УДК 532.529.5

Пространственное моделирование процесса формирования струи вскипающей воды при истечении из тонкого сопла^{*}

Р.Х. Болотнова¹, В.А. Коробчинская^{1,2}

¹Институт механики им. Р.Р. Мавлютова Уфимского научного центра РАН ²Башкирский государственный университет, Уфа

E-mail: bolotnova@anrb.ru

Исследованы процессы нестационарного пространственного осесимметричного истечения вскипающей жидкости при мгновенной разгерметизации сосудов высокого давления на основе разработанной двухтемпературной двухфазной модели парожидкостной смеси с учетом парообразования и межфазного теплообмена в односкоростном однодавленческом приближениях. Численное моделирование проведено методом сквозного счета с использованием подвижных лагранжевых сеток. Дан сравнительный анализ расчетных и экспериментальных значений частот зародышеобразования с целью уточнения начального числа и радиуса микропузырьков, влияющих на интенсивность парообразования. Оценена достоверность полученных расчетов по двумерной и одномерной моделям путем сравнения с экспериментальными данными. Изучены особенности начальной стадии формирования пароводяной струи при истечении через тонкое сопло в зависимости от начального равновесного состояния воды для выбранных условий экспериментов.

Ключевые слова: тонкое сопло, истечение вскипающей воды, зародышеобразование, математическое и численное моделирование.

Введение

Свойства струй перегретой жидкости, возникающих при истечении в пространство из контуров высокого давления, представляют значительный теоретический и практический интерес в связи с широким применением в разнообразных технических приложениях. Перегретые струи могут возникать в результате разгерметизации камер высокого давления. Анализ динамики струй вскипающих жидкостей, возникающих в аварийных ситуациях, необходим при разработке технологий предупреждения и ликвидации чрезвычайных ситуаций техногенного характера. При создании различных устройств для распыления жидкости важно учитывать особенности механизма образования струй. Условия, формирующие струю вскипающей жидкости, такие как исходное состояние насыщения жидкости в камере высокого давления, внешняя окружающая среда, размер выходного сопла и интенсивность процесса вскипания, непосредственно определяют угол раскрытия струи, ее дальнобойность и форму.

^{*} Работа выполнена при финансовой поддержке РФФИ (гранты: p_поволжье_а 14-01-97007, p_a17-41-020582), Совета по грантам Президента РФ для государственной поддержки ведущих научных школ РФ (грант НШ-6987.2016.1)

[©] Болотнова Р.Х., Коробчинская В.А., 2017

Болотнова Р.Х., Коробчинская В.А.

Экспериментальному исследованию критического режима истечения пароводяной смеси были посвящены публикации [1–3]. В работах [2, 3] изучались струи вскипающей перегретой воды для тонких цилиндрических каналов с диаметром d = 0,5 мм в зависимости от начальных состояний жидкости, близких к термодинамической критической точке, с формированием режимов истечения с углом распыла струи от конической формы до ее полного «развала». Была установлена связь между формами струй перегретой воды и механизмами зародышеобразования. Также было показано, что с увеличением температуры струя приобретает форму полого конуса с растущим углом раствора при вершине.

Численное исследование нестационарного процесса истечения вскипающего теплоносителя, вызванного торцевым разрывом трубопровода, проводилось в работах [4, 5] на основе неравновесной гомогенной модели. Расчеты выполнялись с помощью пакета программ с использованием консервативного разностного метода коррекции потоков. В процессе истечения вскипающей струи было обнаружено формирование периодических вихреобразных структур [4]. В работе [5] было показано влияние типа разрыва на форму волны сжатия и разрежения. В публикации [6] проводились расчеты формирования струй вскипающей жидкости при различных равновесных начальных состояниях воды в сосуде высокого давления в условиях, приближенных к экспериментам [3] для сопла диаметром 5 мм и длиной 150 мм. Было установлено, что при температуре ниже 480 К струя имеет конический вид, затем, с повышением начальной температуры насыщения происходит закручивание струи навстречу движения потока.

В настоящей работе проводится численное исследование начальной стадии процесса истечения вскипающей жидкости при внезапной разгерметизации камеры высокого давления с меньшим диаметром сопла (d = 0,5 мм) по сравнению с рассмотренным в работе [6] и в условиях экспериментов [3]. Целью работы является анализ влияния начального состояния воды в камере высокого давления и интенсивности зародышеобразования на эволюцию формы пароводяной струи в случае осесимметричного течения.

Основные уравнения модели

Для численного моделирования используется двухтемпературная двухфазная модель парожидкостной смеси с учетом парообразования и теплообмена в предположении равенства скоростей и давлений фаз [7]. Система дифференциальных уравнений двухфазной среды в двумерном случае осевой симметрии в эйлеровых координатах имеет вид [7, 8]:

- уравнения неразрывности фаз смеси:

$$\alpha_{\rm l} \frac{d\rho_{\rm l}^0}{dt} + \rho_{\rm l}^0 \frac{d\alpha_{\rm l}}{dt} + \rho_{\rm l} \text{div} \, \vec{\rm v} = -J_{\rm lg},$$
$$\alpha_{\rm g} \frac{d\rho_{\rm g}^0}{dt} + \rho_{\rm g}^0 \frac{d\alpha_{\rm g}}{dt} + \rho_{\rm g} \text{div} \, \vec{\rm v} = J_{\rm lg},$$

- уравнения движения смеси:

$$\rho \frac{dv_x}{dt} + \frac{\partial p}{\partial x} = 0, \qquad \rho \frac{dv_y}{dt} + \frac{\partial p}{\partial y} = 0, \tag{1}$$

- уравнения сохранения энергии для жидкой и паровой фаз:

$$\rho_{\rm l} \frac{de_{\rm l}}{dt} + \alpha_{\rm l} p \operatorname{div} \vec{\mathrm{v}} = -Q_{\rm lg} - J_{\rm lg} (e_{\rm la} - e_{\rm l}),$$

$$\rho_{\rm g} \frac{de_{\rm g}}{dt} + \alpha_{\rm g} p \text{ div } \vec{\rm v} = Q_{\rm lg} + J_{\rm lg}(e_{\rm ga} - e_{\rm g}),$$

где div $\vec{v} = \frac{1}{y} \cdot \frac{\partial (yv_y)}{\partial y} + \frac{\partial v_x}{\partial x}$ — дивергенция скорости в цилиндрической системе координат; x и y — осевая и радиальная координаты соответственно, $Q_{lg} = nq_{gl}$, $q_{gl} = 4\pi a \text{Nu}\lambda_1(T_a - T_1)$ — поток тепла через межфазную поверхность за счет теплообмена, Nu — число Нуссельта, $J_{lg}(e_{ia} - e_i)$ — энергия межфазного теплообмена, обусловленная массопереносом, λ_1 — коэффициент теплопроводности, T_a — температура на границе фаз, $\rho = \rho_1 + \rho_g$ — плотность смеси, $p(\rho_i^0, T_i)$ и $e(\rho_i^0, T_i)$ — давление и внутренняя энергия фаз, зависящие от текущих значений плотностей фаз ρ_i^0 и температуры T_i ; $\rho_i = \rho_i^0 \alpha_i$ — приведенная плотность и α_i — объемное содержание *i*-ой фазы; \vec{v} — вектор массовой скорости с проекциями v_x , v_y на соответствующие оси; J_{lg} — интенсивность переноса массы в единице объема из жидкой (*i* = 1) в паровую (*i* = g) фазу.

Термодинамические свойства пароводяной системы описываются широкодиапазонным уравнением состояния Ми–Грюнайзена, то есть в виде суммы холодной (верхний индекс р) и тепловой (верхний индекс Т) составляющих для давления и для внутренней энергии [9]:

$$p(\rho_i^0, T_i) = p^{(p)}(\rho_i^0) + p^{(T)}(\rho_i^0, T_i), \ e(\rho_i^0, T_i) = e^{(p)}(\rho_i^0) + e^{(T)}(T_i) + e^{(ch)},$$

где упругие составляющие давления и внутренней энергии описываются потенциалом Борна-Майера

$$p^{(p)}(\rho_i^0) = A \left(\frac{\rho_i^0}{\rho_{i0}^0}\right)^{-\beta+1} \exp\left[b \left(1 - \left(\frac{\rho_i^0}{\rho_{i0}^0}\right)^{-\beta}\right)\right] - K \left(\frac{\rho_i^0}{\rho_{i0}^0}\right)^{\xi+1},$$
$$e^{(p)}(\rho_i^0) = \int_{\rho^\circ}^{\rho} \frac{p^{(p)}(\rho_i^0)}{(\rho_i^0)^2} d\rho_i^0 = \frac{A}{\beta \rho_{i0}^0 b} \exp\left[b \left(1 - \left(\frac{\rho_i^0}{\rho_{i0}^0}\right)^{-\beta}\right)\right] - \frac{K}{\xi \rho_{i0}^0} \left(\frac{\rho_i^0}{\rho_{i0}^0}\right)^{\xi} + e^\circ,$$

здесь *A*, *K*, *b*, ξ , β — константы, ρ_{i0}^0 — плотность каждой фазы при нормальных условиях; e° — константа интегрирования для выполнения условия $e^{(p)}(\rho^{\circ}) = 0$, когда $p^{(p)}(\rho^{\circ}) = 0$; $e^{(ch)}$ — величина, необходимая для согласования внутренних энергий фаз. Тепловые составляющие давления и внутренней энергии имеют вид

$$p^{(\mathrm{T})}(\rho_i^0, T_i) = \Gamma(\rho_i^0)\rho_i^0 e^{(\mathrm{T})}(T_i), \quad e^{(\mathrm{T})}(T_i) = c_{V_i} T_i.$$

Используемое здесь единое уравнение состояния воды и пара в аналитической форме [9] является достаточно простым, согласуется с данными международных таблиц (IAPWS 95) [10] на линии насыщения и в области околокритического состояния, а также с экспериментами по ударному и изотермическому сжатию и переходит в уравнение состояния совершенного газа в области низких плотностей и давлений, что позволяет существенно упростить проведение модельных расчетов динамики парожидкостных сред с учетом тепло- и массообмена.

Болотнова Р.Х., Коробчинская В.А.

В экспериментальных работах [2, 3] было отмечено существенное влияние механизмов парообразования на форму струи горячей воды, истекающей из камеры высокого давления, и показано, что с увеличением степени перегрева жидкости, нагретой выше температуры насыщения, соответствующей атмосферному давлению, происходит смена механизмов парообразования в формирующейся струе, что приводит к изменению структуры потока.

В настоящей работе, как и в [11], предполагается, что процесс истечения при разгерметизации происходит в неравновесном перегретом состоянии и кинетика вскипания определяется интенсивностью парообразования, основанной на механизме гетерогенного зародышеобразования [7]. Отметим здесь, что в экспериментах [12], где были определены зависимости частоты зародышеобразования от температуры в перегретой воде, обосновывался механизм гетерогенного парообразования, который допускает в отличие от механизма гомогенного зародышеобразования, как предельного режима вскипания в чистой жидкости в отсутствие воздействий, нарушающих ее однородность, что в исходной жидкости до температур, меньших критической ($T < 0.9T_c$) могут присутствовать микрочастицы, являющиеся потенциальными центрами зародышеобразования (твердые частицы, растворенный газ и т.д.).

В работе [11] полагалось, что на стадии неравновесного режима парообразования рост радиуса пузырьков ограничен, а объемное паросодержание растет за счет зарождения новых пузырьков на посторонних примесных частицах, неоднородность которых приводит к растянутому по времени образованию этих пузырьков. Такой подход позволяет уточнить параметры кинетики парообразования с привлечением упомянутых выше экспериментальных данных по зависимости частоты зародышеобразования от температуры [12], которые приведены также в работе [3]. На экспериментальной установке по определению частоты зародышеобразования осуществляется нагрев жидкости в сосуде высокого давления с последующей мгновенной его разгерметизацией до давления ниже состояния насыщения, и регистрируется временной интервал от момента сброса давления до начала вскипания жидкости. То есть условия проведенных в работе [12] экспериментов сходны с моделируемыми в настоящей работе экспериментами [1] и [3], что делает обоснованным сравнение скоростей роста числа центров кипения, полученных с использованием предлагаемых модельных представлений и экспериментальных данных [12].

В рассматриваемом подходе, как и в работе [11], интенсивность переноса массы из жидкой в паровую фазу J_{lg} зависит от числа *n* и радиуса *a* пузырьков, от температуры насыщения $T_{S}(p)$, теплоты парообразования $l_{S}(T_{l})$ и коэффициента теплопроводности λ_{l} :

$$J_{\rm lg} = 2\pi an {\rm Nu} \frac{\lambda_{\rm l} (T_{\rm l} - T_{\rm S}(p))}{l_{\rm S}(T_{\rm l})},$$
(2)

где Nu — число Нуссельта, для которого используется аппроксимация [13]. Фазовый переход вода-пар (2) происходит в условиях перегретого состояния, когда в метастабильной области температура среды превышает температуру насыщения:

$$T > T_{\rm S}(p) + \Delta T_{\rm S}.\tag{3}$$

Число пузырей определяется в зависимости от паросодержания $\alpha_{\rm g}$ и радиуса пузырьков:

$$n = 3\alpha_{\rm g} / (4\pi a^3). \tag{4}$$

В начальном состоянии задается исходное паросодержание α_{g0} и начальный радиус пузырьков a_0 . Из предлагаемых модельных представлений следует, что на начальной стадии неравновесного режима парообразования радиус пузырьков фиксирован ($a = a_0$)

и имеет место процесс зародышеобразования, сопровождающийся зарождением новых пузырьков.

Процесс зародышеобразования в предлагаемой модели, в отличие от описанного в работе [11], контролируется частотой зародышеобразования \tilde{J} , определяемой аналогично [7] как число жизнеспособных зародышей пара, образующихся в единице объема жидкости в единицу времени в предположении фиксированного начального радиуса образующихся пузырьков ($a = a_0$), исходя из выражения (4):

$$\tilde{J} = \frac{dn}{dt} = \frac{3}{4\pi a_0^3} \cdot \frac{d\alpha_g}{dt}.$$
(5)

В экспериментальных исследованиях [14] использовалась связь частоты зародышеобразования со средним временем ожидания вскипания

$$JV\bar{\tau} = 1, \tag{6}$$

которое означает, что за время $\overline{\tau}$ в объеме перегретой жидкости V образуется один зародыш. Выражение для определения частоты зародышеобразования (5) является следствием (6), что позволяет проводить сравнительный анализ значений J, полученных в ходе экспериментов [12] и в соответствии с формулой (6), и значений \tilde{J} , рассчитанных по (5). Согласование экспериментальных и расчетных частот зародышеобразования осуществляется за счет варьирования исходных значений объемного газосодержания α_{g0} и размера a_0 пузырьков (см. таблицу) в зависимости от степени сжатия паровой фазы в начальном состоянии.

При моделировании следующей стадии истечения, когда в процесс парообразования вовлечены все центры зарождения пузырьков в виде примесных частиц, зародышеобразование прекращается и кипение происходит уже при постоянном числе пузырьков n_b за счет роста их радиуса: $a = \sqrt[3]{3\alpha_g/4\pi n_b}$. В этом случае парожидкостная среда переходит в равновесное состояние, в котором отсутствует перегрев жидкости, обусловленный капиллярными силами, $\Delta T_S \rightarrow 0$ (т.к. $2\sigma/a \rightarrow 0$ при неограниченном росте радиуса пузырька).

Описание численного метода

Численное решение задачи пространственного истечения пароводяной смеси выполнялось на подвижных лагранжевых сетках с помощью метода сквозного счета, предложенного М.Л. Уилкинсом и изложенного в работе [15]. Для численного исследования использовалась естественная аппроксимация производных по пространственной координате, которая позволяет решать задачу на деформирующейся во времени лагранжевой сетке и контролировать массу ячеек двухфазной смеси, вследствие чего упрощается расчет тепломассообменных процессов при фазовых переходах.

Расчетная сеточная область разбивается на четырехугольные ячейки, движущиеся вместе со средой. В начальный момент времени в центрах ячеек задается распределение давления, температуры, плотности, газосодержания и вычисляются массы фаз и общая масса смеси для каждой ячейки. В узлах вычисляются значения скоростей на половинном шаге по времени. Затем на следующем шаге по времени устанавливаются соответствующие координаты узловых точек. После получения новых положений узлов лагранжевой сетки в каждой ячейке методом поиска корня пересчитываются значения давления и плотностей фаз согласно уравнению сохранения массы смеси [16]. Для нахождения

Болотнова Р.Х., Коробчинская В.А.

термодинамических параметров смеси применялся метод, разработанный в работе [17]: в случае положительной разности скоростей в узлах текущей и соседней ячеек в первой из них определяется волна разрежения, тогда температура и внутренняя энергия каждой фазы находится интегрированием условий адиабатичности [16]. Если значение разности скоростей отрицательно, то следовательно текущей ячейке соответствует состояние области ударного сжатия.

На следующем этапе расчетов определяются объемные содержания фаз. Для учета процесса парообразования проверяется наличие фазового перехода в метастабильном состоянии в соответствии с условием (3), затем происходит перерасчет массы с использованием уравнений неразрывности фаз смеси (1) и внутренней энергии каждой фазы с учетом теплообменных слагаемых в уравнениях сохранения энергии для жидкой и паровой фаз (1) при условии сохранения в расчетной ячейке массы смеси.

Для определения граничных условий в расчетную схему дополнительно вводились «псевдоячейки» [15], в которых задавались значения давления, плотности и скорости в соответствии со схемой проведения экспериментов [1, 3]. Ось 0х соответствовала условию симметрии. На боковой границе y = r присутствует условие скольжения. Для граничных ячеек $x \ge 1$, покидающих сосуд, принималось условие свободного вытекания с учетом противодавления p_{cs} , определяемого в результате численных расчетов процесса истечения пароводяной смеси в воздух в условиях квазиодномерного приближения. Давление p_{cs} соответствует состоянию на контактной поверхности пароводяной смеси и воздуха, возникающего в результате распада разрыва вследствие разгерметизации, с формированием волны сжатия, распространяющейся в воздух, и волны разгрузки, распространяющейся в парожидкостную смесь. Для описания термодинамических свойств воздуха использовалось уравнение состояния совершенного газа.

Постановка задачи. Результаты численного моделирования

Для проверки достоверности разработанной пространственной осесимметричной модели вскипающей пароводяной смеси было проведено сравнение результатов настоящих расчетов с полученными по одномерной модели [11] и с результатами эксперимента [1], соответствующими начальной (быстрой) стадии внезапного истечения недогретой до параметров насыщения воды из трубы радиуса r = 0,0375 м и длиной 1 = 4,1 м при исходных давлении $p_0 = 7$ МПа и температуре $T_0 = 515$ К. В результате разгерметизации внутрь трубы распространяется волна разрежения. В быстрой волне разрежения в режиме адиабатической разгрузки устанавливается давление ниже давления насыщения ($p_{\rm S}(T_0) = 3,4$ МПа), которое составляет ~2,8 МПа, что соответствует условию перегретого состояния: процесс вскипания жидкости происходит в неравновесном состоянии, когда температура смеси превышает температуру насыщения $\Delta T_{\rm S} = 10$ К согласно условию (3). Как и в одномерных расчетах [11], при пространственном моделировании принималось, что в начальный момент времени радиус пузырьков $a_0 = 0,2\cdot10^{-6}$ м и объемное газосодержание $\alpha_{\rm g0} = 10^{-11}$ (см. данные опыта № 1 в таблице). Начальная стадия процесса

Расчетные параметры воды и пара, соответствующие исходным условиям и состояниям на начальной стадии истечения

Таблица

№	<i>T</i> ₀ , K	<i>p</i> ₀ , МПа	<i>a</i> ₀ , M	$\alpha_{\rm g0}$	<i>n</i> _b , м ⁻³	$\tilde{J}, \operatorname{cm}^{-3} \operatorname{c}^{-1}$	$\left \vec{v} \right , \ M/c$	М	$\left \vec{v} \right ^{*}, M/c$
1	515,0	7,0	$2 \cdot 10^{-7}$	$1 \cdot 10^{-11}$	$3,5 \cdot 10^{10}$	$1 \cdot 10^{10}$	100	2,1	590
2	422,6	0,43	$5 \cdot 10^{-7}$	$6 \cdot 10^{-11}$	$0,2.10^{10}$	$3 \cdot 10^{2}$	3	0,03	155
3	490,1	2,14	$3 \cdot 10^{-7}$	$2 \cdot 10^{-11}$	$1 \cdot 10^{10}$	5·10 ⁹	35	1,1	370
4	650,0	22,73		1,0	-	-	1000	2,3	1065

Рис. 1. Расчетное распределение давлений р					
в указанный момент времени (мс)					
процесса истечения в системе					
эйлеровых координат.					
Распределение поля давлений $p(x, y)$ — расчет					
настоящей работы; сплошная линия — расчет					
по одномерной модели [11];					
символы — экспериментальные данные [1].					

истечения характеризуется ростом паросодержания за счет образования новых пузырьков, т.е. количество пузырьков возрастает до величины $n_b = 3,5 \cdot 10^{10} \text{ м}^{-3}$ при фиксированном начальном радиусе пузырей a_0 . Далее происходит интенсификация кипения за счет роста радиуса пузырьков при постоянном числе пузырьков n_b .

На рис. 1 представлены расчетные давления в начальной стадии процесса истечения в момент времени t = 3 мс, полученные по предлагаемой в настоящей работе двумерной осесимметричной модели, расчеты по одномерной модели из работы [11] и экспериментальные данные [1], измеренные датчиками давления, закрепленными на стенке трубы в сечениях, удаленных от закрытого конца трубы на расстояниях 3,9, 3,0, 2,0, 1,5, 0,08 м. Сравнительный анализ данных рис. 1 показывает, что в целом результаты модельных расчетов и экспериментов совпадают. Некоторые различия в распределениях давления вблизи открытого участка трубы определяются модельными ограничениями одномерного приближения. Лучшее согласование с экспериментальными данными получено с использованием предлагаемой двумерной осесимметричной модели: на торцевом участке трубы около стенки в двумерных расчетах фиксируется занижение давления по сравнению с давлением на оси симметрии и одномерными расчетами (см. рис. 1), что согласуется с экспериментом [1]. Указанное занижение давления на рассматриваемом участке трубы объясняется взаимодействием вытекающей парожидкостной смеси с внешней средой: давление внешней среды «проникает» через дозвуковую часть пристеночного слоя внутрь выходного участка и давление на стенке оказывается более низким, чем давление на оси симметрии, что подтверждается анализом данных аналогичных экспериментов, проведенным в работе [18]. На внешнем участке трубы за счет интенсивного парообразования формируется коническая струя с углом распыла ~ 60° , которая имеет меньшую дальность по оси 0x на момент времени t = 3 мс по сравнению с результатами одномерных расчетов, приведенными на рис. 1.

Для исследования влияния начального состояния жидкости на интенсивность зародышеобразования при истечении из тонкого сопла численно моделировалась задача истечения вскипающей жидкости для условий, близких к экспериментальным из работы [3]. В расчетах предполагалось, что в начальный момент времени в узком цилиндрическом сопле радиуса r = 0,25 мм находится вода при высоком давлении p_0 в состоянии насыщения, которому соответствует температура $T_S(p_0)$. На правом конце сосуда происходит разрыв заслонки и начинается истечение перегретой жидкости в окружающую среду. Расчеты проводились для начальной нестационарной стадии истечения при различных исходных значениях давления и температуры, соответствующих условиям экспериментов [3], которые приведены в таблице (см. опыты 2–4).

На рис. 2 приведена зависимость частоты зародышеобразования J от степени перегрева воды $T/T_{\rm C}$, т.е. отношения текущей температуры к критической, приведенной в работе [3], которые были получены на основе экспериментальных данных [12]. Символами

отмечены частоты зародышеобразования \tilde{J} , полученные в расчетах в настоящей работе для начальных условий экспериментов 1–3 (см. табл.). Согласно опытным исследованиям [12], зависимость частоты образования зародышей J в воде от температуры имеет ступенчатый вид. При $T \le 0,7 T_{\rm C}$ частота зародышеобразования J имеет порядок $10^2 - 10^4$ см⁻³ с⁻¹, что качественно согласуется с расчетами. Получен-

ные в расчетах значения $\tilde{J} \sim 3 \cdot 10^2 \text{ см}^{-3} \cdot \text{c}^{-1}$ для опыта 2, как и в экспериментах [12], соответствуют процессу медленного роста числа центров зародышеобразования, происходящего в основном за счет увеличения объемного паросодержания при расширении паровой фазы, являющейся следствием сброса давления в процессе истечения из сосуда с начальным давлением $p_0 = 0,43$ МПа, т.е. вклад частоты зародышеобразования в процесс парообразования на начальной стадии истечения незначителен, что объясняется увеличением радиуса паровых пузырьков на фиксированных центрах (при постоянном числе пузырьков). При повышении начальной температуры насыщения до 0,8 $T_{\rm C}$ частота зародышеобразования \tilde{J} резко возрастает до значений $10^8 \text{ см}^{-3} \text{ c}^{-1}$ и выше, что обусловлено переходом к интенсивному гетерогенному парообразованию с зарождением жизнеспособных пузырьков пара на примесных включениях в жидкости. В расчетах процесса истечения при начальном давлении $p_0 = 2,14$ МПа и соответствующей ему температуре насыщения $T_0 = 490,1$ K (см. опыт 3 в табл.) получена частота зародышеобразования, близкая к экспериментальной ($\tilde{J} = 5 \cdot 10^9 \text{ см}^{-3} \text{ c}^{-1}$), формулируемая в работе [3] как интенсивное гетерогенное зародышеобразование.

Расчеты процесса истечения пароводяной смеси в двумерном осесимметричном приближении приведены на рис. 3–5 в виде распределений давления p и поля скоростей \vec{v} в указанные моменты времени. На рис. 3 представлены результаты моделирования процесса истечения для начальных значений температуры $T_0 = 422,6$ К и давления насыщения $p_0 = 0,43$ МПа, что соответствует перегреву воды $\Delta T = T_0 - T_S(p_{00}) \approx 50$ К, где $T_S(p_{00})$ температура насыщения при атмосферном давлении [3]. При моделировании этого эксперимента длина сопла выбиралась таким образом, чтобы волна разгрузки от открытого (правого) конца не успевала отражаться от левой границы сопла. На рис. 3 показан участок сопла в зоне координаты $x = 4 \cdot 10^{-3}$ м (место разгерметизации при t = 0). Режим

Рис. 3. Расчетное поле скоростей \vec{v} процесса истечения в указанный момент времени (мкс) и фотография водяной струи [3] для начальных условий состояния насыщения $T_0 = 422$ K.

Рис. 4. Расчетные распределения давления *p* и мгновенного поля скоростей \vec{v} в процессе истечения в указанные моменты времени (мкс) и фотография водяной струи [3] для начальных условий состояния насыщения $T_0 = 490$ К.

истечения в этом случае является дозвуковым (число Маха М ≈ 0,03). Как и в экспериментах [3], где на фотографиях струй (рис. 3) не просматриваются даже отдельные пузыри, так и в расчетах объемное содержание паровой фазы в сформированной струе не превышает 0,5 % и отсутствует расширение струи.

Процесс формирования струи для начальной температуры $T_0 = 490$ К, которая соответствует давлению насыщения $p_0 = 2,14$ МПа, показан на рис. 4 в моменты времени t = 50 и 150 мкс. Здесь же приведена фотография пароводяной струи, формирующейся при истечении из сосуда при аналогичных начальных условиях. Интенсивное парообразование в струе, наблюдаемое в экспериментах, получено и в расчетах: объемные содержания паровой фазы в формирующейся струе на моменты времени 50 и 150 мкс достигают 60 и 90 %; скорости потока на границе головной части струи в указанные моменты времени имеют радиальное распределение с величинами на границе 20 и 35 м/с соответственно. Такой режим истечения является сверхзвуковым, поскольку в рассматриваемой области M ≈ 1,1, и формируется конический вид струи, наблюдаемый также в экспериментах [3].

Расчетам, проведенным для режима истечения с начальной температурой $T_0 = 650$ К и давлением $p_0 = 22,73$ МПа (см. опыт № 4 в табл.), соответствуют данные рис. 5. В этом режиме истечения начальные значения температуры и давления превышают критические величины и формирование струи происходит в режиме образования незначительной доли жидкой фазы ($\alpha_1 \approx 10^{-4}$), т.е. при частичной конденсации пара. Как и в эксперименте (см. на рис. 5 фотографию струи для $T_0 = 650$ К [3]), в расчетах наблюдается интенсивное расширение газового потока, в котором достигаются сверхзвуковые скорости истечения [19]. На момент времени t = 0,5 мкс (см. рис. 5) расчетные скорости потока $|\vec{v}|$ достигают ≈ 1000 м/с, что по оценке скорости звука в паре [16] соответствует числу Маха М $\approx 2,3$.

На момент времени t = 0,5 мкс в полученных расчетах фиксируется радиальное расширение струи по боковой границе на центральном участке и ее сужение в крайней граничной зоне по направлению движения потока (в лидере струи), что определяет форму струи, аналогичную представленной в экспериментах [20], где теневым методом были получены видеокадры начальной стадии процесса развития водяной струи при истечении из сопла при исходном давлении 400 МПа. С течением времени (см. рис. 5, t = 1,0 мкс) сверхзвуковой режим истечения сохраняется, происходит дальнейшее расширение потока

Рис. 5. Расчетные распределения давления *p* и мгновенного поля скоростей v
в процессе истечения в указанные моменты времени (мкс) и фотография струи [3] для начальных условий сверхкритического состояния *T*₀ = 650 K воды.

по боковым границам с большими значениями v_y составляющей скорости на этих участках по сравнению с осевой зоной, что сопровождается, как и в эксперименте [3], формированием струи параболического вида.

Полученные в расчетах скорости истечения были сопоставлены с оценочными скоростями, определенными с помощью первого закона термодинамики [21] в случае одномерного адиабатического приближения как разность энтальпий начального и рассматриваемого состояний

$$\left|\vec{\mathbf{v}}\right|^* = \sqrt{2(h_1 - h_2)} \tag{7}$$

с привлечением международных таблиц воды и водяного пара IAPWS 95 [10]. Скорости истечения, рассчитанные с использованием данных [10] по формуле (7), соответствуют равновесным значениям для условий состояния насыщения, в отличие от газодинамических расчетов, полученных для режима парообразования в метастабильной области (3),

что приводит к меньшим значениям скорости потока по сравнению с $|\vec{v}|^*$ (см. табл.).

Заключение

В настоящей работе предложена двухтемпературная двухфазная модель парожидкостной смеси с учетом парообразования и межфазного теплообмена в односкоростном однодавленческом приближениях для численного моделирования нестационарного пространственного процесса истечения вскипающей жидкости при внезапной разгерметизации сосудов высокого давления. Численная реализация модели осуществлена методом сквозного счета с использованием подвижных лагранжевых сеток. Для уточнения параметров кинетики фазового перехода вода-пар [11] и согласования полученных в расчетах частот зародышеобразования с данными [12] проанализировано влияние начального числа и радиуса микропузырьков на интенсивность парообразования в условиях моделируемых экспериментов [1, 3].

Для обоснования достоверности расчетов по двумерной осесимметричной модели проведено сравнение с результатами, полученными по одномерной модели [11], и с экспериментальными данными [1]. Показано, что наблюдаемое в численном решении занижение давления на торцевом участке трубы около стенки, по сравнению с давлением на оси симметрии, объясняется «проникновением давления» через дозвуковую часть пристеночного слоя внутрь выходного участка, что подтверждается анализом экспериментальных результатов, полученных в работе [18].

Исследованы особенности нестационарной начальной стадии формирования пароводяной струи при истечении через тонкое цилиндрическое сопло радиуса r = 0.25 мм из камеры высокого давления в зависимости от исходного состояния жидкости в условиях экспериментов [3]. В расчетах установлено, что при начальном состоянии насыщения при $T_0 = 422,6$ К расчетная частота зародышеобразования $\tilde{J} \sim 3 \cdot 10^2$ см⁻³ с⁻¹, т.е. ее вклад в процесс парообразования незначителен и обусловлен в основном увеличением радиуса паровых пузырьков на изначально заданном числе центров кипения. В таком режиме струя сохраняет цилиндрическую форму. При моделировании эксперимента с повышением начальной температуры насыщения, составляющей $T_0 = 490$ K, вскипание в струе происходит за счет интенсивного гетерогенного зародышеобразования и сопровождается формированием конической струи с расчетной частотой зародышеобразования $\tilde{J} = 5 \cdot 10^9 \,\mathrm{cm}^{-3} \mathrm{c}^{-1}$. При сверхкритической температуре ($T_0 = 650 \,\mathrm{K}$) в процессе расчетов формируется сверхзвуковой режим истечения с незначительной конденсацией паровой фазы: к моменту времени t = 0,5 мкс боковая граница струи расширяется, причем в лидере струи сохраняется ее сужение, аналогично фиксируемому в оптических экспериментах [20]. При дальнейшем развитии струи на расчетный момент времени t = 1,0 мкс она приобретает параболический вид. Полученные численные результаты согласуются с экспериментальными данными по распределению давления, с фотографиями моделируемых экспериментов по форме струи и по скорости истечения с оценками, проведенными на основе данных IAPWS 95 [10].

Обозначения

- x, y, t осевая и радиальная эйлеровы
- координаты, время,
- *г*, *l* радиус и длина сопла,
- *а*, *n* радиус пузырьков, число пузырьков в единице объема,
- \vec{v} вектор скорости с проекциями v_x, v_y на соответствующие оси,
- ρ⁰_i, ρ_i текущие значения истинной и приведенной плотности *i*-ой фазы,
- ρ средняя плотность смеси,
- р давление,
- p_{00} атмосферное давление,
- *p*_{сs} давление на контактной поверхности,
- *T*_C критическая температура,
- *T_i*, *e_i* температура и внутренняя энергия *i*-ой фазы,
- *T*_a, *e*_{ia} температура и внутренняя энергия на границе фаз,

Список литературы

- c_{Vi} удельная теплоемкость *i*-ой фазы воды при постоянном объеме,
 A, K, b, ξ, β, e°— константы уравнения состояния воды и пара,
 Г — функция Грюнайзена,
 Q_{1g} — поток тепла через межфазную поверхность,
 λ₁ — коэффициент теплопроводности,
 Nu, М — числа Нуссельта и Маха,
- $J, ~\tilde{J}$ расчетная и экспериментальная частоты зародыше
образования,
- J_{lg} интенсивность переноса массы в единице объема из жидкой в паровую фазу,
- α_i объемное содержание *i*-ой фазы,
- *i* = l, g нижние индексы, относящиеся к жидкой и паровой фазам,
- нижний индекс, соответствующий начальному состоянию.
- 1. Edwards A.R., O'Brien T.P. Studies of phenomena connected with the depressurization of water reactors // J. of The British Nuclear Energy Society. 1970. Vol. 9, No. 2. P. 125–135.
- 2. Решетников А.В., Мажейко Н.А., Скрипов В.П. Струи вскипающих жидкостей // Прикл. механика и технич. физика. 2000. Т. 44, № 3. С. 125–131.
- 3. Решетников А.В., Бусов К.А., Мажейко Н.А., Скоков В.Н., Коверда В.П. Переходные режимы вскипания струй перегретой воды // Теплофизика и аэромеханика. 2012. Т. 19, № 3. С. 359–367.
- 4. Алексеев М.В., Лежнин С.И., Прибатурин Н.А., Сорокин А.Л. Генерация ударноволновых и вихревых структур при истечении струи вскипающей воды // Теплофизика и аэромеханика. 2014. Т. 21, № 6. С. 795–798.
- Алексеев М.В., Лежнин С.И., Прибатурин Н.А. Формирование и эволюция волн при торцевом разрыве трубопровода со вскипающим теплоносителем // Вестник Тюменского гос. ун-та. 2015. Т. 1, № 2. С. 75–84.

- 6. Болотнова Р.Х., Бузина В.А. Пространственное моделирование нестационарной стадии истечения вскипающей жидкости из камер высокого давления // Вычисл. мех. сплош. сред. 2014. Т. 7, № 4. С. 343–352.
- 7. Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987. Ч. 1. 464 с.
- 8. Шевелев Ю.Д. Пространственные задачи вычислительной аэрогидродинамики. М: Наука, 1986. 367 с.
- 9. Нигматулин Р.И., Болотнова Р.Х. Широкодиапазонное уравнение состояния воды и пара. Упрощенная форма // Теплофизика высоких температур. 2011. Т. 49, № 2. С. 310–313.
- Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use // The Internat. Association for the Properties of Water and Steam. Frederica: Denmark, 1996.
- 11. Болотнова Р.Х., Бузина В.А., Галимзянов М.Н., Шагапов В.Ш. Гидродинамические особенности процессов истечения вскипающей жидкости // Теплофизика и аэромеханика. 2012. Т. 19, № 6. С. 719–730.
- 12. Павлов П.А. Динамика вскипания сильно перегретых жидкостей. Свердловск: УрО АН СССР, 1988. 244 с.
- 13. Лабунцов Д.А., Кольчугин Б.А., Головин В.С., Захарова Э.А., Владимирова Л.Н. Исследование при помощи скоростной киносъемки роста пузырьков при кипении насыщенной воды в широком диапазоне изменения давлений // Теплофизика высоких температур. 1964. Т. 2, № 3. С. 446–452.
- 14. Скрипов В.П. Метастабильная жидкость. М.: Наука, 1972. 312 с.
- 15. Олдер Б., Фернбах С., Ротенберг М. Вычислительные методы в гидродинамике. М.: Мир, 1967. 384 с.
- 16. Агишева У.О., Болотнова Р.Х., Бузина В.А., Галимзянов М.Н. Параметрический анализ режимов ударно-волнового воздействия на газожидкостные среды // Изв. РАН. Механика жидкости и газа. 2013. № 2. С. 15–28.
- 17. Куропатенко В.Ф., Мустафин В.К. Методика расчета нестационарных течений в многокомпонентных неравновесных смесях веществ // Вестник Челябинского ун-та. 1997. № 1. С. 97–102.
- 18. Дейч М.Е. Техническая газодинамика. Л.: Госэнергоиздат, 1961. 669 с.
- 19. Болотнова Р.Х., Коробчинская В.А. Исследование процесса развития струи при истечении воды из сверхкритического состояния через тонкое сопло // Тр. Института механики им. Р.Р. Мавлютова Уфимского научного центра РАН. 2016. Т. 11. С. 66–71.
- 20. Ширшов Я.Н., Нерсесян Д.А., Сысоев Н.Н., Иванов И.Э., Знаменская И.А. Оптические исследования динамики развития водяной струи высокого давления // Мат. XI Междунар. конф. по неравновесным процессам в соплах и струях. М.: МАИ, 2016. С. 196–198.
- **21. Кириллин В.А, Сычев В.В, Шейндлин А.Е.** Техническая термодинамика. М.: Энергоатомиздат, 1983. 416 с.

Статья поступила в редакцию 21 октября 2016 г., после доработки — 30 декабря 2016 г.