена на границах S_{α} : u = v = w = 0, где $\alpha = 1, \ldots, M$ (M — число областей границы, по которым закреплена балка). Обозначим через V_{α}^1 , V_{α}^2 подобласти, включающие границу S_{α} , причем $V_{\alpha}^1 \subset V_{\alpha}^2$. Область V_{α}^1 (V_{α}^2) можно рассматривать как совокупность шаров радиуса $R_{\alpha}^1 \ge C_{\alpha}^1$ ($R_{\alpha}^2 \ge C_{\alpha}^2$), центры которых являются точками границы S_{α} . Как показывают расчеты, на практике целесообразно использовать значения $C_{\alpha}^1 \ge 2h_0$, $C_{\alpha}^2 \ge 4h_0$ (h_0 — характерный размер сечения балки). При этом выбирается такая форма области V_{α}^1 (V_{α}^2), которая удобна для расчетов. Обозначим $S_r = \sum S_{\alpha}, V_0^1 = V - V_r^1$, $V_0^2 = V - V_r^2$, где $V_r^1 = \sum V_{\alpha}^1, V_r^2 = \sum V_{\alpha}^2$ ($V_0^1 \ne \emptyset, V_0^2 \ne \emptyset$). Молифицированная постановка трехмерной за дачи упруссти в перемещениях лиз од-

Модифицированная постановка трехмерной задачи упругости в перемещениях для однородной балки включает следующие уравнения: уравнения равновесия, статические и кинематические граничные условия (уравнения вида (1), (2)) и дополнительные условия на функции перемещений балки

$${}_{\mathsf{B}} V_0^1: \qquad \begin{array}{l} u(x,y,0) = 0, \quad v(x,y,0) = 0, \\ u(x,y,z) = -u(x,y,-z), \quad v(x,y,z) = -v(x,y,-z); \end{array}$$
(12)

где *w* — прогиб балки.

Отметим, что в окрестностях границ (крепления балки) S_{α} (т. е. в V_r^1) реализуется трехмерное напряженное состояние. Удовлетворяя в дискретной базовой модели балки равенствам (12), (13) аналогично п. 1.1, получим модифицированную трехмерную дискретную модель балки.

2. Результаты численных экспериментов. 2.1. Рассмотрим трехмерную однородную изотропную пластину размерами $80h \times 50h \times h_0$ (h_0 — толщина пластины) (рис. 1). Пластина закреплена на границе $S_r = S_1 + S_2$, где $S_1 = \{x = 0, 0 \le y \le 20h, -2h \le z \le 2h\}$, $S_2 = \{x = a, 0 \le y \le 20h, -2h \le z \le 2h\}$, т. е. при x = 0 и x = a пластина частично защемлена. На рис. 1 граница S_2 заштрихована. Для границ S_1 , S_2 принимаем $V_1 = V_2 = 16h \times 36h \times h_0$ (т. е. $C_1 = C_2 \ge 2h_0$). Базовая модель пластины (построенная на

Гаолица	T	
---------	---	--

i	j =	: 31	j = 51			
	w_0	w_h	w_0	w_h		
11	$152,\!415$	152,084	373,795	$372,\!595$		
21	214,764	$213,\!642$	$453,\!960$	$451,\!957$		
31	$265,\!052$	262,759	$529,\!946$	$527,\!048$		
41	$297,\!266$	$294,\!054$	$591,\!584$	$588,\!137$		
51	$304,\!433$	$301,\!308$	$624,\!574$	$621,\!178$		
61	$282,\!470$	280,308	$622,\!324$	619,704		
71	$232,\!827$	$231,\!874$	589,996	$588,\!683$		
81	$164,\!026$	$164,\!114$	$541,\!301$	$541,\!593$		

Таблица 2

x	z = -0.5h		z = -1,5h		z = -2,5h		z = -3,5h	
	σ_0	σ_h	σ_0	σ_h	σ_0	σ_h	σ_0	σ_h
0,5h	5,1653	5,1588	10,1284	10,1040	$15,\!2231$	15,2028	11,6919	11,6910
$4,\!5h$	$4,\!2264$	4,2106	3,1628	3,1513	2,3911	2,3847	1,9803	1,9785
$9{,}5h$	3,1692	$3,\!1439$	2,2933	2,2757	1,5017	$1,\!4917$	0,8984	0,8948
29,5h	2,0083	1,9518	1,4318	1,3902	0,8678	0,8424	0,3351	0,3264
49,5h	$2,\!2095$	2,1251	1,5709	1,5082	0,9530	0,9145	0,3779	0,3655
69,5h	$4,\!4536$	4,4065	3,2092	$3,\!1765$	$2,\!1327$	2,1132	1,3613	$1,\!3504$
$74,\!5h$	6,2365	6,2096	4,5684	4,5482	3,3622	3,3496	2,7161	2,7095
79,5h	$9,\!9274$	9,9152	$16,\!6218$	$16,\!5722$	$26,\!9340$	26,8874	22,8005	22,7953

основе уравнений трехмерной задачи теории упругости) состоит из конечных элементов V_e^h первого порядка, имеющих форму куба со стороной h, и порождает узловую сетку V_h размерами $81 \times 51 \times 9$. Для узлов сетки V_h вводим целочисленную систему координат ijk (рис. 1). В узлах (i, j, 9) сетки V_h пластина нагружена силами $q_z = 1,83$ $(i = 41, 36, 41, 46, \ldots, 76; j = 41, 46)$. Модуль Юнга пластины E = 1, коэффициент Пуассона $\nu = 0,3, h = 0,5$.

Анализ результатов показывает, что решение w_h (прогиб пластины) дискретной модифицированной модели пластины отличается от решения w_0 базовой модели в окрестности максимальных (по модулю) перемещений не более чем на 0,54 %. В табл. 1 приведены значения перемещений w_0 , w_h (k = 9). В табл. 2 (y = 20,5h) представлены значения эквивалентных напряжений σ_h (по модифицированной модели) и σ_0 (по базовой модели), вычисленные в центре тяжести элементов V_e^h согласно четвертой теории прочности [9]. Максимальные напряжения σ_h наблюдаются в окрестности границы крепления пластины S_2 и отличаются от σ_0 не более чем на 0,18 %.

Базовая модель пластины содержит 110907 узловых неизвестных, ширина ленты системы уравнений (СУ) МКЭ равна 1410. Модифицированная модель имеет 63243 неизвестных, лента СУ МКЭ шириной 1191 занимает объем памяти ЭВМ, в два раза меньший, чем лента СУ МКЭ базовой модели. Время реализации МКЭ для модифицированной модели почти в три раза меньше, чем для базовой.

2.2. Рассмотрим однородную изотропную призматическую балку размерами $144h \times 12h \times h_0$ (h_0 — высота сечения балки) (рис. 2). Балка закреплена на границе $S_r = S_1$, где $S_1 = \{x = 0, -6h \leq y \leq 6h, 0 \leq z \leq 8h\} \cup \{0 \leq x \leq 4h, -6h \leq y \leq 6h, z = -8h\}$, т. е. при x = 0 балка закреплена частично на левом торце и горизонтальной опоре z = -8h. На рис. 2 такое крепление балки отмечено штриховкой. Базовая модель балки состоит из конечных элементов V_e^h первого порядка, имеющих форму куба со стороной h, и порождает узловую сетку V_h размерами $145 \times 13 \times 17$. Для узлов сетки V_h введем целочисленную систему

Рис. 2

Таблица З

i	w_0	w_h	i	w_0	w_h
13 25 61 85	$\begin{array}{c} 13,\!882 \\ 48,\!520 \\ 235,\!163 \\ 388,\!089 \end{array}$	$\begin{array}{c} 13,\!900 \\ 48,\!532 \\ 232,\!414 \\ 381,\!138 \end{array}$	109 121 145	543,205 620,955 776,454	531,344 606,331 756,306

Таблица 4

~	z = -7,5h		z = -6,5h		z = 6,5h		z = 7,5h	
x	σ_0	σ_h	σ_0	σ_h	σ_0	σ_h	σ_0	σ_h
0,5h	2,0007	1,9778	0,9427	0,9329	1,9559	1,9735	2,5064	2,5277
$_{3,5h}$	$5,\!2597$	5,2167	1,7344	1,7178	2,0127	2,0293	2,3123	2,3281
4,5h	$3,\!8302$	$3,\!8006$	2,3034	$2,\!2835$	2,0013	2,0177	2,3144	2,3301
6,5h	2,7585	2,7390	2,2438	$2,\!2259$	2,0025	2,0188	$2,\!3269$	2,3428
8,5h	$2,\!4592$	2,4421	$2,\!1151$	$2,\!0983$	$1,\!9964$	2,0127	$2,\!3174$	2,3335
12,5h	2,2239	2,2076	1,9403	1,9239	1,9226	1,9388	2,2243	2,2404
$24,\!5h$	1,7294	1,7146	1,5032	$1,\!4887$	1,5073	1,5237	1,7355	1,7506
44,5h	0,9363	$0,\!6817$	0,8189	$0,\!6051$	0,8072	0,7289	0,9472	0,8332

координат ijk, как показано на рис. 2. Для данной балки принимаем $V_1^1 = \{x, y, z \in V, 0 \leq x \leq 36h\}$, $V_1^2 = \{x, y, z \in V, 0 \leq x \leq 68h\}$, т. е. при $x \ge 2h_0 + b_0$ $(C_1^1 \ge 2h_0)$ выполняются условия (12), при $x \ge 4h_0 + b_0$ $(C_1^2 \ge 4h_0)$ — условия (13), $b_0 = 4h$. В узлах сетки V_h с координатами (i, j, 17) балка нагружена силами $q_z = 0.173$ $(i = 37 + 6(k - 1); k = 1, \ldots, 11; j = 2, 7, 12)$. Модуль Юнга балки $E = 1, \nu = 0.3, h = 0.5$.

Анализ результатов показывает, что сеточные перемещения w_h (прогиб балки) дискретной модифицированной модели отличаются от перемещений w_0 базовой модели не более чем на 2,6 %. В табл. 3 приведены значения перемещений w_0 , w_h (j = 7, k = 17). В табл. 4 (y = 5,5h) представлены значения эквивалентных напряжений σ_h (по модифицированной модели) и σ_0 (по базовой модели), вычисленные в центре тяжести элементов V_e^h согласно четвертой теории прочности. Максимальные напряжения σ_h наблюдаются в окрестности защемления балки и отличаются от σ_0 не более чем на 0,8 %. Базовая модель балки содержит 95 628 узловых неизвестных, ширина ленты СУ МКЭ равна 708. Модифицированная дискретная модель имеет 37 834 неизвестных, лента СУ МКЭ шириной 748 занимает объем памяти ЭВМ, в 2,4 раза меньший, чем лента СУ МКЭ базовой модели. Время реализации МКЭ для модифицированной модели в 2,4 раза меньше, чем для базовой.

ЛИТЕРАТУРА

- 1. Самуль В. И. Основы теории упругости и пластичности. М.: Высш. шк., 1970.
- 2. Лехницкий С. Г. Анизотропные пластинки. М.: Физматгиз, 1957.
- 3. Работнов Ю. Н. Механика деформируемого твердого тела. М.: Наука, 1988.
- 4. Васильев В. В. Классическая теория пластин история и современный анализ // Изв. РАН. Механика твердого тела. 1998. № 3. С. 46–58.
- 5. Матвеев А. Д. Новые трехмерные дискретные постановки прикладных задач теории упругости / Краснояр. гос. ун-т. Красноярск, 2001. Деп. в ВИНИТИ 28.09.01, № 2060-В01.
- 6. Матвеев А. Д. Дополнительные условия на перемещения в трехмерном анализе пластин и балок композитной структуры / Ин-т вычисл. моделирования СО РАН. Красноярск, 2002. Деп. в ВИНИТИ 24.10.02, № 1836-В2002.
- 7. Норри Д., Де Фриз Ж. Введение в метод конечных элементов. М.: Мир, 1981.
- 8. Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975.
- 9. Писаренко Г. С., Яковлев А. П., Матвеев В. В. Справочник по сопротивлению материалов. Киев: Наук. думка, 1975.

Поступила в редакцию 3/III 2003 г.