2014. Том 55, № 3

Май – июнь

C. 511 – 516

УДК 541.49:548.736

СТРУКТУРА МНОГОЯДЕРНЫХ КОМПЛЕКСОВ ПИВАЛАТА Ni(II) С БУТАНДИОЛОМ

Г.В. Романенко, О.В. Кузнецова, Е.Ю. Фурсова, В.И. Овчаренко

Институт "Международный томографический центр" СО РАН, Новосибирск E-mail: romanenko@tomo.nsc.ru

Статья поступила 10 мая 2013 г.

Методом рентгеноструктурного анализа установлена структура многоядерных комплексов [Ni₆(OH)₄(Piv)₇(HOC₄H₈O)(HPiv)₄], {K₄[Ni₁₂(CO₃)₂(Piv)₁₆(OH)₈(HOC₄H₈OH)₂]} · HPiv, {[Ni₆(OH)₄(Piv)₆(HOC₄H₈O)(Me₂CO)(HOC₄H₈OH)₂]₄(Piv)₄} и {K[Ni₂L₂(Piv)₃]}_∞, где HOC₄H₈OH — 1,4-бутандиол, HPiv — пивалиновая кислота и L — анион нитроксильного радикала 2,2,5,5-тетраметил-4-(3',3',3'-трифтор-2'-окси-1'-пропенил)-3-имидазолин-1-оксила.

Ключевые слова: никель(II), полиядерные соединения, пивалаты, бутандиол, рентгеноструктурный анализ.

введение

Одним из эффективных способов получения гетероспиновых молекулярных магнетиков служит взаимодействие многоядерных соединений металлов со свободными нитроксильными радикалами (HP) [1—16]. Данный синтетический подход предполагает выполнение ряда условий. Чтобы ввести НР в реакцию с многоядерным комплексом, последний должен хорошо растворяться в органических растворителях. Кроме того, ионы металла, включенные в многоядерный остов, должны обладать высокой акцепторной способностью, чтобы координировать слабые доноры — атомы О нитроксильных групп [17—19]. И наконец, требуется наличие в исходном многоядерном фрагменте легко замещаемых терминальных лигандов [3]. Таким образом, обсуждаемый подход — многостадийный процесс [4, 5, 13]. Изучая иные возможности синтеза многоядерных гетероспиновых соединений, мы исследовали взаимодействие хорошо растворимых в органических растворителях $KNi_4Piv_7(OH)_2(EtOH)_6$ с $NiL_2(HOC_4H_8OH)$, где НОС₄H₈OH — 1,4-бутандиол, HPiv — пивалиновая кислота и L — спин-меченый анион 4-(3',3',3'-трифтор-1'-пропенил-2'-оксиато)-2,2,5,5-тетраметил-3-имидазолин-1-оксил. В ходе проведенных экспериментов было зафиксировано образование многоядерных соединений $[Ni_{6}(OH)_{4}(Piv)_{7}(HOC_{4}H_{8}O)(HPiv)_{4}]$ (I), { $K_{4}[Ni_{12}(CO_{3})_{2}(Piv)_{16}(OH)_{8}(HOC_{4}H_{8}OH)_{2}]$ } HPiv (II), $\{[Ni_6(OH)_4(Piv)_6(HOC_4H_8O)(Me_2CO)(HOC_4H_8OH)_2]_4(Piv)_4\}$ (III) $\mu \{K[Ni_2L_2(Piv)_3]\}_{\infty}$ (IV), crpoeние которых описывается в настоящей работе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты $KNi_4Piv_7(OH)_2(EtOH)_6$ и $NiL_2(HOC_4H_8OH)$ получали по известным методикам [4, 20]. Для I найдена методика синтеза, позволяющая воспроизводимо получать соединение в достаточном количестве. Она заключается во взаимодействии $KNi_4Piv_7(OH)_2(EtOH)_6$ с 1,4-бутандиолом в смеси ацетон/гептан в присутствии небольшой добавки HPiv. В отсутствие

[©] Романенко Г.В., Кузнецова О.В., Фурсова Е.Ю., Овчаренко В.И., 2014

Г.В. РОМАНЕНКО, О.В. КУЗНЕЦОВА, Е.Ю. ФУРСОВА, В.И. ОВЧАРЕНКО

		•		
	Соединение			
Параметр	[Ni ₆ (OH) ₄ (Piv) ₇ × ×(HOC ₄ H ₈ O)× ×(HPiv) ₄], I	$\begin{array}{l} \{K_4[Ni_{12}(CO_3)_2(Piv)_{16}(OH)_8 \\ (HOC_4H_8OH)_2]\} \cdot HPiv, II \end{array}$		$\{K[Ni_2L_2(Piv)_3]\}_{\scriptscriptstyle \varpi}, {\bf IV}$
Формула	C ₅₉ H ₁₁₆ Ni ₆ O ₂₈	C ₉₅ H ₁₈₂ K ₄ Ni ₁₂ O ₅₂	C ₂₀₀ H ₄₀₈ Ni ₂₄ O ₁₀₀	C ₃₅ H ₅₃ F ₆ KN ₄ Ni ₂ O ₁₀
Мол. масса	1625,78	3017,14	5822,28	960,33
Температура, К	296	240	293	296
Пр. гр.; Z	$P2_1/m; 2$	C2/c; 4	<i>I</i> 4/ <i>m</i> ; 2	<i>P</i> -1; 4
<i>a</i> , Å	14,072(2)	32,4559(16)	28,911(4)	17,4083(8)
<i>b</i> , Å	23,878(3)	17,5377(9)	28,911(4)	19,6802(9)
<i>c</i> , Å	14,393(2)	28,9630(13)	20,990(4)	20,5154(9)
α, град.				79,814(3)
β, град.	90,939(11)	102,004(3)		79,357(3)
ү, град.				64,558(3)
$V, Å^3$	4835,4(13)	16125,3(14)	17545(5)	6200,0(5)
$\rho_{\rm RbH}, \Gamma/cM^3$	1,117	1,243	1,102	1,029
μ , cm ⁻¹	1,756	1,536	1,316	0,731
Обл. сканир.	3,07-60,00	1,44—28,04	1,85—27,97	1,75-28,36
по θ, град.				, ,
<i>I_{hkl}</i> изм. / незав.	31927 / 7195	66769 / 19187	41749 / 10723	101653 / 30171
$R_{\rm int}$	0,0725	0,1205	0,0538	0,1166
N	508	766	505	1045
GOOF	1,134	0,860	0,800	0,854
$R_1 / wR_2 (I_{hkl} > 2\sigma_I)$	0,0939/0,2631	0,0748 / 0,2054	0,0518/0,1379	0,0879 / 0,2345
R_1 / wR_2	0,1282/0,2911	0,2480 / 0,2620	0,1375/0,1520	0,1906 / 0,2536
Связь	d	d	d	d
Ni $-O(\mu^3)$	2.013(4) - 2.022(4)	2.004(4) - 2.065(5)	2.007(3) - 2.037(1)	
$Ni - O(\mu^4)$	2.118(5) - 2.134(4)	2.104(4) - 2.156(4)	2.005(3) - 2.035(1)	
Ni—O _{Piv}	1.994(5) - 2.091(5)	2,001(6) - 2,197(5)	1.985(3) - 2.042(3)	$1.986(4) - 2.147(4)^{b}$
Ni-Our	2,109(5)-2,127(5)	$2,061(4) - 2,224(4)^{a}$	2.156(4) - 2.159(4)	-,(-)
Ni-O _{OH}	2,088(5) - 2,097(4)	2.049(5)	2.067(3) - 2.085(3)	$2.029(5) - 2.063(4)^{\circ}$
Ni—Ni	2.719(2)	2.797(1)	2.7817(10)	-,,(.) -,(1)
	2,955(2)	2,956(1) - 2,957(1)	2,9624(8)	
	2,964(2)		2,9624(8)	
К—О		2,652(5)-2,959(5)		2,634(4)-2,735(4)

Кристаллографические данные, детали рентгеноструктурного	эксперимента
и значения избранных длин связей (d, Å)	

^a Ni—O_{CO3}.

^b Ni—O_L.

° Ni—N.

НРіv из реакционной смеси воспроизводимо с выходом порядка 15—20 % выделялся II. Единичные кристаллы I, III и IV образовывались в ходе самопроизвольного испарения растворов реагентов, взятых в соотношении 1/1, в смеси ацетон/гептан.

Рентгеноструктурное исследование монокристаллов комплексов проведено на дифрактометре SMART APEX II CCD (Bruker AXS) (Mo K_{α} , $\lambda = 0,71073$ Å для II—IV и Cu K_{α} , $\lambda = 1,54178$ Å для I; поглощение учитывалось по программе Bruker SADABS, версия 2.10). Структуры решены прямым методом и уточнены полноматричным МНК в анизотропном приближении для всех неводородных атомов. Положения атомов Н рассчитаны геометрически, их уточнение проводили изотропно в приближении жесткой группы. Все расчеты по решению и уточнению структур проводили по комплексу программ Bruker Shelxtl Version 6.14. Структуры всех соединений содержат сольватные молекулы, положения которых удалось уточнить только для II. В остальных случаях они были исключены из уточнения (процедура SQUEEZE программы PLATON [21]).

Кристаллографические характеристики исследованных соединений и некоторые детали эксперимента приведены в таблице. СІГ-файлы, содержащие полную информацию по исследованным структурам, депонированы в Кембриджский банк данных (ССDC 938739—938742) на сайте www.ccdc.cam.ac.uk/data reguest/cif.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Недавно сообщалось о синтезе многоядерных разнолигандных комплексов Ni(II), содержащих одновременно как Piv, так и hfac-анионы [4, 5], которые были получены взаимодействием KNi₄Piv₇(OH)₂(EtOH)₆ с Ni(hfac)₂(H₂O)₂ в органических средах и затем введены в реакцию с HP [6]. В настоящей работе описаны структуры комплексов, образующихся при взаимодействии KNi₄Piv₇(OH)₂(EtOH)₆ со спин-меченым енаминокетонатом Ni(II) NiL₂(HOC₄H₈OH). По сравнению с Ni(hfac)₂ молекулы NiL₂ содержат хелатные узлы, к которым аннелированы парамагнитные органические циклы. Учитывая определенную близость в топологии молекул Ni(hfac)₂ и NiL₂, а также хорошую растворимость NiL₂(HOC₄H₈OH) в органических растворителях, можно было допустить образование гетероспиновых соединений и в реакции KNi₄Piv₇(OH)₂(EtOH)₆ с NiL₂(HOC₄H₈OH), что было основным стимулом для проведения настоящего исследования.

Поскольку многоядерные пивалаты переходных металлов принадлежат к числу лабильных и стереохимически нежестких соединений, при их получении возможно образование различных по составу и структуре комплексов, ряд из которых бывает крайне сложно выделить в индивидуальном виде [22—24], что существенно затрудняет последующее выявление структурной топологической связи [2, 3]. По этой причине мы исследовали даже единичные кристаллы, образовывавшиеся в указанной синтетической системе. В результате удалось определить структуру многоядерных комплексов [Ni₆(OH)₄(Piv)₇(HOC₄H₈O)(HPiv)₄] (I), {[Ni₆(OH)₄(Piv)₆× $(HOC_4H_8O)(Me_2CO)(HOC_4H_8OH)_2]_4(Piv)_4$ (III) и {K[Ni₂L₂(Piv)₃]}_∞ (IV), а также {K₄[Ni₁₂(CO₃)₂(Piv)₁₆(OH)₈(HOC₄H₈OH)₂]} · HPiv (II), представляющего собой продукт гидролиза KNi₄Piv₇(OH)₂(EtOH)₆.

При синтезе I небольшая добавка HPiv при взаимодействии $KNi_4Piv_7(OH)_2(EtOH)_6$ с 1,4бутандиолом позволяла избежать гидролиза $KNi_4Piv_7(OH)_2(EtOH)_6$. В ее отсутствие из реакционной смеси воспроизводимо выделялся II.

Все исследованные соединения, за исключением IV, молекулярные. Фрагменты молекулы I (рис. 1), содержащие {Ni1—Ni2—Ni3} и {Ni1'—Ni2'—Ni3'}, связаны зеркальной плоскостью. По этой причине центральный —CH₂—CH₂— фрагмент депротонированной мостиковой молекулы бутандиола разупорядочен по двум положениям; на рис. 1 показано одно из них. Фигуру,

Рис. 1. Строение молекулы [Ni₆(OH)₄(Piv)₇(HOC₄H₈O)(HPiv)₄] (I) (атомы Н и *t*-Ви группы не показаны)

вершины которой в молекулах I образуют атомы Ni, можно представить как трехгранную призму. Расстояние для самого короткого ребра Ni1—Ni1', стягиваемого мостиковым атомом O одного из Piv, равно 2,719(2) Å, для Ni2— Ni3 и Ni1—Ni3 — 2,955(2) и 2,964(2) Å, для Ni2—Ni2' и Ni3—Ni3' — 3,012(2) и 3,014(2) Å соответственно. Окружение каждого атома Ni дополняется до октаэдрического донорными атомами O двух μ_3 -OH (2,013(4)—2,034(4) Å), двух μ_4 -OH групп (2,118(5)—2,169(5) Å), атомами O бидентатных Piv (1,994(5)—2,091(5) Å) и монодентатно ко-

ординированных молекул HPiv (2,109(5)—2,127(5) Å). В целом строение 6-ядерной молекулы I близко к таковому для ранее исследованного $[Ni_6(OH)_4(Piv)_8(HPiv)_4]$ [2].

Ранее было показано, что гидролиз KNi₄Piv₇(OH)₂(EtOH)₆, например, при его перекристаллизации из этилацетата на воздухе приводит к образованию $\{K_4[Ni_{12}(CO_3)_2Piv_{16}(OH)_8(H_2O)_2] \times (EtOAc)_4\}$ ·EtOAc [4], особенностью которого служит включение в состав полиядерного фрагмента двух µ₆-мостиковых карбонат-анионов. По этой же причине добавление бутандиола к раствору KNi₄Piv₇(OH)₂(EtOH)₆ в смеси ацетон/гептан на воздухе привело к образованию 12-ядерного карбонатсодержащего комплекса **II**. Его строение представлено на рис. 2. Оно практически идентично описанному ранее $\{K_4[Ni_{12}(CO_3)_2Piv_{16}(OH)_8(H_2O)_2](EtOAc)_4\}$ с той разницей, что в **II** в окружении атомов К отсутствуют молекулы этилацетата, а окружение "концевых" атомов Ni вместо атомов O молекул воды дополняют атомы O молекул бутандиола. Расстояния Ni—O в **II** лежат в диапазоне 1,982(4)—2,224(4), K—O 2,652(5)—2,957(1) Å.

Как отмечалось в экспериментальной части, в ходе самопроизвольного испарения растворов KNi₄Piv₇(OH)₂(EtOH)₆ и NiL₂(HOC₄H₈OH) наряду с I были выделены кристаллы комплекса III, строение 24-ядерной молекулы которого приведено на рис. 3, *а*. Молекула III имеет симметрию C_{4h} и фактически представляет собой тетрамер, в котором 6-ядерные фрагменты связаны нетривиальными мостиковыми группировками {(HOC₄H₈OH)₂Piv}. Нам не удалось обнаружить информацию о подобном мостиковом анионе в базе данных Кембриджского кристаллографического центра [25]. Внутри этих группировок пивалат-анионы удерживаются вблизи мостиковых молекул бутандиола водородными связями (расстояния О...О составляют 2,657(4) и 2,674(4) Å).

Собственно 6-ядерные фрагменты III (см. рис. 3, δ) {Ni₆(OH)₄(Piv)₆(HOC₄H₈O)(Me₂CO)× ×(HOC₄H₈OH)₂} близки по строению к таковым в I (см. рис. 1). Металлоостов — трехгранная

Рис. 2. Строение молекулы {K₄[Ni₁₂(CO₃)₂(Piv)₁₆(OH)₈(HOC₄H₈OH)₂]} (**II**) (атомы H и *t*-Ви группы не показаны)

Рис. 3. Строение 24-ядерной молекулы {[Ni₆(OH)₄(Piv)₆(HOC₄H₈O)(Me₂CO)(HOC₄H₈OH)₂]₄(Piv)₄} (**III**) (*a*) и ее 6-ядерного фрагмента {Ni₆(OH)₄(Piv)₆(HOC₄H₈O)(Me₂CO)(HOC₄H₈OH)₂} (*б*) (атомы H и *t*-Ви группы не показаны)

призма, над плоскостями двух боковых граней которой располагаются группы μ_4 -OH; две группы μ_3 -OH лежат в основаниях призмы. Те координационные позиции, которые в I занимали атомы O монодентатно координированных молекул HPiv, в III занимают атомы O бутандиолов мостиковых группировок {(HOC₄H₈OH)₂Piv}. Одно из ребер призмы в молекулах III стягивает атом O мостикового ацетона, тогда как в I эту функцию выполнял атом O пивалатаниона. Расстояния Ni...Ni и Ni—O в III близки к таковым в I: Ni...Ni 2,7817(10)—3,0639(8) Å, Ni—O 1,985(3)—2,159(3) Å.

В изучаемой синтетической системе было также зарегистрировано образование полимера IV, фрагмент слоя которого показан на рис. 4. В слое присутствуют два типа сходных по строению двухъядерных фрагментов $\{Ni_2L_2Piv_3\}$, в каждом из которых два атома Ni связаны двумя бидентатно-мостиковыми и одним тридентатным мостиково-циклическим Piv. Окружение каждого атома Ni дополняют бидентатно координированные анионы нитроксильного радикала L.

При этом у одной половины атомов Ni (Ni1 и Ni2) KЧ равно 5, у другой — 6 (Ni3 и Ni4). Расстояния Ni—O лежат в интервале 1,986(4)—2,147(4) Å, Ni—N 2,029(5)—2,063(4) Å. Атомы К сшивают фрагменты $\{Ni_2L_2Piv_3\}$ в слои; расстояния К—O_{NO} равны 2,634(4)—2,681(4) Å, К—O_{Piv} и К—O_L 2,692(4)—2,735(4) Å.

Таким образом, рентгеноструктурное исследование продуктов, образующихся при взаимодействии $KNi_4Piv_7(OH)_2(EtOH)_6$ с $NiL_2(HOC_4H_8OH)$ показало, что реакция приводит к образованию разных кристаллических фаз, среди которых может присутствовать гетероспиновый комплекс переходного металла с нитроксильным радикалом.

Рис. 4. Фрагмент слоя в структуре $\{K[Ni_2L_2(Piv)_3]\}_{\infty}$ (IV) (атомы H, CH₃, CF₃ и *t*-Ви группы не показаны)

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты 11-03-00027, 12-03-31118, 12-03-00010 и 13-03-12401), Министерства образования и науки РФ (соглашение 8436), Президиума РАН и СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ovcharenko V., Fursova E., Romanenko G., Ikorskii V. // Inorg. Chem. 2004. 43. P. 3332 3334.
- 2. Ovcharenko V., Fursova E., Romanenko G., Eremenko I., Tretyakov E., Ikorskii V. // Inorg. Chem. 2006. 45. P. 5338 5350.
- 3. *Фурсова Е.Ю., Овчаренко В.И.* // Рос. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2009. LIII, № 1. С. 23 32.
- 4. *Фурсова Е.Ю., Кузнецова О.В., Овчаренко В.И., Романенко Г.В., Богомяков А.С. //* Изв. АН. Сер. хим. 2008. № 6. С. 1175 1182.
- 5. *Кузнецова О.В., Фурсова Е.Ю., Овчаренко В.И., Романенко Г.В., Богомяков А.С. //* Изв. АН. Сер. хим. 2008. № 10. С. 2156 2158.
- 6. *Фурсова Е.Ю., Кузнецова О.В., Романенко Г.В., Богомяков А.С., Овчаренко В.И.* // Изв. АН. Сер. хим. 2010. № 2. С. 330 334.
- 7. Miyasaka H., Yamashita M. // Dalton Trans. 2007. P. 399 406.
- 8. Lecren L., Roubeau O., Coulon C., Li Y.-G., Le Goff X.F., Wernsdorfer W., Miyasaka H., Clérac R. // J. Amer. Chem. Soc. 2005. **127**. P. 17353 17363.
- 9. Miyasaka H., Nakata K., Lecren L., Coulon C., Nakazawa Y., Fujisaki T., Sugiura K., Yamashita M., Clérac R. // J. Amer. Chem. Soc. 2006. **128**. P. 3770 3783.
- 10. Kachi-Terajima C., Miyasaka H., Sugiura K., Clérac R., Nojiri H. // Inorg. Chem. 2006. 45. P. 4381 4390.
- 11. Lecren L., Wernsdorfer W., Li Y.-G., Vindigni A., Miyasaka H., Clérac R. // J. Amer. Chem. Soc. 2007. **129**. P. 5045 5051.
- Ovcharenko V.I. In: Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. R.G. Hicks. – Wiltshire: John Wiley & Sons, Ltd., 2010. – P. 461 – 501.
- 13. Фурсова Е.Ю., Кузнецова О.В., Овчаренко В.И., Романенко Г.В., Богомяков А.С., Кискин М.А., Еременко И.Л. // Изв. АН. Сер. хим. – 2010. – № 6. – С. 1129 – 1137.
- 14. Lecren L., Roubeau O., Li Y.-G., Le Goff X.F., Miyasaka H., Richard F., Wernsdorfer W., Coulon C., Clérac R. // Dalton Trans. – 2008. – P. 755 – 766.
- 15. Ababei R., Li Y.-G., Roubeau O., Kalisz M., Bréfuel N., Coulon C., Harter E., Liu X., Mathonière C., Clérac R. // New J. Chem. – 2009. – **33**. – P. 237 – 248.
- 16. *Hiraga H., Miyasaka H., Clérac R., Fourmigue M., Yamashita M. //* Inorg. Chem. 2009. **48**. P. 2887 2898.
- 17. Ларионов С.В. // Журн. структур. химии. 1982. 23, № 14. С. 125 147.
- 18. Caneschi A., Gatteschi D., Sessoli R., Rey P. // Acc. Chem. Res. 1989. 22, N 11. P. 392 398.
- Ovcharenko V., Bagryanskaya E. In: Spin-Crossover Materials: Properties and Applications / Ed. M. A. Halcrow. – New York: Wiley-VCH, 2013. – P. 239 – 280.
- 20. *Ikorskii V.N., Ovcharenko V.I., Shvedenkov Y.G., Romanenko G.V., Fokin S.V., Sagdeev R.Z. //* Inorg. Chem. 1998. **37**. P. 4360 4367.
- 21. Spek A.L. // J. Appl. Crystallogr. 2003. 36. P. 7 13.
- 22. *Tasiopoulos A.J., Wernsdorfer W., Moulton B., Zaworotko M.J., Christou G. //* J. Amer. Chem. Soc. 2003. **125.** P. 15274 15275.
- 23. Aromí G., Batsanov A.S., Christian P., Helliwell M., Parkin A., Parsons S., Smith A.A., Timco G.A., Winpenny R.E.P. // Chem. Eur. J. 2003. 9, N 20. P. 5142 5161.
- 24. Dunitz J.D., Bernestein J. // Acc. Chem. Res. 1995. 28, N 4. P. 193 200.
- 25. *Cambridge* Structural Database, Version 5.34, Cambridge Crystallographic Data Center, Cambridge, November 2012 (last update February 2013).