УДК 539.3 + 539.4

ИССЛЕДОВАНИЕ ПРОЦЕССА КОМПАКТИРОВАНИЯ МЕДНОГО НАНОПОРОШКА

С. П. Киселев

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск E-mail: kiselev@itam.nsc.ru

Методом молекулярной динамики решена задача о затекании пор в наноячейке меди под действием внешней нагрузки, создаваемой сферическим поршнем. В результате расчетов показано, что наноячейка меди является неустойчивой системой. Малые возмущения, создаваемые при движении поршня, приводят к затеканию пор под действием силы поверхностного натяжения и выделению значительной тепловой энергии. После затекания пор исходная кристаллическая структура наночастиц нарушается и приобретает аморфную структуру. При сжатии наноячейки с большой скоростью возникает метастабильное состояние с сильно искаженной кристаллической решеткой, которое переходит в аморфное состояние с выделением значительного количества тепла.

Ключевые слова: наноячейка, пора, медь, молекулярная динамика, давление, температура, энергия.

Введение. В настоящее время разработан ряд экспериментальных методик по созданию наноструктурных покрытий, основанных на компактировании нанопорошков ударными волнами [1–3]. Однако эти методики не имеют надежного теоретического обоснования. Трудности, возникающие при расчете компактирования нанопорошков, обусловлены тем, что существенную роль в компактировании играют процессы, протекающие в широком диапазоне масштабов. Характерные пространственные размеры изменяются от нанометров (диаметр наночастиц, пор) до сантиметров (диаметр образца), а временные масштабы — от фемтосекунд до микросекунд. Учесть все масштабы в одном расчете практически невозможно. В данной работе методом молекулярной динамики [4] проводятся расчеты на наноуровне. Исследуются физико-механические процессы, протекающие при компактировании ячейки, состоящей из восьми наночастиц меди, подвергнутых сжатию сферическим поршнем.

Постановка задачи. Рассмотрим задачу о компактировании характерной ячейки под действием внешней нагрузки. Будем считать, что наночастицы в ячейке имеют плотную кубическую упаковку, которая нагружается сферическим поршнем (рис. 1). Наноячейка состоит из восьми плотноупакованных наночастиц меди радиусом R_p , расположенных в вершинах куба с длиной ребра l. В центре наноячейки и на боковых гранях куба находятся поры. Объем поры, расположенной на боковой грани куба, равен половине объема поры, находящейся в центре куба.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 04-01-00894-а) и в рамках Интеграционного проекта СО РАН № 106, заказного проекта Президиума СО РАН № 5, гранта Президента Российской Федерации по государственной поддержке ведущих научных школ (№ НШ-9019.2006.1).

Рис. 1. Схема нагружения наноячейки меди сферическим поршнем

Для расчета деформации наноячейки под действием сферического поршня будем использовать метод молекулярной динамики [4]. Движение атомов меди описывается уравнениями Гамильтона [4]

$$\frac{dp_{ai}}{dt} = -\frac{\partial H}{\partial x_{ai}}, \qquad \frac{dx_{ai}}{dt} = \frac{\partial H}{\partial p_{ai}},$$

$$H = K + \sum_{a=1}^{N} V_{ext}(x_{ai}) + U(x_{ai}), \qquad K = \sum_{a=1}^{N} \sum_{i=1}^{3} \frac{p_{ai}^2}{2m},$$
(1)

где p_{ai} , x_{ai} — импульсы и координаты атомов; K — кинетическая энергия; m, N — масса и количество атомов; U, V_{ext} — потенциалы межатомного взаимодействия и внешнего воздействия; a — номер атома; i — номер координаты. В качестве потенциала межатомного взаимодействия U выбран многочастичный потенциал Джонсона [5], рассчитанный методом погруженного атома:

$$U = \sum_{a=1}^{N} F(\rho_a) + \frac{1}{2} \sum_{a=1}^{N} \sum_{b \neq a}^{N} \varphi(r_{ab}), \qquad \rho_a = \sum_{b \neq a}^{N} f(r_{ab}).$$
(2)

Здесь ρ_a — электронная плотность в точке, где находится атом a; r_{ab} — расстояние между атомами a и b. Первый член в правой части первого уравнения (2) описывает притяжение атомов за счет взаимодействия с электронным газом, а второй — отталкивание атомов, имеющих положительный заряд, за счет кулоновского взаимодействия. Второе уравнение в (2) определяет электронную плотность в атоме a, создаваемую всеми остальными атомами. Аналитические выражения для функций F, φ , f приведены в работе [5]. Отметим, что потенциал Джонсона (2) использовался в работе [6] для расчета деформации медного нанокристалла при одноосном растяжении, а в работе [7] при расчете соударения сферической медной наночастицы с жесткой преградой. Нагружение наноячейки производилось сферическим поршнем (см. рис. 1). Взаимодействие поршня с атомами моделировалось внешним потенциалом, который выбирался в виде части потенциала Леннарда-Джонса, соответствующей силе отталкивания. Поршень действует на атомы, находящиеся в тонком слое вблизи поверхности поршня, с силой \tilde{F}_{ai} , направленной к центру ячейки:

$$\tilde{F}_{ai} = -\frac{\partial V_{ext}(r)}{\partial x_{ai}}, \qquad V_{ext}(r) = A \left(\frac{r_0}{r - r_v}\right)^{12}, \qquad r = \sqrt{(x_a^1)^2 + (x_a^2)^2 + (x_a^3)^2}.$$
(3)

Здесь радиус поршня r_v являлся заданной функцией времени t (см. рис. 1).

Система обыкновенных дифференциальных уравнений (1) с потенциалами (2), (3) решалась численно по схеме Верлета [4]. Для ускорения расчетов вводился радиус обрезания r_c и производилось разбиение расчетной области на кубические ячейки, для которых составлялись "связанные списки" [4]. В расчетах учитывалось взаимодействие только тех атомов, которые находились на расстояниях $r_{ab} < r_c$ ($r_{ab} = \sqrt{(x_a^1 - x_b^1)^2 + (x_a^2 - x_b^2)^2 + (x_a^3 - x_b^3)^2}$). В этом случае при пересечении атомом границы сферы радиуса r_c имеют место скачки силы и энергии. Для устранения этих скачков функции f(r), $\varphi(r)$ в (2) заменялись на функции [4]

$$\tilde{f}(r) = \begin{cases} f(r) - f(r_c) - (df/dr) \big|_{r_c} (r - r_c), & r < r_c, \\ 0, & r \geqslant r_c, \end{cases}$$
$$\tilde{\varphi}(r) = \begin{cases} \varphi(r) - \varphi(r_c) - (d\varphi/dr) \big|_{r_c} (r - r_c), & r < r_c, \\ 0, & r \geqslant r_c. \end{cases}$$

Решением уравнений (1) являлись импульсы и координаты атомов, по которым находились средние давление P и температура T наноячейки [4]:

$$P = nkT + \frac{1}{3V} \sum_{a=1}^{N} \sum_{i=1}^{3} F_{a}^{i} x_{a}^{i}, \qquad F_{a}^{i} = \sum_{b \neq a}^{N} F_{ab}^{i}, \qquad x_{ab}^{i} = x_{a}^{i} - x_{b}^{i},$$
$$F_{ab}^{i} = -\frac{\partial U}{\partial x_{ab}^{i}}, \qquad p_{ai} = mv_{ai}, \qquad \langle v_{ai} \rangle = \frac{1}{N} \sum_{a=1}^{N} v_{ai},$$
$$T = \frac{2}{3Nk} \sum_{a=1}^{N} \sum_{i=1}^{3} \frac{mv_{ai}'v_{ai}'}{2}, \qquad v_{ai}' = v_{ai} - \langle v_{ai} \rangle.$$

Здесь k — постоянная Больцмана; V — объем, занимаемый атомами.

Перед нагружением наноячейка "охлаждалась" до температуры 0,014 К с помощью решения модифицированных уравнений (1), в которые добавлялась сила вязкого трения [6] $F_v^i = -\xi v_{ai}$. "Охлаждение" кластера производилось путем расчета координат и импульсов атомов меди, когда поршень покоился (размер "охлажденной" наноячейки l = 2,4 нм, радиус наночастицы $R_p = 0,5$ нм, количество атомов меди N = 640). Значения параметров, входящих в потенциал (2), приведены в работе [5], радиус обрезания равен $r_c = 5,82$ Å. В численных расчетах использовались следующие единицы измерения: масса — 1 г, длина — 1 Å = 10^{-10} м, время — 1 фс = 10^{-15} с.

Наноячейка нагружалась путем сжатия и расширения сферического поршня. Сначала, в интервале времени $0 < t < t_1$, происходило сжатие поршня с постоянным ускорением v_0/t_0 . При этом радиус поршня определялся из уравнения $r_v(t) = r_v^0 - v_0 t^2/(2t_0)$. Затем, при $t_1 < t < t_2$, происходило торможение и расширение поршня с ускорением v_0/t_3 . В этом случае радиус поршня находился из уравнения $r_v(t) = r_v(t_1) + dr_v(t_1)/dt + v_0(t-t_1)^2/(2t_3)$. Расчеты проводились при следующих значениях параметров в потенциале (3) и ускорении поршня: $A = 3 \cdot 10^{-21}$ Дж, $r_0 = 2$ Å, $r_v^0 = 1,8$ нм, $v_0 = 37$ м/с, $t_0 = 1,9 \cdot 10^{-11}$ с, $t_3 = 10^{-11}$ с. В этом случае скорость деформации наноячейки $\dot{\varepsilon}$ составляла порядка $v_0/(2R_p) \approx 4 \cdot 10^{10}$ с⁻¹.

Обсуждение результатов численных расчетов. На рис. 2 показана наноячейка, состоящая из атомов меди, при сжатии сферическим поршнем (вид сбоку). На рис. 3 приведены расчетные зависимости средних параметров от времени *t*. Истинная плотность меди равна $\rho_s = Nm/V$ (V — объем, занятый атомами меди). Средняя плотность материала

наноячейки определялась по формуле $\rho = Nm/(V + 4V_{void})$, где V_{void} — объем поры, находящейся в центре ячейки. (Появление коэффициента 4 перед объемом поры V_{void} обусловлено тем, что в начальный момент времени на каждую границу наноячейки приходится половина объема поры V_{void} .)

На рис. 2, 3 видно, что сначала происходят упругие колебания наноячейки, которые приводят к осцилляциям средних параметров. Затем, при $t > 5 \cdot 10^3$ фс, начинается затекание пор (см. рис. 2, δ), сопровождающееся выделением значительной тепловой энергии и разогревом наноячейки (см. рис. 3, δ). Атомная структура наноячейки становится аморфной. За счет теплового движения молекул давление, плотность и температура (см. рис. 3) начинают быстро осциллировать вблизи средних значений, которые медленно меняются при сжатии и расширении наноячейки. Температурные флуктуации и нецентральные взаимодействия атомов приводят к отклонению пространственного распределения атомов от сферически-симметричного (см. рис. 2, δ). В результате пластического затекания пор происходит необратимый рост средней плотности и температуры, а истинная плотность ρ_s уменьшается, что обусловлено тепловым расширением материала.

Рис. 3. Результаты расчета средних параметров при сжатии наноячейки сферическим поршнем ($v_0 = 37 \text{ м/c}$): $a - P(t); \ \delta - T(t); \ s - \rho(t); \ z - \rho_s(t); \ d - \Delta E = E(t) - E \Big|_{t=0}, \ \Delta K(t) = K(t), \ \Delta U = U(t) - U \Big|_{t=0}$

Поведение средних параметров в наноячейке представляется необычным (см. рис. 3). Резкий рост средней плотности (см. рис. 3, в) свидетельствует о том, что затекание пор закончилось к моменту времени $t pprox 10^4$ фс, поэтому при дальнейшем сжатии поршня среднее давление в наноячейке должно возрастать. Однако, как показано на рис. 3, a, оно продолжает оставаться равным нулю до момента $t \approx 2 \cdot 10^4$ фс. Данный эффект обусловлен неустойчивостью рассмотренной наноячейки. Малое возмущение, возникающее при движении поршня, приводит к затеканию пор под действием силы поверхностного натяжения за время $\Delta t \approx 2 \cdot 10^3$ фс. За это время поверхность наноячейки смещается на расстояние порядка 2 Å, а поршень — на расстояние $\Delta r_v \approx v_0 \Delta t/2 \approx 0.18$ Å. В результате происходит отрыв наноячейки от поршня, и среднее давление в ней остается равным нулю, пока в момент $t \approx 2.10^4$ фс поршень не догонит поверхность наноячейки. Отрывом атомов от поршня объясняется также особенность в зависимости энергии от времени, показанной на рис. 3, ∂ . Видно, что при $t \approx 10^4$ фс происходит рост кинетической (тепловой) энергии наноячейки за счет уменьшения потенциальной энергии межатомного взаимодействия, происходящего при затекании пор. В то же время полная энергия остается постоянной ($\Delta E = K + \Delta U = 0$) вплоть до момента $t \approx 2 \cdot 10^4$ фс. После того как поршень догонит поверхность наноячейки, происходит увеличение полной энергии E за счет работы поршня при его сжатии, а затем уменьшение E при его расширении.

Для проверки предположения о неустойчивости наноячейки меди проведены расчеты, в которых сферический поршень отсутствовал, а возмущение в начальный момент времени создавалось "разогревом" наноячейки до температуры порядка 3 К. В этом случае происходило самопроизвольное затекание пор в наноячейке за счет силы поверхностного натяжения. При этом зависимости средних параметров от времени такие же, как на рис. 3 в интервале времени от t = 0 до $t \approx 2 \cdot 10^4$ фс.

Оценим приращение температуры и характерное время затекания поры. В начальный момент времени полная площадь свободной поверхности наночастиц равна $S_1 \approx 4\pi \cdot 8 \cdot 0.5^2$ нм², а после затекания пор $S_2 \approx 4\pi \cdot 1$ нм². Используя для оценки поверхностной энергии величину $\alpha_{\sigma} \approx 0.5$ Дж/м, найдем изменение поверхностной энергии наноячейки при затекании поры: $\Delta E_{\sigma} \approx \alpha_{\sigma}(S_1 - S_2) \approx 6.2 \cdot 10^{-18}$ Дж. Используя результаты, представленные на рис. 3.6, найдем изменение температуры наноячейки ($\Delta T \approx 500$ K) и приращение тепловой энергии ($K = (3/2)Nk\Delta T \approx 6.5 \cdot 10^{-18}$ Дж). Отсюда следует, что нагрев наноячейки происходит за счет уменьшения поверхностной энергии: $K \approx \Delta E_{\sigma}$.

Используя П-теорему, оценим характерное время затекания поры: $\tau_{\alpha} \approx R_p^{3/2}/\sqrt{2\alpha_{\sigma}/\rho_s} \approx 10^{-12}$ с. Полученная оценка близка к времени затекания поры, полученному в численном расчете: $\Delta t \approx 2 \cdot 10^{-12}$ с. Отметим, что аналогичные закономерности (разогрев наночастиц и осцилляции давления) наблюдаются при коагуляции углеродных наночастиц, которые исследовались в двумерной постановке методом молекулярной динамики в работе [8]. (Взаимодействие атомов углерода описывалось в [8] с помощью потенциала Леннарда-Джонса.)

Если увеличить скорость сжатия поршня на порядок, то при выполнении неравенства $\dot{\varepsilon} \approx v_0/(2R_p) > 1/\tau_{\alpha}$ отрыва наноячейки от поршня не происходит. На рис. 4, 5 показаны рассчитанные атомные конфигурации и средние параметры при сжатии наноячейки поршнем с такой скоростью ($v_0 = 370 \text{ м/c}$), при которой скорость деформации наноячейки $\dot{\varepsilon} \approx v_0/(2R_p) \approx 4 \cdot 10^{11} \text{ c}^{-1}$. Видно, что наноячейка постоянно испытывает влияние сферического поршня и атомная конфигурация остается симметричной. Давление, плотность, температура и энергия наноячейки растут при сжатии поршня и уменьшаются при его расширении (см. рис. 5). На зависимости средних параметров от времени накладываются осцилляции с периодом 600 фс, обусловленные распространением волн сжатия и разрежения в наноячейке с характерным временем $\tau \approx R_p/c \approx 500 \text{ фс}$ ($c \approx 4 \cdot 10^3 \text{ м/c}$ —

Рис. 4. Расположение атомов наноячейки в плоскости (x,z) при ее сжатии поршнем ($v_0=370$ м/с) в различные моменты времени: $a-t=2,4\cdot10^3~{\rm фc};~\delta-t=2,8\cdot10^3~{\rm фc}$

объемная скорость звука в меди). Сжатие поршня приводит к росту полной, кинетической и потенциальной энергий (см. рис. 5, e). Потенциальная энергия растет быстрее, чем кинетическая, до момента времени $t \approx 2,8 \cdot 10^3$ фс, когда происходит резкое увеличение кинетической энергии за счет уменьшения потенциальной энергии. На рис. 5, a показана функция радиального распределения атомной плотности $g(r) = (dN(r)/dr)/(4\pi r^2 N n)$ (r - paccтояния между атомами; <math>dN(r) — количество атомов, находящихся в шаровом слое (r, r + dr)) для двух моментов времени. Видно, что в момент времени $t = 2,4 \cdot 10^3$ фс функция g(r) соответствует сильно искаженной кристаллической структуре, а в момент $t = 2,8 \cdot 10^3$ фс — аморфной структуре. Отсюда следует, что в момент $t \approx 2,8 \cdot 10^3$ фс происходит фазовый переход, в процессе которого выделяется значительное количество тепла. При этом исчезает дальний порядок и наноячейка переходит в аморфное состояние.

Возникновение фазового перехода в системе обусловлено большой скоростью нагружения наноячейки. Атомы в кристалле в процессе своего движения занимают состояния, которые определяются взаимодействием с движущимся поршнем. Однако эти состояния не являются равновесными и энергетически выгодными, поэтому до момента фазового перехода потенциальная энергия растет значительно быстрее, чем кинетическая. При температуре, равной 1800 К (см. рис. 5, ϵ), происходит релаксация атомной системы, и она переходит в более устойчивое состояние с меньшей потенциальной энергией. Затем это состояние стремится к равновесному, что проявляется в равенстве потенциальной и кинетической энергий при $t > 4 \cdot 10^3$ фс.

Выводы. Проведенные расчеты показали, что наноячейка меди является неустойчивой системой. Малые возмущения, создаваемые при движении поршня (скорость поршня порядка 37 м/с), приводят к самопроизвольному затеканию пор под действием силы поверхностного натяжения. При этом выделяется значительная тепловая энергия, приводящая к нагреву наноячейки до температуры порядка 500 К. Вследствие затекания пор исходная кристаллическая структура наночастиц нарушается, и наночастица приобретает аморфную структуру. При сжатии наноячейки с большой скоростью (скорость поршня порядка 370 м/с) определяющее влияние на структуру наноячейки оказывает поршень.

Рис. 5. Результаты расчета средних параметров при сжатии наноячейки поршнем ($v_0 = 370 \text{ м/c}$):

 $\begin{array}{l}a-g(r) \ (1-t=2,4\cdot 10^3 \ \mathrm{dc} \ (\mathrm{do} \ \mathrm{da30B0ro} \ \mathrm{nepexoda}); \ 2-t=2,8\cdot 10^3 \ \mathrm{dc} \ (\mathrm{nocne} \ \mathrm{da30B0ro} \ \mathrm{da30B0ro} \ \mathrm{nepexoda}); \ \delta-P(t); \ \delta-T(t); \ \epsilon-\rho(t); \ \delta-\rho_s(t); \ \epsilon-\Delta E(t), \ \Delta K(t), \ \Delta U(t)\end{array}$

В процессе сжатия возникает метастабильное состояние с сильно искаженной кристаллической решеткой. При достижении температурой критического значения, равного 1800 К, происходит фазовый переход, в процессе которого метастабильное состояние переходит в аморфное состояние с выделением значительного количества тепла.

ЛИТЕРАТУРА

- Klinkov S. V., Kosarev V. F. Measurements of cold spray deposition efficiency // J. Thermal Spray Technol. 2006. V. 15, N 3. P. 364–371.
- 2. Иванов В. В., Котов Ю. А., Вихрев А. Н., Носкова Н. И. Горячее динамическое компактирование наноразмерных порошков оксидов алюминия и титана // Докл. РАН. 1997. Т. 352, № 6. С. 759–761.
- 3. Дудина Д. В., Ломовский О. В., Корчагин М. А., Мали В. И. Реакции в металлической матрице: синтез и свойства нанокомпозитов TiB₂-Cu // Химия в интересах устойчивого развития. 2004. Т. 12, № 3. С. 319-325.
- Allen M. P. Computer simulation of liquids / M. P. Allen, D. J. Tildesley. Oxford: Univ. Press, 1987.
- Jonson R. A. Alloy models with the embedded-atom method // Phys. Rev. B. 1989. V. 39. P. 12554–12559.
- Головнева Е. И., Головнев И. Ф., Фомин В. М. Моделирование квазистатических процессов в кристаллах методом молекулярной динамики // Физ. мезомеханика. 2003. Т. 6, № 6. С. 5–10.
- Болеста А. В., Головнев И. Ф., Фомин В. М. Исследование процесса столкновения сферического кластера меди с жесткой стенкой методом молекулярной динамики // Физ. мезомеханика. 2000. Т. 3, № 5. С. 39–46.
- Куперштох А. Л., Ершов А. П., Медведев Д. А. Модель коагуляции углеродных кластеров при высоких плотностях и температурах // Физика горения и взрыва. 1998. Т. 34, № 4. С. 102–109.

Поступила в редакцию 1/XI 2006 г.