2014. Том 55, № 3 Май – июнь C. 493 – 499

УДК 544.3:544.355-128

ОБЪЕМНЫЕ СВОЙСТВА И ГИДРАТНЫЕ ЧИСЛА ХЛОРИДА И НИТРАТА АММОНИЯ В РАСТВОРЕ. СТРУКТУРНО-ТЕРМОДИНАМИЧЕСКИЙ АНАЛИЗ

В.П. Королёв

Институт химии растворов им. Г.А. Крестова РАН, Иваново E-mail: korolev@isuct.ru

Статья поступила 20 февраля 2013 г.

Кажущиеся объемы солей в системах H_2O — NH_4CI (298 K) и H_2O — NH_4NO_3 (273, 298 и 323 K) воспроизведены с погрешностью 0,03—0,01 см³/моль уравнением $\phi = \phi^0 + Aw_2^{0,5} + Bw_2$, где w_2 — содержание соли (весовые доли). Показано, что критически важным (для определения гидратного числа) структурным параметрам: собственному объему электролита и объему воды в гидратных оболочках ионов, соответствуют предельные (при $w_2 = 1$) парциальные характеристики компонентов. Гидратные числа в бесконечно разбавленном растворе равны 6,9 для NH_4CI при 298 K, 9,1, 6,7 и 6,4 для NH_4NO_3 при 273, 298 и 323 K. Объем воды в гидратных оболочках ионов уменьшается в ряду NO_3^- , CI^- , NH_4^+ . С ростом концентрации солей гидратные числа уменьшаются. Показано, что в рамках более простой ($\phi = \phi^0 + aw_2^{0,5}$) модели гидратные числа не зависят от температуры.

Ключевые слова: кажущиеся и парциальные объемы, гидратные числа, хлорид аммония, нитрат аммония.

Соли аммония играют особую роль в химии растворов. Так, на основе равенства характеристик ионов NH_4^+ и CI^- получены стандартные парциальные объемы* [1] и теплоемкости [2] отдельных ионов в водном растворе. Химический сдвиг протонов воды в растворах солей был отнесен к отдельному иону из условия $\delta^0(NH_4^+) = 0$ [3]. Согласно классификации [4] ион аммония является слабым разрушителем структуры воды, однако из данных [5] можно сделать вывод, что он скорее ее стабилизирует. Что касается ионов CI^- и NO_3^- , то, по классификации [4], оба аниона разрушают сетку H-связей в воде примерно в одинаковой степени.

Хлорид и нитрат аммония имеют важное значение для химии атмосферы [6, 7]. Растворимость этих солей в воде при 298 K равна 28,4 % (7,4m) и 68,2 % (26,8m) соответственно, где m — моляльность. В то же время концентрация NH_4Cl в мелких каплях аэрозоля может достигать 60 % (28m) [7]. Нитрат аммония в аналогичных условиях может существовать практически как безводный расплав [7].

Настоящая работа посвящена исследованию гидратации хлорида и нитрата аммония в системах вода (1)—соль (2). Будут определены структурно-значимые характеристики: молярный объем воды в гидратных сферах ионов и гидратные числа. Для этого мы воспользуемся объемными свойствами растворов, которые содержат необходимую структурную информацию. Рас-

[©] Королёв В.П., 2014

^{*} С

^{*} Стандартный парциальный объем NH_4Cl в водном растворе при 298 K равен двум молярным объемам воды при этой температуре.

494 В.П. КОРОЛЁВ

смотрим как ее можно извлечь. Запишем выражение для объема раствора, содержащего m молей растворенного вещества (в нашем случае соли) и 1 кг воды:

$$V = mV_{\rm in} + mnV_{\rm h} + (55,508 - mn)V_{\rm l}, \tag{1}$$

где $V_{\rm in}$ (intrinsic), $V_{\rm h}$ и $V_{\rm 1}$ — молярные объемы соли, воды в гидратных оболочках ионов и свободной (несвязанной) воды соответственно, имеющей структуру чистого растворителя; n — гидратное число.

Исходя их кажущегося молярного объема ф растворенного вещества, можно записать

$$V = 55,508V_1 + m\phi. (2)$$

Из (1) и (2) получаем выражение для гидратного числа (см. [8-14])

$$n = (\phi - V_{\rm in})/\Delta V_{\rm h},\tag{3}$$

где $\Delta V_{\rm h} = V_{\rm h} - V_{\rm 1}$ — изменение объема воды за счет ее сжатия в электрическом поле ионов ($\Delta V_{\rm h} < 0$, $V_{\rm h} < V_{\rm 1}$). Для расчета гидратного числа по соотношению (3) нужно знать величины $V_{\rm in}$ и $V_{\rm h}*$. В настоящем исследовании мы предлагаем новые способы их нахождения.

Возьмем достаточно концентрированный раствор соли, в котором вся вода включена в гидратные оболочки ионов, т.е. свободная (не связанная с ионами) вода отсутствует. Нами будет изучен весь интервал составов. Для некоторого объема раствора, содержащего весовые доли соли w_2 и воды w_1 ($w_1 + w_2 = 1$) можно записать

$$V = (w_2/M_2)V_{\rm in} + (w_1/M_1)V_{\rm h}.$$
 (4)

где М — молярная масса. Из определения кажущегося молярного объема следует выражение

$$V = (w_1/M_1)V_1 + (w_2/M_2)\phi; (5)$$

из (4) и (5) получаем

$$\phi = V_{\rm in} + (M_2/M_1)(w_1/w_2)\Delta V_{\rm h}. \tag{6}$$

Из (6) видно, что $V_{\rm in} = \phi$ при $w_2 = 1$ ($w_1 = 0$), а $\Delta V_{\rm h}$ является наклоном.

Выясним, как соотносится величина $\Delta V_{\rm h}$ с такой характеристикой раствора, как изменение парциального объема воды $\Delta \overline{V_{\rm l}} = \overline{V_{\rm l}} - V_{\rm l}$. Для нахождения этой взаимосвязи необходимо иметь уравнение зависимости $\phi(w)$. В работе [16] показано, что кажущийся объем соли в водном растворе с высокой точностью воспроизводится (расширенным) уравнением Мэссона. Запишем это уравнение для шкалы весовых долей

$$\phi = \phi^0 + A w_2^{0,5} + B w_2. \tag{7}$$

Величину $\Delta \overline{V}_1$ в шкале весовых долей находим из соотношения

$$\Delta \overline{V_1} = -(M_1/M_2) w_2^2 (\partial \phi/\partial w_2). \tag{8}$$

Из (6), (7) и (7), (8) получаем:

$$\Delta V_{\rm h} = -(M_1/M_2)(Aw_2 + B(w_2 + w_2^{1,5}))/(1 + w_2^{0,5}), \tag{9}$$

$$\Delta \overline{V}_1 = -(M_1/M_2)(0.5A w_2^{1.5} + B w_2^2). \tag{10}$$

Из (9) и (10) следует, что при $w_2 = 1$ ($w_1 = 0$)

$$\Delta V_{\rm h} = \Delta \overline{V}_{1}^{0} = -(M_{1}/M_{2})(0.5A + B), \tag{11}$$

где $\Delta \overline{V}_1^0 = \overline{V}_1^0 - V_1$, а \overline{V}_1^0 соответствует предельному парциальному объему воды в гипотетическом расплаве соли. Таким образом $\Delta V_{\rm h} \, (=\! \Delta \overline{V}_1^0)$ равно изменению объема при растворении моля воды в гипотетическом расплаве соли с образованием бесконечно разбавленного (по воде) раствора.

^{*} В работах [11, 14] решают обратную задачу: из данных об адиабатической сжимаемости рассчитывают гидратные числа и далее находят молярный объем воды в гидратных оболочках ионов. Способы нахождения $V_{\rm in}$ даны в недавней работе Маркуса [15].

Таблица 1

Параметры уравнений (3), (6), (7) и (11)										
<i>T</i> , K	$\phi^0 = \overline{V}_2^{0}$	A	В	S	w_2	$V_{\rm in}$	$\Delta V_{ m h}$	\overline{V}_1^0	n^0	
Система H ₂ O—NH ₄ Cl 298,15 35,86 7,38 -0,92 0,02 0÷0,7 42,32 -0,93 17,14 6,9										
Система H_2O —N H_4NO_3 273,15 42,65 9,54 $-0,30$ $0,03$ $0,01 \div 1$ $51,89$ $-1,01$ $17,01$ 9,1 298,15 47,44 3,38 1,60 0,02 0,01 \div 1 52,42 $-0,74$ 17,33 6,7 323,15 49,38 2,20 1,37 0,01 0,01 \div 1 52,95 $-0,56$ 17,67 6,4										
298,15	47,44	3,38	1,60	0,02	0,01÷1	52,42	-0,74	17,33	6,7	
323,15	49,38	2,20	1,37	0,01	0,01÷1	52,95	-0,56	17,67	6,4	

 Π р и м е ч а н и е. s — стандартное отклонение. $V_{\rm in}=\phi(w^2=1)=\phi^0+A+$ + $B=V_2;$ $\Delta V_{\rm h}=\Delta \overline{V}_1^0;$ $\overline{V}_1^0=V_{\rm h};$ $n=n^0$ при $\phi=\phi^0$. Объемы даны в см³/моль.

Применим вышеизложенный подход к системам вода—хлорид аммония и вода—нитрат аммония. Необходимые данные о кажущихся объемах солей при различных составах взяты из работы [7]. Результаты расчетов даны в табл. 1, а также показаны на рис. 1 для водного хлорида аммония.

Величина $V_{\rm in} = 42,32$ см³/моль, полученная нами для NH₄Cl, согласуется со значением 40,4 см³/моль [8]. В случае NH₄NO₃ $V_{\rm in} = 52,42$ см³/моль почти точно совпадает с величиной 52,6 см³/моль [15]. Эти значения заметно выше, чем объемы NH₄Cl (35,2 см³/моль) и NH₄NO₃ (46,3 см³/моль) в кристаллическом состоянии [7].

(46,3 см³/моль) в кристаллическом состоянии [7]. Выше было найдено, что $\Delta V_{\rm h} = \Delta \overline{V}_{1}^{0}$ при $w_{2} = 1$. На рис. 2 показаны $\Delta \overline{V}_{1}$ для всего интервала составов обсуждаемых нами систем. Видно, что в этом случае действительно имеет место максимальное сжатие воды. Рис. 2 представляет также интерес, если рассматривать $\Delta \overline{V}_{1}$ как структурно-чувствительную характеристику. Автор [17] связывает уменьшение парциального объема воды при добавлении электролита с эффектом разрушения структуры воды. С этой точки зрения указанный эффект ослабляется при переходе от хлорида к нитрату аммония и при повышении температуры.

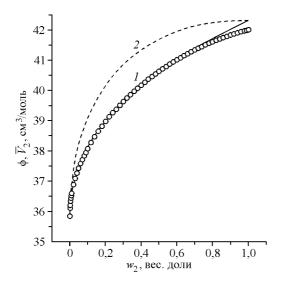
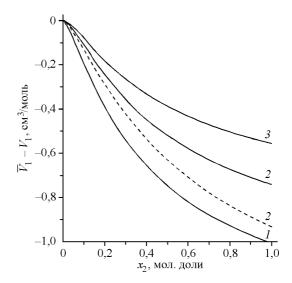
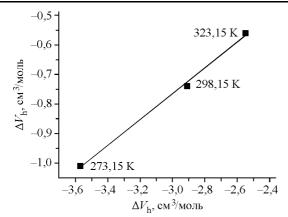




Рис. 1. Кажущийся (1) и парциальный (2) объемы соли в системе вода—хлорид аммония при 298 К. Символы — данные [7], сплошная линия — уравнение (7) для интервала составов $0 \div 0.7$ вес. долей

 $Puc.\ 2.$ Величины $\Delta \overline{V_1}$ в системах вода—хлорид аммония (прерывистая линия) и вода—нитрат аммония (сплошные линии) при 273,15 (I), 298,15 (I) и 323,15 K (I3)

496 В.П. КОРОЛЁВ

 $Puc.\ 3.$ Величины $\Delta V_{\rm h}$, полученные в настоящем исследовании (ось ординат) и в работе [12] (ось абсцисс), при различных температурах. Линия — уравнение (12)

Таблица 2

Параметры ионов и гидратных комплексов при 298 K

Ион	r	$V_{\rm in}$	\overline{V}^{0}	n^0	$\Delta V_{ m h}$	
Cl ⁻	0,181	25,30*	22,90**	2,9	-0,83	
NH_4^+	0,168	17,02	12,96	4	-1,01	
NO_3^-	0,200	35,40	34,48	2,7	-0,34	

^{*} Данные [8].

Радиусы ионов (r, нм) из работы [21].

Значения ΔV_h были недавно рассчитаны для 273—373 К [12]. Наши данные для NH_4NO_3 при трех значениях температуры (см. табл. 1) находятся в линейной зависимости от данных [12] (рис. 3):

$$\Delta V_{\rm h} = 0.546 + 0.437 \Delta V_{\rm h} [12], \quad s = 0.02 \text{ cm}^3/\text{моль}.$$
 (12)

Рассчитанная по уравнению (12) величина сжатия воды в гидратных оболочках ионов нитрата аммония составит -0.48 и -0.42 см³/моль при 348 и 373 К.

Наши значения ΔV_h значительно меньше (по абсолютной величине), чем полученные в [12]. Однако следует отметить, что по данным [11] величина сжатия воды для водного КСІ ($-0.27~{\rm cm}^3$ /моль при 298 K) составляет менее 1/3 от нашей величины для NH₄Cl (см. табл. 1). Более того, в [14] теми же авторами получено для соли с сильно гидратированным катионом MgCl₂ $\Delta V_h = -0.45~{\rm cm}^3$ /моль, что составляет половину от величины ΔV_h для NH₄Cl ($-0.93~{\rm cm}^3$ /моль). В этой связи следует также указать на результаты исследования [18]. Авторы [18] получили, что для однозарядных катионов щелочных металлов (кроме Li⁺) плотность воды в гидратных оболочках ρ_h равна ρ_1 , что означает $\Delta V_h = 0$ (!).

Интересно также сопоставить наши величины предельного парциального объема воды \overline{V}_1^0 (см. табл. 1) с аналогичными величинами для органических молекулярных жидкостей. Наиболее близкие значения \overline{V}_1^0 имеют место в таких растворителях, как этиленгликоль [19], 1,4-диоксан и ацетонитрил [20]. Так, \overline{V}_1^0 составляет в этиленгликоле 17,05, 17,27 и 17,42 см³/моль при 278, 298 и 318 К [19], в 1,4-диоксане — 17,03, 17,11 и 17,26 см³/моль при 288, 298 и 318 К [20] и в ацетонитриле — 17,06, 17,33 и 17,65 см³/моль при 283, 298 и 318 К [20].

Наши значения гидратных чисел для состояния солей в бесконечно разбавленном растворе (см. табл. 1) можно назвать умеренными. Для сравнения, в случае КСl гидратное число равно 21 ± 1 и не зависит от температуры [11]. В [12] получено, что n^0 КСl растет с повышением температуры (2,61, 3,38 и 4,45 при 273, 298 и 323 К). Наша зависимость $n^0(T)$ согласуется с [9]. Для получения характеристик отдельных ионов было принято $V_{\rm in}({\rm Cl}^-)=25,3~{\rm cm}^3/{\rm моль}$ [8],

Для получения характеристик отдельных ионов было принято $V_{\rm in}({\rm CI}^-) = 25,3$ см 2 /моль [8], \bar{V}^0 (CI $^-$) = 22,9 см 3 /моль [13]. Примем также, что ион аммония образует водородные связи с четырьмя молекулами воды n^0 (NH $^+_4$) = 4. Параметры ионов и гидратных комплексов даны в табл. 2. Отметим, что сжатие воды в гидратных оболочках ионов увеличивается в ряду NO $^-_3$, CI $^-$, NH $^+_4$. В этом же ряду уменьшается радиус иона. Полученное нами значение n^0 (CI $^-$) = 2,9 можно сравнить с данными других авторов: 2,0 [9] и 1,36 [12].

^{**} Данные [13].

Таблица 3

Рассчитанные по уравнению (3) гидратные числа солей в воде и растворах различной моляльности

m	0	0,5	1	2	3	5	7	10	28
---	---	-----	---	---	---	---	---	----	----

Водный раствор NH₄Cl 298,15 K $\begin{vmatrix} 6,9 & 5,7 & 5,2 & 4,6 & 4,1 & 3,5 & 3,1 & 2,6 & 1,4 \end{vmatrix}$

Водный раствор
$$\mathrm{NH_4NO_3}$$
 273,15 K 9,1 7,3 6,6 5,7 5,0 4,2 3,6 3,0 1,5 298,15 K 6,7 5,8 5,3 4,7 4,3 3,7 3,2 2,7 1,4 323,15 K 6,4 5,5 5,1 4,6 4,2 3,6 3,1 2,7 1,4

Примечание. Необходимые для расчета по уравнению (3) параметры приведены в табл. 1.

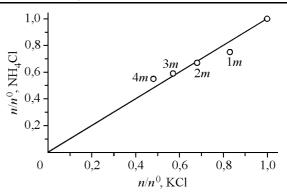


Рис. 4. Приведенные гидратные числа хлоридов аммония и калия в водных растворах солей при 298,15 К. Гидратное число n^0 КСl равно 21 [11]

Рассмотрим растворы конечной концентрации. Рассчитанные по уравнению (3) с учетом (7) гидратные числа солей приведены в табл. 3. Числа уменьшаются с ростом концентрации. Зависимость гидратного числа от температуры более выражена для разбавленных растворов и при переходе I (298 \rightarrow 273 K), чем при переходе II (323 \rightarrow 298 K). Даже в случае 10m раствора NH₄NO₃ переходу I соответствует некоторый рост n, тогда как переход II уже не влияет на гидратное число при такой концентрации*.

Сравним наши данные для NH₄Cl с данными [11] для KCl. Для сравнения удобно использовать приведенные значения гидратных чисел n/n^0 (рис. 4). Видно, что имеет место примерно одинаковое изменение приведенных характеристик с концентрацией для обеих солей.

Имея дело с кажущимся объемом ϕ при выводе (3), мы вынуждены использовать объем V_1 чистого растворителя, даже если растворителя с такой характеристикой и, соответственно, структурой нет в растворе с конечной концентрацией соли. Возможно, решение задачи будет физически более обоснованным, если исходить из парциальных характеристик. Запишем равенство

$$x_1 \overline{V_1} + x_2 \overline{V_2} = (x_1 - nx_2) \overline{V_1} + nx_2 \overline{V_1}^0 + x_2 V_2$$
 (13)

и получаем**

$$N = (\overline{V}_2 - V_2) / (\overline{V}_1^0 - \overline{V}_1), \tag{14}$$

$$n^{0} = (\overline{V}_{2}^{0} - V_{2}) / (\overline{V}_{1}^{0} - V_{1}) = \Delta \overline{V}_{2}^{0} / \Delta \overline{V}_{1}^{0},$$
(15)

где
$$V_2 = V_{\rm in} = \overline{V}_2(x_2 = 1), \ \overline{V}_1^0 = V_{\rm h} = \overline{V}(x_2 = 1), \ \overline{V}_2^0 = \phi^0, \ \Delta \overline{V}_1^0 = \Delta V_{\rm h}.$$

Очевидно, что при $\phi = \phi^0 = \overline{V}_2^0$ уравнение (3) эквивалентно (15). Рассчитанные по уравнению (14) значения гидратных чисел солей приведены в табл. 4. Эти величины меньше, чем указанные в табл. 3. В уравнении (3) знаменатель не зависит от концентрации, следовательно, уменьшение n обусловлено увеличением ϕ в числителе (см. рис. 1). В (14) и числитель, и знаменатель с ростом концентрации уменьшаются по абсолютной величине (см. рис. 1 и 3), но рост \overline{V}_2 с концентрацией имеет определяющее значение.

^{*} Интересная структурная информация получена в [22] при исследовании концентрированных (12m и 18m) растворов нитрата аммония. В частности, сделан вывод, что в 18m растворе имеет место образование контактных ионных пар. Авторы [22] отмечают сложность системы (см. также ссылки в [22]).

^{**} В шкале весовых долей $\overline{V_2} = \phi + w_1 w_2 (\partial \phi / \partial w_2)$. Зависимость $\overline{V_2}(w_2)$ для системы вода—хлорид аммония при 298 К показана на рис. 1.

498 В.П. КОРОЛЁВ

Таблица 4

Рассчитанные по уравнению (14) гидратные числа солей в воде и растворах различной моляльности

	m	0	0,5	1	2	3	5	7	10	28
	Водный раствор NH ₄ Cl 298,15 K 6,9 5,2 4,5 3,7 3,2 2,5 2,1 1,7 0,80									
	298,15 K	6,9	5,2	4,5	3,7	3,2	2,5	2,1	1,7	0,80
Водный раствор NH ₄ NO ₃										
	273,15 K	9,1	6,5	5,5	4,4	3,7	2,9	2,4	1,9	0,84
	273,15 K 298,15 K 323,15 K	6,7	5,3	4,7	3,9	3,4	2,7	2,2	1,8	0,83
	323,15 K	6,4	5,0	4,5	3,8	3,3	2,6	2,2	1,8	0,81

 Π р и м е ч а н и е. Необходимые для расчета по уравнению (14) параметры приведены в табл. 1.

В заключение выясним, к каким результатам приводит более простая модель. Запишем для кажущегося объема "обычное" (двухпараметровое) уравнение Мэссона в шкале весовых долей*

$$\phi = \phi^0 + a w_2^{0,5}. \tag{16}$$

Уравнение (3) для этого случая запишется в виде

$$n = 2(M_2/M_1)(1 - w_2^{0,5}), \tag{17}$$

а из уравнения (14) также после преобразований получаем

$$n = 2(M_2/M_1)(1 - 1.5w_2^{0.5} + 0.5w_2^{1.5})/(1 - w_2^{1.5}).$$
(18)

Для бесконечно разбавленного раствора имеем

$$n^0 = 2(M_2/M_1). (19)$$

Уравнение (10) получаем в виде

$$\Delta \overline{V}_1 = -0.5(M_1/M_2)a w_2^{1.5}. \tag{20}$$

Чем больше величина наклона a в (16), тем более отрицательное значение принимает $\Delta \overline{V}_1$. В соответствии с [17], структура воды в такой системе более разрушена под действием электролита (см. пояснения к рис. 2). Однако в уравнениях (17)—(19) параметр a отсутствует**. Таким образом в рамках более простой модели (16) структурные эффекты не влияют (явным образом) на гидратное число. Понятно, что более простая*** (но менее точная) модель приводит к важному выводу: для данной системы вода—электролит гидратное число не зависит от температуры, что согласуется с результатами [11, 14].

СПИСОК ЛИТЕРАТУРЫ

- 1. Fajans K., Johnson O. // J. Amer. Chem. Soc. 1942. 64. P. 668 678.
- 2. Мищенко К.П., Полторацкий Г.М. Вопросы термодинамики и строения водных и неводных растворов электролитов. Л.: Химия, 1968.
- 3. *Hindman J.C.* // J. Chem. Phys. 1962. **36**. P. 1000 1015.
- 4. *Marcus Y.* // J. Sol. Chem. 1994. 23. P. 831 848.
- 5. Kaulgud M.V., Pokale W.K. // J. Chem. Soc. Faraday Trans. 1995. 91. P. 999 1004.
- 6. Hu D.W., Chen J.M., Ye X.N. et al. // Atmos. Environ. 2011. 45. P. 2349 2355.
- 7. Clegg S.L., Wexler A.S. // J. Phys. Chem. A. 2011. 115. P. 3393 3460.
- 8. Conway B.E., Verrall R.E., Desnoyers J.E. // Z. Phys. Chem. Leipzig. 1965. 230. S. 157 178.

^{*} Из табл. 1 видно, что, например, в случае систем H_2O — NH_4Cl при 298 K и H_2O — NH_4NO_3 при 273 K вклад от третьего слагаемого в уравнении (7) невелик.

^{**} M_2 возникает при переходе от моляльности к весовым долям.

^{***} Более простая модель является обычно и более физически ясной.

- 9. Millero F.J., Ward G.K., Lepple F.K., Hoff E.V. // J. Phys. Chem. 1974. 78. P. 1636 1643.
- 10. *Hahn R.L.* // J. Phys. Chem. 1988. **92**. P. 1668 1675.
- 11. Устинов А.Н., Афанасьев В.Н. // Журн. структур. химии. 2005. 46, № 3. С. 459 467.
- 12. *Marcus Y.* // J. Phys. Chem. B. 2009. 113. P. 10285 10291.
- 13. Королев В.П. // Журн. структур. химии. 2011. **52**, № 4. С. 759 763.
- 14. Устинов А.Н., Афанасьев В.Н. // Журн. структур. химии. 2012. 53, № 2. С. 314 323.
- 15. *Marcus Y.* // J. Sol. Chem. 2010. **39**. P. 1031 1038.
- 16. Jákli Gy. // J. Chem. Thermodyn. 2007. 39. P. 1474 1483.
- 17. Wirth H.E. // J. Phys. Chem. 1967. 71. P. 2922 2929.
- 18. *Danielewicz-Ferchmin I., Ferchmin A.R.* // Physica B. 1998. **245**. P. 34 44.
- 19. *Sakurai M.* // J. Chem. Eng. Data. 1991. **36**. P. 424 427.
- 20. *Абросимов В.К., Иванов Е.В.* Вода в неводных растворителях: состояние и сольватация // Вода: структура, состояние, сольватация. Достижения последних лет («Проблемы химии растворов») Отв. ред. акад. А.М. Кутепов. М.: Наука, 2003.
- 21. *Marcus Y.* // J. Chem. Soc. Faraday Trans. 1993. **89**. P. 713 718.
- 22. Walker P.A.M., Lawrence D.G., Neilson G.W. // J. Chem. Soc. Faraday Trans. I. 1989. **85**. P. 1365 1372.