УДК 544.72

Изучение адсорбции глутаминовой кислоты на брушите

А. П. СОЛОНЕНКО, О. А. ГОЛОВАНОВА

Омский государственный университет им. Ф. М. Достоевского, проспект Мира, 55А, Омск 644077 (Россия)

E-mail: anna.petrovna@bk.ru

(Поступила 14.05.12)

Аннотация

Изучены закономерности адсорбции L-глутаминовой кислоты на брушите – минеральной составляющей патогенных новообразований, формирующейся на начальных стадиях роста камня. Установлено, что процесс взаимодействия двуводного гидрофосфата кальция и аминокислоты описывается в рамках теории Лэнгмюра ($r^2 = 0.99$). Мономолекулярный адсорбционный слой образуется в результате координирования протонированных терминальных карбоксильных групп глутаминовой кислоты с положительно заряженными группировками CaOH⁺ и/или CaH₂PO₄⁺ на поверхности кристаллов брушита.

Ключевые слова: брушит (двуводный гидрофосфат кальция), глутаминовая кислота, адсорбция, активные центры и группировки, биогенная и патогенная кристаллизации, органоминеральные агрегаты

введение

Взаимодействие органической и минеральной составляющих имеет определяющее значение в таких важных процессах биогенной кристаллизации, как формирование костного матрикса млекопитающих, зарождение и рост патогенных новообразований. Построение твердых тканей in vivo всегда происходит за счет минерального укрепления сложившейся ранее структурной матрицы - сети коллагеновых волокон [1]. В условиях нежелательной минерализации молекулы органических веществ могут служить центрами кристаллизации, о чем свидетельствуют исследования морфологии и текстурно-структурных характеристик почечных, слюнных, зубных и других типов камней [2]. Центром зародышей таких агрегатов чаще всего служит органическое вещество, а на милли- и микроуровнях исследования прослеживается слоистая структура: чередуются зоны органического и минерального состава различной толщины.

До настоящего времени механизм взаимодействия между коллагеном и растущими кристаллами костного апатита или органическими и минеральными компонентами биологических сред в ходе физиогенного и патогенного минералообразования остается недостаточно изученным.

Имеется ряд предположений, согласно которым, в основе процессов минерализации лежит адсорбционное взаимодействие связанных в белковые молекулы и свободных аминокислот с неорганическими компонентами биожидкостей и формирующимися фазами. В связи с этим актуальны исследования, направленные на выяснение закономерностей адсорбции аминокислот, основных строительных блоков белков, на неорганической составляющей большинства патогенных новообразований – ортофосфатах кальция. При этом зачастую объектом исследования служит гидроксилапатит Ca₁₀(PO₄)₆(OH)₂ [3-6 и др.], как вещество, близкое по составу костному минералу [1, 2, 7, 8], и основная составляющая

фосфатных камней [1, 2, 9, 10 и др.]. Однако в работах [11–13] отмечается, что на ранних этапах формирования патогенных агрегатов различной локализации (до 3 мес.) часто кристаллизуется двуводный гидрофосфат кальция CaHPO₄ · 2H₂O – аналог природного минерала брушита. Автор [13] определяет данный фосфат кальция как первичную кристаллическую структуру в зубных камнях. Таким образом, осаждение брушита на начальных стадиях патогенного минералообразования и наличие в составе формирующихся агрегатов органической составляющей определяет актуальность работ по изучению взаимодействия различных по своей природе компонентов.

Цель работы – исследование процесса адсорбции глутаминовой кислоты на двуводном гидрофосфате кальция (брушите).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В ходе работы проведены три серии экспериментов: 1) определено время установления адсорбционного равновесия; 2) исследован процесс адсорбции аминокислоты на брушите; 3) установлено влияние pH на величину адсорбции.

Для проведения адсорбционных экспериментов использован порошок синтетического брушита, который проанализирован методами РФА (D8 Advance, Bruker), ИК-Фурье-спектроскопии ("ФТ-801", СИМЭКС, таблетки с КВг), АЭС-ИСП (710-ES, Varian). Дифрактограммы и ИК-спектры частиц вещества соответствуют чистой фазе двуводного гидрофосфата кальция; соотношение Ca/P = 1.00 ± 0.01 . Удельная площадь поверхности кристаллов, установленная по методу БЭТ (прибор "Сорбтометр", Россия), составляла (4±1) м²/г.

Растворы глутаминовой кислоты готовили непосредственно перед адсорбционным экспериментом методом отдельных навесок кристаллического вещества – C₅H₉NO₄ · H₂O (квалификация "ч. д. а."). В опытах использовали L-изомер, который присутствует в биологических системах.

Адсорбцию на поверхности адсорбента из раствора определяли по разности концентраций растворенной аминокислоты до и после контакта. Для определения содержания глутаминовой кислоты в жидкой фазе использовали анализ, основанный на переводе аминокислот в растворимые медные соли и их последующем фотометрическом определении [14].

Для определения времени адсорбционного эксперимента точно отмеренный и одинаковый во всех сериях объем раствора глутаминовой кислоты с концентрацией 0.010 моль/л с точно рассчитанной добавкой NaCl (квалификация "ч. д. а."), использованной для достижения значения ионной силы системы 0.1 моль/л, приливали к навескам брушита массой 0.5000 (±0.0002) г. Кислотность раствора доводили до значения pH 6.50±0.05 с помощью раствора NaOH (20 %) и/или HCl (1:1). После этого адсорбционные сосуды плотно закрывали, встряхивали в течение 20 мин и оставляли для взаимодействия адсорбата и адсорбента. Изучение проводили при различном времени контакта τ (0-72 ч). По истечении заданного периода твердую фазу отделяли от раствора фильтрованием.

Для исследования процесса адсорбции концентрацию глутаминовой кислоты варьировали в пределах от 0.002 до 0.020 моль/л (диапазон концентраций, характерный для ротовой жидкости человека [15]). В экспериментах по определению влияния pH на величину адсорбции кислотность среды создавали равной pH 4.5, 5.0, 5.5, 6.0, 7.0 или 8.0 (±0.05). Время контакта выбрано равным 48 ч. В остальном опыты данной серии аналогичны описанным выше.

Твердые фазы, отделенные от растворов после адсорбции, высушивали на воздухе и анализировали методом ИК-Фурье-спектроскопии (ФТ-801, таблетки с KBr).

Все эксперименты и измерения проводили трижды и обрабатывали статистически для выявления закономерностей адсорбционного процесса.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Равновесие в тех или иных химических процессах может достигаться в течение различных интервалов времени и зависит как от природы вступающих во взаимодействие частиц, так и от кинетических и термодинамических факторов, действующих в совокупности. Аналогично и в адсорбционных процессах: условия их проведения, свойства и строение адсорбента и адсорбата влияют на про-

Концентрация аминокислоты, моль/л			$\Gamma_{ m cp}$, моль/кг	Степень заполнения		
исходная	равновесная			поверхности адсорбента Θ		
	в растворе	в поверхностном				
	после адсорбции	слое адсорбента				
0.002	0.0009 ± 0.0002	0.0011 ± 0.0002	0.055 ± 0.010	0.27 ± 0.01		
0.004	0.0022 ± 0.0005	0.0018 ± 0.0005	0.091 ± 0.012	0.43 ± 0.01		
0.006	0.0034 ± 0.0005	0.0026 ± 0.0005	0.13 ± 0.02	0.58 ± 0.04		
0.008	0.0051 ± 0.0004	0.0029 ± 0.0004	0.15 ± 0.02	0.68 ± 0.03		
0.010	0.0069 ± 0.0007	0.0031 ± 0.0007	0.16 ± 0.03	0.75 ± 0.01		
0.015	0.012 ± 0.001	0.0034 ± 0.0006	0.17 ± 0.02	0.82 ± 0.02		
0.020	0.016 ± 0.001	0.0037 ± 0.008	0.18 ± 0.02	0.86 ± 0.01		

ТАБЛИЦА 1

тяженность периода, в течение которого система будет приближаться к равновесному состоянию.

В работе [6] показано, что глутаминовая кислота проявляет поверхностно-активные свойства относительно ортофосфатов кальция различного стехиометрического состава. На этом основании в условиях контакта водного раствора глутаминовой кислоты с твердой фазой CaHPO₄ · 2H₂O вероятно концентрирование органических молекул на поверхности кристаллов брушита. При этом, согласно принятым теориям [16], описывающим адсорбционные явления, в определенный момент концентрация адсорбата в объеме жидкой фазы и в поверхностном слое адсорбента будет оставаться неизменной, а рассматриваемая система достигнет равновесия.

Для определения времени установления такого состояния и продолжительности проведения адсорбционного эксперимента на первом этапе исследования проведена серия опытов при разных временах контакта растворов глутаминовой кислоты с концентрацией 0.010 моль/л с брушитом. Согласно полученным данным, концентрация аминокислоты в поверхностном слое кристаллов двуводного гидрофосфата кальция повышается при увеличении времени контакта адсорбата с адсорбентом от 0 до 40 ч. В условиях более длительного взаимодействия компонентов системы не наблюдается изменений величины адсорбции Г. На этом основании, а также с практической точки зрения для дальнейших экспериментов время проведения адсорбции выбрано равным 48 ч.

Экспериментальные данные, полученные при варьировании концентрации глутаминовой кислоты, приведены в табл. 1.

На графической зависимости величины адсорбции от равновесной концентрации глутаминовой кислоты в растворе (рис. 1), построенной по данным табл. 1, можно выделить два участка с различным характером хода кривой. В пределах начального участка изотермы (область ОА) адсорбция прямо пропорциональна равновесной концентрации аминокислоты в растворе ($r^2 = 0.95$). Однако тренд зависимости близок к линейному в очень узком диапазоне концентраций адсорбата - не более 0.004 моль/л. По-видимому, это вызвано уменьшением в процессе сорбции доли

Рис. 1. Изотерма адсорбции глутаминовой кислоты на брушите. На врезке приведена теоретическая кривая.

Рис. 2. ИК-спектры брушита: 1 – до адсорбции; 2–4 – после 48 ч контакта с 0.010 моль/л раствора глутаминовой кислоты при рН 5.5 (2), 4.5 (3) и 8.0 (4).

свободной поверхности адсорбента Θ (см. табл. 1), что приводит к замедлению роста адсорбции и переходу закона изменения величины Γ в экспоненциальный на участке AB ($r^2 = 0.99$). При этом по сравнению с теоретической изотермой адсорбции, на экспериментальной кривой отсутствует область BC, соответствующая условиям насыщения, когда величина адсорбции не зависит от концентрации. Это может быть обусловлено ограничением по концентрациям глутаминовой кислоты в растворе в условиях эксперимента.

Факт адсорбции органических молекул на брушите подтверждается данными ИК-Фурьеспектроскопии. На ИК-спектрах всех образцов после контакта с раствором глутаминовой кислоты (рис. 2) в области 2800–3000 см⁻¹ проявляются полосы, соответствующие колебаниям связей С–Н в метиленовых группировках органической составляющей. Полосу колебаний при 1650 см⁻¹ следует рассматривать как суммарную, отражающую колебания связей С=О, N–Н и О–Н в молекулах аминокислоты и ОНионов в составе кислого фосфата кальция.

Для определения модели, которой описывается процесс адсорбции глутаминовой кислоты

ТАБЛИЦА 2

Уравнения Фрейндлиха и Лэнгмюра для случая адсорбции глутаминовой кислоты на брушите

Уравнения	Модель Фрейндлиха				Модель Лэнгмюра					
	1/n	n	ln K	Κ	r^2	1/Г _∞ , кг/моль	Г _∞ , моль/кг	1/bГ _∞ , кг/моль	b	r^2
y = -0.14 + 0.41x	0.41	2.44	-0.14	1.15	0.91	-	-	-	_	-
y = 0.012 + 4.74x	-	-	-	-	-	4.74	0.21	0.012	397	0.99

Примечание. n, K – коэффициенты, зависящие от температуры и вида адсорбента и адсорбтива (модель Фрейндлиха); b – константа адсорбционного равновесия (модель Лэнгмюра); r² – коэффициент корреляции.

ТАБЛИЦА 3

Данные по адсорбции глутаминовой кислоты на брушите, полученные экспериментальным путем и рассчитанные по уравнениям Фрейндлиха и Лэнгмюра

С _{исх} , моль/л	$C_{\rm pabh}$, моль/л	$\Gamma_{_{ m эксп}}$, моль/кг	$\Gamma_{\Phi p}$, моль/кг	$ \Gamma_{\rm excm} - \Gamma_{\rm dep} $	$\Gamma_{\rm Лэнг}$, моль/кг	$ \Gamma_{\rm ekch} - \Gamma_{\rm Jier} $
0.002	0.001	0.055	0.065	$1.04 \cdot 10^{-2}$	0.056	$9.39\cdot10^{-4}$
0.004	0.002	0.091	0.093	$1.98\cdot10^{-3}$	0.097	$6.18 \cdot 10^{-3}$
0.006	0.003	0.13	0.11	$1.52\cdot10^{-2}$	0.12	$6.36 \cdot 10^{-3}$
0.008	0.005	0.15	0.13	$1.42\cdot10^{-2}$	0.14	$5.69\cdot10^{-3}$
0.010	0.007	0.16	0.15	$5.94 \cdot 10^{-3}$	0.15	$1.58\cdot10^{-3}$
0.015	0.012	0.17	0.19	$1.55\cdot10^{-2}$	0.17	$2.98\cdot10^{-3}$
0.020	0.016	0.18	0.21	$2.90\cdot10^{-2}$	0.18	$1.85 \cdot 10^{-3}$

(2)

Рис. 3. Изотермы адсорбции Г глутаминовой кислоты на брушите, построенные на основании уравнений Фрейндлиха (1) и Лэнгмюра (2).

на брушите, проведена обработка экспериментальных данных с позиции теории Фрейндлиха и Лэнгмюра. Рассчитанные графически коэффициенты уравнений представлены в табл. 2.

Таким образом, получены уравнение Фрейндлиха

 $\Gamma = 1.15 C^{0.41}$ (1) и уравнение Лэнгмюра

 $\Gamma = 0.21 \cdot 397C / (1 + 397C)$

На основании уравнений Лэнгмюра и Фрейндлиха рассчитаны величины адсорбции для равновесных концентраций глутаминовой кислоты в растворе (табл. 3). Зависимости $\Gamma = f(C)$ в линейных координатах моделей Лэнгмюра и Фрейндлиха, построенные по расчетным данным, показаны на рис. 3.

ТАБЛИЦА 4

Проверка адекватности моделей Лэнгмюра и Фрейндлиха

Статистические	Модель	Модель
параметры	Лэнгмюра	Фрейндлиха
$\Sigma(\Gamma_{\rm pacu} - \Gamma_{\rm pacu})^2$	$1.27 \cdot 10^{-4}$	$1.66 \cdot 10^{-3}$
$S^2_{ m ad}$	$2.11\cdot10^{-5}$	$2.77 \cdot 10^{-4}$
$S_{ m mn}^2$	$9.05\cdot10^{-6}$	26
F _{эксп}	2.3	34:
F _{табл}	4.3	4.3

Примечание. $S_{\rm ad}^2$ – дисперсия адекватности; $S_{\rm mnn}^2$ – дисперсия воспроизводимости; $S_{\rm m}^2$ – дисперсия опыта; $F_{\rm эксп.}$, $F_{\rm табл}$ – рассчитанное для экспериментальных данных и табличное критическое значения критерия Фишера соответственно [17].

 * Расчет невозможен, так как дисперсии опыта $S^2_{\rm m}$ неоднородны.

Видно (см. табл. 2, 3, рис. 3), что результаты экспериментов по адсорбции глутаминовой кислоты на брушите более точно описываются в рамках модели Лэнгмюра ($F_{_{ЭКСП}} = 2.3 < F_{_{табл}} = 4.3$ [17]) (табл. 4). Модель Фрейндлиха оказалась неадекватной.

Согласно теории Лэнгмюра, адсорбция протекает с образованием мономолекулярного слоя [16]. На формирование последнего в изучаемых условиях указывают экспериментальные данные. С ростом концентрации аминокислоты в системе степень заполнения поверхности адсорбента повышается (см. табл. 1). Однако рассчитанные значения Γ_{∞} (0.21 моль/кг) свидетельствуют о том, что в условиях эксперимента адсорбция не достигает насыщения (ее максимум составляет 0.18 моль/кг).

Как показали результаты экспериментов третьей серии, плотность заполнения поверхности кристаллов брушита зависит также от кислотности среды. Так, по мере уменьшения рН наблюдается рост адсорбции и доли поверхности адсорбента, занятой молекулами глутаминовой кислоты (табл. 5). Этот факт может быть связан с различной адсорбционной активностью сосуществующих в растворе форм молекул аминокислоты.

Наиболее вероятно, адсорбция глутаминовой кислоты на брушите протекает за счет электростатического взаимодействия заряженных или сильно полярных группировок ($-COO^-$, $-HN_3^+$, -COOH) с активными центрами поверхности кристаллического вещества. Изменение количества адсорбированной аминокислоты при варьировании кислотности среды указывает на то, что процесс адсорбции протекает за счет группировок, форма существования которых в системе изменяется с ростом кислотности от pH 4.5 до pH 8.0. В условиях эксперимента в растворе одновременно находятся практически только два цвиттер-иона:

 $HOOC(CH_2)_2CH(HN_3^+)COO^-$ (1)

$$^{-}OOC(CH_2)_2CH(HN_3^+)COO^{-}$$
⁽²⁾

с преобладанием второго цвиттер-иона в растворе, и его доля в смеси возрастает по мере повышения pH (рис. 4). В составе каждой из форм аминогруппа протонирована и существует в только форме – HN_3^+ . Неизменность состояния этой группировки дает основание полагать, что она не

ТАБЛИЦА :	5
-----------	---

Результаты экспериментов по адсорбции глутаминовой кислоты на брушите при варьировании величины pH

рН р-ра	$\Gamma_{\rm cp}$, моль/кг	Θ	рН р-ра	$\Gamma_{\rm cp}$, моль/кг	Θ
8.00	0.12 ± 0.02	0.59 ± 0.07	5.50	0.16 ± 0.03	0.79 ± 0.08
7.00	0.13 ± 0.02	0.66 ± 0.06	5.00	0.18 ± 0.03	0.84 ± 0.06
6.00	0.15 ± 0.04	0.73 ± 0.08	4.50	0.21 ± 0.02	0.94 ± 0.05

играет важной роли в процессе взаимодействия адсорбата и адсорбента, и карбоксильные группы глутаминовой кислоты отвечают за возможность процесса адсорбции. Экспериментальные данные подтверждают выдвинутое предположение. Значительное снижение величины адсорбции на фоне роста доли ⁻ООС(CH₂)₂CH(HN₃⁺)СОО⁻ в смеси определяет природу основной стадии адсорбции как взаимодействие протонированных терминальных карбоксильных групп с активными центрами на поверхности кристаллов брушита. Вероятно, это обусловлено тем, что в глутаминовой кислоте, подобно другим αаминокислотам, фактически нет заряда ни на аминогруппе, ни на соседнем с ней карбоксиле. Цвиттер-ионы представляют собой внутренние соли, у которых карбоксильная группа ионно связана с аммониевым атомом азота: H₃N⁺-CH(R)-COO⁻ [18]. Данный участок

молекулы электронейтрален. При этом частичные заряды несут атомы кислорода и водорода НООС-группы, расположенной на противоположном конце молекулы.

По-видимому, в водном растворе в условиях экспериментов поверхность брушита заряжена. Предположительно, в результате реакций протолиза гидрофосфатов и ионов кальция, находящихся в контакте со средой, образуются ионные ассоциаты CaOH⁺ и CaH₂PO₄⁺, характеризующиеся близкими значениями констант устойчивости ($\beta_{[CaOH^+]} = 1.22$, $\beta_{[CaH_2PO_4^+]} = 1.45$ [19]). При этом преобладающий тип координирования определяется величиной рН: с ростом последней увеличивается доля CaOH⁺ относительно CaH₂PO₄⁺, в целом же поверхность адсорбента всегда заряжена положительно.

По нашему мнению, ионные ассоциаты CaOH⁺ и CaH₂PO₄⁺ выполняют роль актив-

Рис. 4. Ионная диаграмма глутаминовой кислоты.

ных центров в процессе адсорбции глутаминовой кислоты. Сближение с ними терминальных незаряженных карбоксильных группировок аминокислоты вызывает сильную поляризацию связи О-Н в составе -СООН и перераспределение электронной плотности между Са и О с образованием [CaH₂PO₄⁺][⁻OOC(CH₂)₂CH(HN₃⁺)COO⁻] и/или [CaOH⁺][⁻OOC(CH₂)₂CH(HN₃⁺)COO⁻]. Вероятно, в дальнейшем, за счет вращения, углеводородный радикал адсорбата может принимать конфигурацию, при которой осуществляется дополнительное координирование α -СОО⁻ и -HN₃⁺ (фактически -NH₂ в результате потери протона при сближении) с соседними группами CaOH⁺ и/или CaH₂PO₄⁺ и формируются хелатные комплексы на поверхности брушита. Таким образом, по-видимому, происходит закрепление цвиттер-иона глутаминовой кислоты на поверхности брушита.

ЗАКЛЮЧЕНИЕ

Установлено, что L-глутаминовая кислота при контакте в растворе с кристаллами брушита формирует на его поверхности адсорбционный мономолекулярный слой. При этом состояние насыщения не достигается ввиду ограничения по концентрациям аминокислоты в изучаемых системах, как и в ротовой жидкости человека. Зависимость величины адсорбции от значения pH среды указывает на большую адсорбционную активность протонированной формы аминокислоты по сравнению с депротонированной.

СПИСОК ЛИТЕРАТУРЫ

- 1 Dorozhkin S. V. // J. Mater. Sci. 2007. Vol. 42. P. 1061-1095.
- 2 Голованова О. А. Патогенные минералы в организме человека. Омск: Изд-во ОмГУ, 2006. 400 с.
- 3 Matsumoto T., Okazaki M., Inoue M., Hamada Y., Taira M., Takahashi J. // Biomaterials. 2002. No. 23. P. 2241–2247.
- 4 Shen J.-W., Tao Wu, Qi Wang, Hai-Hua Pan // Biomaterials. 2008. No. 29. P. 513-532.
- 5 Ohta K., Monma H., Tanaka J., Eda H. // J. Mater. Sci.: Materials in Medicine. 2002. No. 13. P. 633-637.
- 6 Fleming D. E., Bronswijk W., Ryall R. L. // Clinical Sci. 2001. No. 101. P. 159–168.
- 7 Данильченко С. Н. // Вестн. СумДУ. Сер. Физика, математика, механика. 2007. № 2. С. 33-59.
- 8 Лемешева С. А. Химический состав, свойства костного апатита и его аналогов: Дис. ... канд. хим. наук. Москва, 2010. С. 86–123.
- 9 Пальчик Н. А., Мороз Т. Н., Леонова И. В., Колмогоров Ю. П., Толмачев В. Е. // Журн. неорган. химии. 2004. Т. 49, № 8. С. 1353–1361.
- 10 Бельская Л. В., Голованова О. А. Зубные и слюнные камни. Омск: Изд-во ОмГУ, 2010. 132 с.
- 11 Teymoortash A., Buck P., Jepsen H., Werner J. A. // Archives of Oral Biology. 2003. Vol. 48, No. 3. P. 233–237.
- 12 Tohda H., Yamakura K., Yanagisawa T. // J. Electron Microscopy. 1995. Vol. 44, No. 5. P. 399–404.
- 13 Abraham J., Grenon M., Sanchez H. J., Perez C., Barrea R. // J. Biomed. Mater. Res. 2005. No. 3. P. 623–628.
- 14 Филиппович Ю. Б. Практикум по биохимии. М.: Просвещение, 1982. 509 с.
- 15 Бельская Л. В. Зубные и слюнные камни химический состав, генетические особенности: Дис. ... канд. хим. наук. Москва, 2009. С. 77–80.
- 16 Малышева Ж. Н., Новаков И. А. Теоретическое и практическое руководство по дисциплине "Поверхностные явления и дисперсные системы". Волгоград: Изд-во ВолгГТУ, 2008. 344 с.
- 17 Вершинин В. И., Перцев Н. В. Планирование и математическая обработка результатов химического эксперимента. Омск: Изд-во ОмГУ, 2005. 216 с.
- 18 Грандберг И. И. Органическая химия. М.: Дрофа, 2001. 672 с.
- 19 Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия, 1989. 448 с.