ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ФОРМИРОВАНИЯ ДЕТОНАЦИОННОЙ ВОЛНЫ ПРИ ОБТЕКАНИИ КЛИНА СВЕРХЗВУКОВЫМ ПОТОКОМ СМЕСИ H₂/O₂ С НЕРАВНОВЕСНО ВОЗБУЖДЕННЫМИ МОЛЕКУЛЯРНЫМИ КОЛЕБАНИЯМИ РЕАГЕНТОВ

Л. В. Безгин, В. И. Копченов, А. М. Старик, Н. С. Титова

Центральный институт авиационного моторостроения им. П. И. Баранова, 111116 Москва, star@ciam.ru

Анализируются особенности формирования наклонной детонационной волны при обтекании плоского клина сверхзвуковым потоком водородно-кислородной смеси. Показано, что предварительное возбуждение молекулярных колебаний H₂ приводит к заметному (в несколько раз) сокращению длины зоны индукции и расстояния, на котором происходит образование детонационной волны. Установлено, что эти эффекты проявляются даже при возбуждении молекул H₂ в узкой приосевой области потока и обусловлены интенсификацией цепных реакций в смеси H₂/O₂ (воздух) вследствие присутствия в потоке колебательно-возбужденных молекул водорода.

Ключевые слова: сверхзвуковой поток, детонационная волна, смесь водород — кислород, колебательно-возбужденные молекулы.

ВВЕДЕНИЕ

Проблема организации эффективного сжигания топлива в сверхзвуковом потоке в последние годы привлекает внимание исследователей в связи с перспективой создания новых двигателей для гиперзвуковых летательных аппаратов. Особый интерес проявляется при этом к схемам с детонационной волной, реализация которых позволит существенно сократить длину зоны горения, а следовательно, и габариты двигателя [1–3]. Один из ключевых вопросов при организации детонационного горения в сверхзвуковом потоке — получение условий, при которых стабилизация детонационной волны происходит на относительно небольших расстояниях (≈1÷2 м) от входа в камеру сгорания.

Наиболее простым способом воспламенения горючих смесей и создания детонационной структуры является использование наклонной ударной волны, возникающей при обтекании клина или конуса сверхзвуковым потоком газа. Исследованию особенностей формирования детонационной волны в этом случае посвящено значительное количество работ [4–7]. Было показано, что особенности взаимодействия первичной ударной волны (УВ) с зоной тепловыделения, возникающей за фронтом УВ при протекании химических реакций, существенно зависят от угла наклона образующей клина и параметров потока. Исключительно важной проблемой является сокращение длины зоны индукции и протяженности области, в которой после воспламенения смеси происходит формирование детонационной волны [7].

Ранее было показано, что предварительное возбуждение колебательных степеней свободы реагирующих молекул существенно (в 10÷100 раз) сокращает длину зоны индукции за фронтом наклонной УВ [8, 9]. Более того, даже небольшое возбуждение колебаний молекул H₂, O₂ и N₂ позволяет реализовать воспламенение смеси H₂/воздух при низких значениях температуры $(T_1 = 700 \div 750 \text{ K})$ и давления $(p_1 \approx 10^4 \text{ Па})$ в сверхзвуковом потоке за относительно слабой УВ [10]. Однако эти исследования были выполнены в одномерной постановке. В реальности же поток весьма далек от одномерного. Типичным примером двумерного течения служит формирование детонационной волны при обтекании клина. Поэтому представляет интерес определить, как в этом случае предварительное возбуждение молекулярных колебаний реагентов повлияет на изменение ударно-волновой структуры потока. Такой анализ выполнен в данной работе.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 02-02-16915 и № 02-01-00703) и МНТЦ (проект № 2740).

Рис. 1. Схема течения и расчетная область

ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ УРАВНЕНИЯ

Рассмотрим обтекание плоского клина сверхзвуковым потоком водородно-кислородной смеси, в котором колебательные степени свободы молекул Н2 неравновесно возбуждены. Такое возбуждение достаточно легко реализовать при помощи электрического разряда, в котором отношение напряженности электрического поля к концентрации молекул H₂ отвечает резонансному возбуждению колебательных состояний молекулярного водорода электронами разряда [11]. Схема течения, принятая для анализа, показана на рис. 1. Молекулярный кислород смешивается в приосевой области с колебательно-возбужденным водородом. Поперечный размер этой области ограничен и обозначен на рис. 1 символом Y_e . При $y < Y_e$ молекулы Н₂ возбуждены. Параметры потока после смещения следующие: число Маха $M_0 = 6$, $p_0 = 10^3 \div 10^4$ Па, $T_0 = 400 \div 600$ К. Здесь и далее индекс нуль отвечает параметрам однородного потока перед клином. Отметим, что даже при таких высоких скоростях, как $\approx 2 \text{ км/c}$, протяженность области смешения потоков Н₂ и O_2 не превышает 1 м.

Будем, как обычно, полагать, что между вращательными и поступательными степенями свободы молекул существует термодинамическое равновесие. При температурах газа $T \leq 3000$ К (именно такие температуры реализуются при горении смеси H_2/O_2) за фронтом наклонной УВ, образующейся при обтекании клина, для нижних колебательных уровней каждой моды реализуется больцмановское распределение. Это позволяет использовать для описания релаксационных процессов в реагирующем газе модель локальных колебательных температур (далее будем обозначать T_{ξ} температуру ξ -й моды, $\xi = 1, \ldots, n, n$ — число типов колебаний в реагирующих и образующихся молекулах) [12, 13]. Полагая газ невязким и нетеплопроводным, систему уравнений, описывающую физико-химические и газодинамические процессы при обтекании клина реагирующим потоком, можно представить в виде

$$\frac{\partial}{\partial x_k} F_k = q, \tag{1}$$

$$F_{k} = \begin{vmatrix} \rho u_{k} \\ ||\rho u_{k} u_{m} + p \delta_{km}|| \\ \rho u_{k} (2H + Q^{2}) \\ ||\rho u_{k} e_{V}^{\xi}|| \\ ||\rho u_{k} N_{i}|| \end{vmatrix}, \quad q = \begin{vmatrix} 0 \\ 0 \\ ||q_{V}^{\xi}|| \\ ||q_{ch}^{i}|| \end{vmatrix}.$$

Здесь $Q = \sqrt{\sum_{k} u_k^2}$; k = 1,2 и m = 1,2; u_k — компоненты скорости потока в проекции на оси $OX \ (k = 1)$ и $OY \ (k = 2)$; δ_{km} — символ Кронекера; $||\rho u_k u_m + p \delta_{km}||$, $||\rho u_k e_V^{\xi}||$, $||q_V^{\xi}||$ и $||q_{ch}^i||$ — одностолбцовые матрицы (размерность первой матрицы 2, второй и третьей — n, четвертой — $M_1 \ (M_1$ — число компонентов в смеси)); p и ρ — давление и плотность газа; N_i — плотность молекул *i*-го компонента смеси. Выражения для энтальпии смеси H, колебательной энергии *i*-го компонента e_{Vi} , а также источников q_V^{ξ} и q_{ch}^i , определяющих изменение энергии ξ -й моды и концентрации *i*-го компонента в смеси в результате релаксационных процессов и протекания химических реакций, удобно представить в следующем виде:

$$H = \frac{1}{\mu} \sum_{i=1}^{M_1} h_{0i} \gamma_i +$$

. .

$$\begin{split} &+ \left(\frac{5}{2} + \sum_{i=1}^{L} \gamma_i + \frac{3}{2} \sum_{i=L+1}^{S} \gamma_i\right) \frac{R}{\mu} T + \sum_{i=1}^{S} e_{Vi} \gamma_i, \\ &e_{Vi} = \sum_{\xi=1}^{Z_i} e_V^{\xi}, \quad e_V^{\xi} = \frac{R\theta_{\xi}}{\mu} \varepsilon_{\xi}, \ \mu = \sum_{i=1}^{M_1} \mu_i \gamma_i, \\ &\gamma_i = \frac{N_i}{N}, \quad N = \sum_{i=1}^{M_1} N_i, \quad q_{ch}^i = \sum_{q=1}^{M_2} S_{i,q}, \\ &S_{i,q} = \frac{\alpha_{i,q}^- - \alpha_{i,q}^+}{N} [R_q^+ - R_q^-], \\ &R_q^{+(-)} = k_{+(-)q} \prod_{j=1}^{n_q^{+(-)}} N_j^{\alpha_{j,q}^{+(-)}}, \\ &q_V^{\xi} = \frac{R\theta_{\xi}}{\mu} [Q_{VV'}^{\xi} + Q_{VT}^{\xi} + Q_{ch}^{\xi}], \\ &Q_{VV'}^{\xi} = N \sum_{p=1}^{L_1} \frac{l_{\xi L_{\xi,p}}}{g_{\xi}^{\xi} g_p^p} W_{\xi,p}', \\ &Q_{VT}^{\xi} = (\varepsilon_{\xi,0} - \varepsilon_{\xi})(1 - y_{\xi,0}) \sum_{i=1}^{M_1} W_{\xi,0}^i \gamma_i, \\ &Q_{ch}^{\xi} = \sum_{r=1}^{L_2} \frac{\alpha_{i,r}^- - \alpha_{i,r}^+}{N_i} \times \\ &\times [(\chi_{r,\xi}^+ - \varepsilon_{\xi})R_r^+ - (\chi_{r,\xi}^- - \varepsilon_{\xi})R_r^-], \end{split}$$

$$L_{\xi,p} = \varepsilon_{\xi}^{l_{\xi}} (g_p + \varepsilon_p)^{l_p} - \varepsilon_p^{l_p} (g_{\xi} + \varepsilon_{\xi})^{l_{\xi}} \times \\ \times \exp\Big(-\frac{l_{\xi}\theta_{\xi} - l_p\theta_p}{T}\Big),$$

$$\chi_{r,\xi}^{+(-)} = \left(\frac{E_r}{K\theta_{\xi}}\right) \eta_{r,\xi}^{+(-)}, \quad \eta_{r,\xi}^{+} = \beta_{r,\xi}^2 / \sum_i \beta_{r,i}^2,$$
$$\eta_{r,\xi}^{-} = \beta_{r,\xi}^2 T_{\xi}^2 \sum_i \beta_{r,i}^2 \left(\sum_j \beta_{r,j}^2 T_j\right)^{-2},$$

$$E_{r} = \alpha_{r} E_{a,r}^{+}, \quad \alpha_{r} = \frac{E_{a,r}^{+}}{E_{a,r}^{+} + E_{a,r}^{-}},$$

$$\varepsilon_{\xi} = g_{\xi} y_{\xi} / (1 - y_{\xi}), \quad \varepsilon_{\xi,0} = \varepsilon_{\xi} \quad (y_{\xi} = y_{\xi,0}),$$

$$y_{\xi} = \exp(-\theta_{\xi} / T_{\xi}), \quad y_{\xi,0} = y_{\xi} \ (T_{\xi} = T).$$

Здесь *R* — универсальная газовая постоянная; К — постоянная Больцмана; h_{0i} — энтальпия образования i-го компонента смеси при T =298 К; μ_i — его молярная масса; S — число молекулярных компонентов; L — число компонентов из линейных молекул; θ_{ξ} — характеристическая колебательная температура ξ-й моды, g_{ξ} — кратность ее вырождения; Z_i число типов колебаний в молекуле *i*-го сорта; $W'_{\xi,p} = \sum_{i=1}^{M_1} W^i_{\xi,p} \gamma_i$ в случае внутримолекулярного V-V'-обмена и $W'_{\xi,p}=W_{\xi,p}\gamma_j \ (\xi\leftrightarrow i,\,p\leftrightarrow$ j) в случае межмолекулярного V-V'-обмена; $W_{\xi,p}$ — константа скорости межмолекулярного V-V'-обмена; $W^i_{\xi,p}$ и $W^i_{\xi,0}$ — константы скоростей внутримолекулярного V-V'-обмена и V-T-релаксации при столкновении с *i*-м партнером; l_{ξ} — количество колебательных квантов, теря́емых или приобрета
емых модой ξ при V-V'-обмене; L_1 — число каналовV-V'-обмена; $\alpha^+_{i,q}$ и $\alpha^-_{i,q}$ — стехиометрические коэффициенты q-й реакции, приводящей к образованию *i*-го компонента; k_{+q} и k_{-q} — константы скорости q-й реакции в прямом (+) и обратном (-) направлениях; L₂ — число реакций, приводящих к образованию (уничтожению) молекулы, содержащей моду ξ ; M_2 — число реакций, приводящих к образованию *i*-го компонента; $\beta_{r,i}$ — коэффициенты разложения r-й реакции по координатам нормальных колебаний; E_r — часть энергии активации *r*-й реакции, приходящейся на колебательные степени свободы; $E_{a,r}^{+(-)}$ — энергия активации *r*-й химической реакции в направлении уничтожения (возникновения) колебательно-возбужденной молекулы. Значения $\beta_{r,\xi}$, так же как и в [8, 9], были взяты равными 1. В рамках модового приближения константа скорости химической реакции при отсутствии равновесия между поступательными и колебательными степенями участвующих в реакции молекул является функцией T и T_{ξ} и может быть представлена в виде

$$k_q = \varphi_q(T, T_\xi) k_q^0(T).$$

Здесь $k_q^0(T)$ — константа скорости q-й химической реакции при $T_{\xi} = T, \varphi(T, T_{\xi})$ — фактор неравновесности. Его величина при данных T и T_{ξ} вычислялась так же, как и в [9, 10].

Кинетическая модель, используемая в данной работе, включает 9 обратимых химических реакций с участием Н, О, ОН, Н₂О, Н₂, O_2 , процессы V - V'-обмена между симметричной, деформационной и асимметричной (ν_1 , ν_2 , ν_3) модами молекулы H₂O, модами молекул $H_2(\nu_4), O_2(\nu_5)$ и ОН (ν_6), а также процессы V-T-релаксации энергии мод ν_2 , ν_4 , ν_5 и ν_6 [8]. Далее такая же нумерация будет использована и для колебательных температур. Температурные зависимости констант скоростей химических реакций $k^0_{+(-)q}(T)$, а также процессов V-V'-обмена и V-T-релаксации для рассматриваемой модели выбраны на основе рекомендаций [10]. Следует отметить, что несмотря на относительную простоту данная схема химических реакций позволяет получать достаточно точные значения длины зоны индукции и длины зоны горения за фронтом наклонных УВ при температурах за фронтом $T_1 \ge 800$ К (именно такой диапазон T₁ рассматривается в данной работе) [10].

Система уравнений (1) решалась численно с использованием маршевого метода, в основе которого лежит стационарный аналог схемы Годунова [6]. Для аппроксимации q_V^{ξ} и q_{ch}^i использовалась неявная схема. Конвективные члены в уравнениях системы (1) аппроксимировались методом предиктор — корректор второго порядка точности.

Для определения параметров потока, концентраций компонентов и колебательных температур на новом пространственном слое применялась специальная итерационная процедура. В этой процедуре для уравнений, описывающих изменение концентраций компонентов, использовался метод Гаусса — Зейделя, для уравнений, описывающих изменение ε_{ξ} , — метод Ньютона. Для разрешения областей с большими градиентами параметров, так же как и в [5], использовалась адаптируемая сетка.

ФОРМИРОВАНИЕ УДАРНО-ВОЛНОВЫХ СТРУКТУР ПРИ ОБТЕКАНИИ КЛИНА

Рассмотрим сначала, как влияет учет замедленного возбуждения молекулярных реагентов за УВ, образующейся при обтекании клина сверхзвуковым потоком стехиометрической смеси $H_2 + O_2$, на динамику формирования детонационной волны при $M_0 = 6, T_0 = 600 \text{ K},$ $p_0 = 5 \cdot 10^3$ Па. Ранее в [9, 10] было показано, что учет конечной скорости возбуждения колебательных степеней свободы молекул может существенно повлиять на динамику и характеристики горения за фронтом УВ. Основной причиной этого служит то, что при сверхзвуковой скорости потока, реализующейся за фронтом наклонной УВ, вследствие теплоотвода энергии из поступательных степеней свободы в колебательные происходят уменьшение температуры и плотности газа и, наоборот, увеличение скорости потока по сравнению со случаем, когда предполагается, что равновесие между поступательными и колебательными степенями свободы устанавливается мгновенно (термически равновесная модель химической кинетики). Уменьшение плотности частиц приводит к уменьшению числа столкновений и скоростей всех химических реакций, а следовательно, к росту длины зоны реакции. Поэтому длина задержки воспламенения (длина индукции) при учете неравновесного возбуждения молекулярных колебаний (термически неравновесная модель) получается больше. Определенную, хотя и не основную роль в замедлении химических превращений играет и то, что колебательные температуры H_2 и O_2 (T_4 и T_5) за фронтом УВ меньше T.

Эти же закономерности проявляются и при формировании ударно-волновой структуры, возникающей при обтекании клина сверхзвуковым потоком, хотя картина течения здесь существенно сложнее, чем в одномерном случае. На рис. 2 представлено поле статического давления, а на рис. 3 — поле массовых концентраций H_2O , $H_2/O_2 = 2/1$, рассчитанные по термически неравновесной модели и по модели термически равновесной химической кинетики, когда $T_{\xi} = T$. В обоих случаях можно выделить три характерные области течения. Область 1 соответствует зоне индукции, в конце которой, непосредственно около поверхности клина, происходит образование атомов О, Н, радикалов ОН и молекул H₂O. Длина этой зоны L_{ind} вдоль образующей клина определяется простым соотношением $L_{ind} = u_1 \tau_{ind}$, где u_1 — скорость газа за фронтом УВ (при рассматриваемых параметрах $u_1 = 4421$ м/с), au_{ind} — период индукции, который может быть определен из расчета процессов за фронтом в одномерном приближении (в рассматриваемом

Рис. 2. Поле статического давления, рассчитанное при учете (*a*) замедленного возбуждения молекулярных колебаний реагентов (термически неравновесная модель) и по термически равновесной модели (*б*) (изолинии *p* = const приведены в барах)

случае температура и давление газа за фронтом 824 К и 14.1 кПа соответственно). Отметим, что наличие такой простой зависимости длины зоны индукции от τ_{ind} отмечалось и ранее в [7] и соответствует экспериментальным данным. При учете неравновесного возбуждения молекулярных колебаний за фронтом УВ для рассматриваемых условий $L_{ind} = 8.3$ м. В то же время при использовании модели обычной термически равновесной химической кинетики $L_{ind} = 5.7$ м, отличие составляет 25 %. Это необходимо учитывать при интерпретации экспериментальных данных.

В области 2 происходит воспламенение смеси. При этом увеличиваются давление и температура. Волна сжатия распространяется от области воспламенения и поджигает всю смесь. В этой же области формируется первичная детонационная волна вследствие взаимодействия волн сжатия, генерируемых в зоне горения, и поэтому ее называют областью перехода ударной волны в детонационную. Ее длина L_t зависит от параметров потока за фронтом УВ и характерных времен химических реакций. Величина Lt в значительной степени определяется временем выделения химической энергии в процессе горения, т. е. в основном временем рекомбинации атомов и радикалов $\tau_r = \tau_c - \tau_{ind}$, где τ_c — полное время горения. Заметное влияние на величину L_t оказывает также скорость распространения волн сжатия, генерируемых в области горения. Для рассматриваемых параметров потока $L_t < L_{ind}$. Как и для длины зоны индукции, замедленное возбуждение молекулярных компонентов за фронтом УВ приводит к увеличению L_t по сравнению со случаем, когда этот эффект не учитывается (термически равновесная модель). От-

Рис. 3. Поле массовых концентраций H_2O , рассчитанное по термически неравновесной (*a*) и термически равновесной (*б*) моделям

личие значений L_t даже больше, чем для L_{ind} , и составляет ≈ 55 %.

Взаимодействие первичной детонационной волны с фронтом УВ приводит к формированию основной зоны детонационного горения (она обозначена цифрой 3). В этой области в потоке существует только одна наклонная детонационная волна (угол между фронтом детонационной волны и осью OX составляет $\approx 35^{\circ}$).

Возбуждение молекулярных колебаний H₂ даже в относительно узкой приосевой зоне потока значительно сокращает зону индукции и переходную область даже при небольшой энергии, вложенной в колебания H₂. Это иллюстрирует рис. 4, на котором представлено поле статического давления в случае возбуждения колебаний молекул H₂ (начальная колебательная температура $T_{40} = 2500$ K) в зоне высотой $Y_e = 75$ и 25 см, реализующееся при обтекании клина с полууглом $\beta = 8^{\circ}$. Отметим, что при такой колебательной температуре вклад энергии колебаний H_2 в удельную энтальпию газа составляет 19 %. При $Y_e = 75$ см величина L_{ind} уменьшается до 1.5 м, а расстояние, на котором реализуется детонационное горение L_d (область 3), составляет при этом всего 3 м. В случае отсутствия возбуждения $L_d = 11.5$ м. Даже при очень малой высоте зоны возбуждения ($Y_e = 25$ см) уменьшение всех характерных длин (L_{ind} , L_t , L_d) весьма значительно. По сравнению со случаем $Y_e = 75$ см величина L_{ind} практически остается той же самой. Увеличивается лишь длина переходной зоны ($L_t = 1.5$ м при $Y_e = 75$ см и $L_t = 2.5$ м при $Y_e = 25$ см) и соответственно L_d .

Интересно отметить, что если бы всю энергию, запасенную в колебаниях молекул H_2 при $T_{40} = 2500$ К перевести в поступательные степени свободы молекул при $T = T_4 = 600$ К, то температура газа увеличилась бы на

Рис. 4. Поле статического давления при предварительном возбуждении молекулярных колебаний H₂ ($T_{40} = 2500$ K) в приосевой области высотой $Y_e = 75$ см (a) и с $Y_e = 25$ см (d) (изолинии p = const даны в барах)

Рис. 5. Изменение массовых концентраций компонентов вдоль струйки тока с поперечной координатой y = 25 см в случае предварительного возбуждения молекул H₂ ($T_{40} = 2500$ K) в зоне с $Y_e = 25$ см и без возбуждения ($Y_e = 0$) (сплошные и штриховые линии соответственно)

≈110 К. Расчеты показывают, что если осуществить такой нагрев смеси $H_2/O_2 = 2/1$ в области с $y < Y_e$ ($T_0 = 710$ К при $y < Y_e$ и $T_0 = 600$ К при $y > Y_e$, $Y_e = 25$ см), то при одинаковых параметрах потока ($M_0 = 6$, $p_0 = 5 \cdot 10^3$ Па) величина L_d будет равна 5.2 м. В случае неравновесного возбуждения колебаний H_2 до $T_{40} = 2500$ К при $Y_e = 25$ см расчетное значение L_d равно 4 м. Такого же значения L_d при тепловом воздействии в осевой области $(Y_e = 25 \text{ см})$ можно добиться только при нагреве смеси до $T_0 = 1\,000$ К. Ускорение процессов, приводящих к формированию детонационной волны при обтекании клина сверхзвуковым потоком газа в случае предварительного возбуждения молекулярных колебаний H₂, обусловлено интенсификацией цепного механизма воспламенения и горения смесей H₂/O₂ (воздух). При $T_1 \approx 820$ K, реализующейся за фронтом УВ для рассматриваемых параметров по-

Рис. 6. Зависимости L_{ind}/L_{ind}^0 (кривые 1) и L_d/L_d^0 (кривые 2) от относительной высоты зоны возбуждения H_2 (Y_e/Y_*) при различных уровнях возбуждения H_2 :

сплощные линии — $T_{40} = 2500$ К, штриховые — $T_{40} = 3\,000$ К; значения L^0_{ind} и L^0_d соответствуют длине зоны индукции и длине зоны формирования детонационной волны при $Y_e = 0$

тока, формирование цепного процесса происходит через следующие стадии: $H_2(V) + O_2 =$ $2OH(V), OH(V) + H_2(V) = H_2O(V_1, V_2, V_3) + H,$ $H + O_2 = OH + O \ \mbox{i} \ O + H_2(V) = OH + H.$ Поскольку колебательно-возбужденные молекулы реагируют существенно быстрее, чем невозбужденные, скорость протекания всех стадий увеличивается по сравнению со случаем отсутствия предварительного возбуждения H₂. Это хорошо видно из рис. 5, где показано изменение вдоль струйки тока с $y = Y_e = 25$ см (она ограничивает область возбуждения в невозмущенном потоке) массовых концентраций компонентов $C_i = (\mu_i / \mu) \gamma_i$ в случае возбуждения колебаний H_2 до температуры $T_{40} = 2500$ К и при отсутствии возбуждения в потоке ($T_0 = 600$ K, $p_0 = 5 \cdot 10^3$ Па, M₀ = 6). Увеличение степени возбуждения H₂ приводит к еще большему ускорению всех процессов и, естественно, к дальнейшему уменьшению значений L_{ind}, L_t и L_d .

Помимо степени возбуждения H_2 , динамика процесса формирования детонационной волны на клине зависит от высоты области возбуждения, т. е. от величины Y_e . На рис. 6 показаны зависимости относительного сокращения длин L_{ind} и L_d по сравнению со случаем отсутствия возбуждения (значения L_{ind} и L_d в этом случае снабжены верхним индексом нуль) от величины $Y_e/Y_*,$ где Y_* соответствует поперечной координате точки, в которой начинается воспламенение на образующей клина ($Y_* = L_{ind}^0 \operatorname{tg} 8^\circ = 105.9 \operatorname{ \, cm}$) в случае отсутствия возбуждения, при $T_{40} = 2\,500$ и $3\,000$ К. Видно, что наибольшее сокращение L_d при возбуждении молекулярных колебаний Н₂ для обеих указанных температур реализуется при $Y_e/Y_* > 0.5$. Однако для $T_{40} = 3\,000$ К это сокращение более существенно (при этом $L_d = 0.17 L_d^0$). Следует отметить, что и при существенно меньшей высоте зоны возбуждения $(Y_e = 0.1Y_*)$ даже при $T_{40} = 2500$ К можно получить заметное (двухкратное) уменьшение L_d по сравнению со случаем отсутствия возбуждения. Это говорит о том, что и при очень малой высоте зоны возбуждения (при рассматриваемых параметрах потока $Y_e = 10$ см), а следовательно, и при небольшой энергии, подведенной к газу через возбуждение молекулярных колебаний H₂ в электрическом разряде, становится возможным более чем вдвое сократить расстояние, на котором реализуется детонационное горение смеси H_2/O_2 при сверхзвуковом обтекании клина.

ЗАКЛЮЧЕНИЕ

Замедленное возбуждение молекулярных колебаний исходных реагентов горючей смеси за фронтом наклонной ударной волны, реализующейся при обтекании клина сверхзвуковым потоком газа, существенным образом сказывается на воспламенении смеси и формировании области детонационного горения. Игнорирование этого эффекта при описании течения приводит к заметному (до 50 %) занижению длины зоны формирования детонационной волны. Предварительное возбуждение молекулярных колебаний H₂ в сверхзвуковом потоке смеси H₂/O₂ существенно ускоряет воспламенение смеси и сокращает длину зоны формирования детонации при небольшой степени возбуждения молекул H₂ ($T_{40} = 2500$ K). Даже при низких начальных температуре и давлении смеси $(T_0 = 600 \text{ K}, p_0 = 5 \cdot 10^3 \text{ Па})$ в сверхзвуковом потоке с $M_0 = 6$ возбуждение молекулярных колебаний Н2 позволяет стабилизировать детонационную волну на небольших расстояниях от носика клина ($\approx 2 \div 3$ м). Эти эффекты обусловлены интенсификацией цепных реакций в смеси Н2+О2 при колебательном возбуждении молекул H₂. Оказалось, что для инициирования детонации на сравнительно коротких расстояниях (≈ 2 м) при обтекании клина сверхзвуковым потоком достаточно реализовать возбуждение молекулярных колебаний H₂ в узкой приосевой области потока. Такой метод подвода энергии в поток в несколько раз эффективнее простого нагрева смеси для реализации детонационного горения.

ЛИТЕРАТУРА

- Gonzalez D. E. Computational study of inlet injection for premixed shock-induced combustion // AIAA-Paper N 96-4560. 1996.
 Chinitz W. On the use of shock-induced
- Chinitz W. On the use of shock-induced combustion in hypersonic engines // AIAA Paper. N 96-4536. 1996.
- Sislian J. P., Dudebout R., Schumacher J., Oppitz R. Inviscid propulsive characteristics of hypersonic scramjets // AIAA Paper N 96-4535. 1996.
- Li C., Kailasanath K., Oran E. S. Detonation structures generated by multiple shocks on ramaccelerator projectiles // Combust. Flame. 1997. V. 108, N 1. P. 173–186.
- Bezgin L., Ganzhelo A., Gouskov O., Kopchenov V. Some numerical investigation results on shock-induced combustion // AIAA Paper. N 98-1513. 1998.
- Bezgin L., Ganzhelo A., Gouskov O., et al. Some estimation of a possibility to utilize shockinduced combustion in propulsion systems // Gaseous and Heterogeneous Detonations: Science to Applications / G. Roy, S. Frolov, K. Kailasanath, N. Smirnov (Eds). Moscow: ENAS Publ., 1999. P. 285–300.

- Figueira Da Silva L. F., Deshaies B. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study // Combust. Flame. 2000. V. 121, N 1/2. P. 152–166.
- Старик А. М., Даутов Н. Г. О механизмах ускорения детонационного горения смесей H₂+воздух за ударными волнами при возбуждении молекулярных колебаний исходных реагентов // Докл. АН. 1994. Т. 350, № 6. С. 757–762.
- 9. Starik A. M., Titova N. S. Initiation of detonation in a supersonic flow behind a shock wave under non-equilibrium excitation of vibrational degrees of freedom of molecules // Gaseous and Heterogeneous Detonations: Science to Applications / G. Roy, S. Frolov, K. Kailasanath, N. Smirnov (Eds). Moscow: ENAS Publ., 1999. P. 225–240.
- 10. Старик А. М., Титова Н. С. О кинетических механизмах инициирования горения водородно-воздушных смесей в сверхзвуковом потоке за ударной волной при возбуждении молекулярных колебаний исходных реагентов // Журн. техн. физики. 2001. Т. 71, № 8. С. 1–12.
- Басов Н. Г., Данилычев В. А., Долгих В. А. и др. Предельный удельный энерговклад в водород и роль V-V процессов // Квант. электроника. 1986. Т. 13, № 6. С. 1161–1168.
- Knab O., Cogel T. H., Fruhauf H. H., Messerchmid E. W. CVCV-model validation by means of radiative heating calculations // AIAA Paper. N 95-2532. 1995.
- Losev S. Sergievskaya A., Starik A., Titova N. Modeling of thermal nonequilibrium multicomponent kinetics in gas dynamics and combustion // AIAA Paper N 97-2532. 1997.

Поступила в редакцию 10/IX 2004 г.