ЗОЛОТОРУДНОЕ МЕСТОРОЖДЕНИЕ ГЕРФЕД: ХАРАКТЕРИСТИКА ФЛЮИДОВ И *РТ*-УСЛОВИЯ ОБРАЗОВАНИЯ КВАРЦЕВЫХ ЖИЛ (*Енисейский кряж, Россия*)

Н.А. Гибшер, А.А. Томиленко, А.М. Сазонов*, М.А. Рябуха, А.Л. Тимкина

Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

* Институт горного дела, геологии и геотехнологий Сибирского федерального университета, 660041, Красноярск, просп. Свободный, 79, Россия

На золоторудном месторождении Герфед методами термобарометрии, газовой хроматографии, КР-спектроскопии и масс-спектрометрии с индуктивно связанной плазмой (ICP-MS) изучены флюидные включения в образцах кварца трех типов: кварцитов, оперяющих жил с низкими содержаниями золота (менее 1—2 г/т) и оперяющих жил с высоким содержанием золота (более 2.8—10 г/т). Установлено, что формирование трех типов кварца происходило из различающихся по составу и термобарогеохимическим параметрам флюидов. Кварциты образованы гомогенными существенно водно-хлоридными, низкосолеными (менее 7.0 мас. % NaCl-экв.) флюидами в интервале температур от 120 до 230°С и давлений от 0.1 до 0.5 кбар. Газовая фаза этих флюидов представлена смесью H₂O, CO₂, CH₄ и N₂ с соотношением $CO_{2}/(CO_{2} + H_{2}O) = 0.04 - 0.15$ и $CO_{2}/CH_{4} = 2.2 - 3.8$. Оперяющие кварцевые жилы с низким содержанием золота сформированы гомогенными и гетерогенными флюидами при 150-300°С и 0.5-2.0 кбар. Соленость флюидов возрастала до 10 мас. %. Газовая составляющая флюидов представлена H₂O, CO₂, N_2 и CH₄. Отношение CO₂/(CO₂ + H₂O) в этом флюиде менялось от 0.09 до 0.17, а CO₂/CH₄ от 2.2 до 2.3. Оперяющие кварцевые жилы с высоким содержанием золота формировались гетерогенными углекислотно-водными более солеными флюидами (от 6.0 до 23.3 мас. % NaCl-экв.) при более высоких температурах (150—400°С) и давлениях (1.1—2.5 кбар). Отношение CO₂/(CO₂ + H₂O) в этом флюиде колебалось в интервале от 0.18 до 0.27, а CO₂/CH₄ от 4.1 до 20.8. Во всех трех типах кварца выявлены отрицательные аномалии европия и отчетливое преобладание легких РЗЭ над тяжелыми. Разновекторная тенденция между суммой редкоземельных элементов и Eu/Sm в кварцитах и оперяющих кварцевых жилах указывает на разные источники флюидов при их образовании. Флюиды золотоносных кварцевых жил обогашены K. Li и Rb, а флюилы оперяющих жил с низким содержанием золота — Sr и Na. Кварциты обеднены Rb и Sr при близких содержаниях Na и K. Участки с высоким и бонанцевым содержанием золота в штокверках оперяющих жил формировались при наложении соленых, высокотемпературных водно-углекислотных флюидов на слабозолотоносные кварциты и оперяющие жилы.

Флюидные включения, кварц, золото, редкоземельные элементы.

THE GERFED GOLD DEPOSIT: FLUIDS AND *PT*-CONDITIONS FOR QUARTZ VEIN FORMATION (*Yenisei Ridge, Russia*)

N.A. Gibsher, A.A. Tomilenko, A.M. Sazonov, M.A. Ryabukha, and A.L. Timkina

At the Gerfed gold deposit, fluid inclusions were studied by thermobarometry, gas chromatography, Raman spectroscopy, and ICP MS in quartz samples of three types: quartzites, feathering Au-poor (<1-2 ppm) feathering veins, and Au-rich (>2.8–10 ppm) feathering veins. It has been found that these three types were produced from fluids differing in composition and thermobarogeochemical parameters. The quartzites formed from low-salt (<7.0 wt.% NaCl equiv.) homogeneous fluids of essentially aqueous-chloride composition at 120-230°C and 0.1–0.5 kbar. The gas phase in these fluids comprises H_2O , CO_2 , CH_4 , and N_2 , with $CO_2/(CO_2 + H_2O) =$ 0.04-0.15 and CO₂/CH₄ = 2.2-3.8. The Au-poor feathering veins formed from homogeneous and heterogeneous fluids at 150-300°C and 0.5-2.0 kbar. The fluid salinity increased to 10 wt.% NaCl equiv. The gas phase in them comprises H_2O , CO_2 , N_2 , and CH_4 . Here, $CO_2/(CO_2 + H_2O) = 0.09-0.17$ and $CO_2/CH_4 = 2.2-2.3$. The Au-rich feathering veins formed from heterogeneous and more saline (6.0-23.3 wt.% NaCl equiv.) CO₂-H₂O fluids at higher temperatures (150–400°C) and pressures (1.1–2.5 kbar). In this fluid $CO_2/(CO_2 + H_2O) = 0.18-0.27$ and $CO_{\gamma}/CH_{4} = 4.1-20.8$. All three quartz types show negative Eu anomalies and a distinct predominance of LREE over HREE. Differently directed trends of REE and Eu/Sm in the quartzites and feathering veins suggest that the fluids were produced from different sources. The fluids of the gold-bearing quartz veins are enriched in K, Li, and Rb, and those of the Au-poor feathering veins, in Sr and Na. The quartzites have low Rb and Sr and similar Na and K contents. Areas with a high and bonanza gold content in feathering-vein stockworks formed when high-temperature saline H₂O-CO₂ fluids were superposed on Au-poor quartzites and feathering veins.

Fluid inclusions, quartz, gold, rare-earth elements

введение

В метаморфических толщах Енисейского кряжа известны сотни кварцевых жил, но золотоносных (с промышленным содержанием золота) значительно меньше [Ли, Нелюбов, 1970; Середенко, 1985; Ли и др., 1985; Ли, 1997]. Ярким примером сочетания золотоносных и незолотоносных кварцевых жил является месторождение Герфед на Енисейском кряже. Изучение геологии месторождения и моделирование условий формирования кварца из жильных тел методами термобарогеохимии позволило выявить благоприятные факторы, влияющие на образование участков с бонанцевым содержанием золота. Полученные характеристики флюидов могут иметь практическое значение для прогнозирования золотоносносних кварцевых жил при поисково-разведочных и оценочных работах.

КРАТКАЯ ГЕОЛОГО-МИНЕРАЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ ГЕРФЕД

В настоящее время ЗАО «Васильевский рудник» проводит геолого-разведочные работы на месторождении Герасимово-Федоровское (Герфед). Это месторождение с первоначальным названием жила Магистральная, расположенное в Партизанском рудном районе Енисейского кряжа, открыто в 1890 г., и сразу же на отдельных участках с видимым золотом проводилась его отработка небольшими карьерами. Месторождение впервые было кратко описано А.К. Мейстером [1900, 1903]. Позднее сведения о его геологическом строении и золотоносности руд пополнялись геологами, проводившими геолого-разведочные работы, — в 1927—1932 гг. С.В. Резановым, в 1936 г. П.Я. Жилкиным, в 1948—1953 гг. В.Г. Голубевым, в 1959 г. К.Ш. Яркаевым, в 1959—1962 гг. Б.Е. Шелеховым, в 1975—1977 гг. В.А. Зоновым, в 1976—1978 гг. В.С. Власовым, в 1980—1990 гг. Г.С. Палиенко. Результаты фондовых материалов и собственные тематические исследования были опубликованы в работах [Кренделев, Лучко, 1970; Ли и др., 1985].

Золотоносные кварциты месторождения Герфед совместно с однотипным месторождением Николаевское и рудопроявлениями Верхнеборовое, Ивановское, Верхнеудерейское, жилами Магнитная, Ермаковская и др. образуют Герфед-Николаевское рудное поле, протягивающееся более чем на 15 км в меридиональном направлении вдоль крупного разлома Мейстера. Рудное поле расположено на восточном крыле куполовидного поднятия, в ядре которого выступает Татарский гранитоидный массив (рис. 1).

Плотные сливные кварциты жил Магистральная, Николаевская, Верхнеборовая и др. с реликтами псаммитовых и псефитовых структур представляются метаморфизованными и окварцованными пластовыми отложениями высокозрелой коры химического выветривания преимущественно кварцевого состава, занимающими граничное положение между нижним и верхним протерозоем. Приуроченность месторождений рудного поля к области стратиграфического несогласия нижнего и верхнего протерозоя выделяет его среди многочисленных золоторудных объектов Енисейского кряжа и придает ему специфические черты в строении рудных тел и локализации

Рис. 1. Геолого-структурная схема размещения месторождений и рудопроявлений в Герфедском рудном поле [Ли, Нелюбов, 1970].

1 — филлитовидные сланцы удерейской свиты; 2 — филлиты и слоистые алевролитовые сланцы горбилокской свиты; 3 — филлиты и песчаники с линзами порфиритов и туффитов кординской свиты; 4 — мраморизованные известняки пенченгинской свиты; 5 — граниты; 6 — ортоамфиболиты; 7 — разрывные нарушения; 8 — контур невскрытой части гранитной интрузии по гравиметрическим данным; 9 — месторождения золота; 10 — рудопроявления золота; 11 — золото-сурьмяное месторождение.

оруденения [Сазонов и др., 2010а,6]. Грубополосчатое распределение золота в жиле Магистральная, возможно, свидетельствует об изначально седиментогенном обогащении кварцитов золотом.

К кварцитам жилы Магистральная со стороны лежачего бока примыкают субширотные кварцевые жилы, иногда образующие пучки. Контакты жил выполнения с жилой Магистральная спаянные, не секущие кварциты. Длина этих жил колеблется от 25 до 200 м, мощность меняется от 0.2 до 6.5 м, а в отдельных раздувах достигает 14 м. Некоторые оперяющие жилы прослежены по падению до глубин 100—200 м. По элементам залегания выделяются жилы юго-восточного простирания и крутого падения, прилегающие к кварцитам жилы Магистральная под прямым углом, и жилы северо-восточного направления с пологим падением, примыкающие к кварцитам под острыми углами. Жилы и прожилки кварца распределены неравномерно, на фоне общего рассредоточенного развития выделяются участки сгущения, в которых жилы, разветвляясь и смыкаясь друг с другом, образуют штокверковые залежи. Эти участки пучков или штокверков обычно отличаются заметно более высокими концентрациями золота от других участков, где насыщение оперяющими жилами и прожилками не проявлено.

Пенченгинская свита, подстилающая кварциты жилы Магистральная и вмещающая оперяющие кварцевые жилы, сложена преимущественно метабазитовыми зелеными сланцами. Главными минералами являются кварц, альбит, серицитомусковит, хлорит, цоизит, актинолит и кальций-железо-магнезиальные карбонаты. В виде отдельных прослоев отмечаются метабазитовые сланцы с биотитом и стильпномеланом. Среди сланцевой толщи выделяются линзовидные тела ортоамфиболитов, относимых к индыглинскому комплексу. Породам свойственны реликтовая микрогаббровая и долеритовая структура и в основном актинолит-альбитовый состав с примесью реликтового авгита, метаморфических хлорита и цоизита. Кординская свита, залегающая со стороны висячего бока жилы Магистральная, представлена толщей переслаивающихся алевролитов, пелитов и алевропелитов, подвергшихся зеленосланцевому метаморфизму. Породы имеют однотипный минеральный состав, незначительно изменяются по цвету, характеру реликтовой слоистости и относятся к углеродистым хлорит-серицит-кварцевым филлитовидным сланцам. У подошвы свиты сланцы обогащены сульфидами (пирротином и пиритом), которые выделяются в форме гнезд, послойных и секущих прожилков, линз и вкрапленности. На участках, примыкающих к кварцитам жилы Магистральная, вмещающие породы подверглись динамометаморфизму, хлоритизации, альбитизации, карбонатизации и окварцеванию, развитых в сланцах в виде порфиробласт, агрегатных скоплений и прожилков соответствующих минералов. Метасоматиты, сопровождая кварциты жилы Магистральная, образуют субсогласные пластообразные и линзообразные тела и локализуются в тектонической зоне катаклазированных, брекчированных и милонитизированных пород пенченгинской и кординской свит мощностью около 1 км.

Стержневое рудное тело кварцитов состоит из одиннадцати разобщенных линзовидных и плитообразных его фрагментов. Длина отдельных тел кварцитов колеблется от 180—200 до 420 м и прослежена на глубину свыше 450 м. Максимальная мощность жилы Магистральная составляет 31.5 м, а суммарная длина более 7 км. Простирание жилы 10-20°, падение на юго-восток под углами 30-60°. Среднее простирание составляет 15°. В целом жила залегает согласно с вмещающими породами в зоне контакта пенченгинской и кординской свит. Несмотря на простое плитообразное строение, жила характеризуется наличием пережимов и раздувов, часто раздваивается. Золоторудная минерализация неравномерно проявлена в кварцитах, в поперечных кварцевых жилах и сульфидизированных альбит-карбонатных метасоматитах, развитых по зеленым сланцам пенченгинской свиты. В толще кординских сланцев оруденение не развито, хотя, как известно, Э. Гофманом [1844], исследовавшим источники россыпного золота в районе прииска Успенский на руч. Безымянка притока р. Удерея, извлекалось тонкое золото из черных сланцев без видимой сульфидизации и кварцевого прожилкования. По материалам геолого-разведочных работ последних лет установлено, что на участке рудного поля возможно выделить блоки для открытой отработки с развитием в них трех минералогических типов руд: золотосодержащих кварцитов, оперяющих кварцевых жил и альбит-карбонатных метасоматитов. Основной объем золотоносных руд представлен кварцитами жилы Магистральная, но среднее содержание золота в них не превышает 1 г/т при коэффициенте вариации от 90 до 190 %. Высокие концентрации золота отмечаются в некоторых оперяющих жилах. В отдельных пробах содержание золота в них достигает нескольких десятков и даже сотен г/т. Наиболее богатые золотом оперяющие жилы отрабатывались преимущественно до 1917 г. Золотоносные метасоматиты с промышленными концентрациями развиты в пределах рудного поля фрагментарно и не прослеживаются в виде выдержанных по простиранию и падению тел.

В составе рудной минерализации доминирует пирит, менее распространены арсенопирит и пирротин. Второстепенные минералы представлены глаукодотом, данаитом, кобальтином, халькопиритом, кубанитом, галенитом, сфалеритом, антимонитом. Реже встречаются халькозин, тетраэдрит, висмутин, алексит, самородный висмут и серебро. По минеральному составу руды отнесены к кварц-убогосульфидному типу (количество сульфидов не превышает 5 %). Золото — от микроскопического до крупного и даже самородкового. Микроскопическое золото отмечается в срастании с арсенопиритом и реже пиритом. Видимое золото отмечается в кварце и метасоматитах обычно вне связи с сульфидами. Морфология золотин уплощенная, линзовидная, проволочковидная, комковидная с ячеистыми, сетчатыми углублениями и шиповидными наростами, нередко попадаются искаженные кристаллы кубического, октаэдрического и кубооктаэдрического облика. Пробность самородного золота изменяется от 793 до 952 ‰, наиболее распространено высокопробное — 900—952 ‰. Это золото содержит ртуть от десятых до 4.75 мас. %. В ассоциации с ртутистым золотом отмечается антимонит. Оно развито в кварцитах и метасоматитах. Золоту оперяющих кварцевых жил свойственны минимальные концентрации ртути (< 0.1 %) и пробность 850—872 ‰.

ГЛАВНЫЕ ТИПЫ КВАРЦА И ФЛЮИДНЫЕ ВКЛЮЧЕНИЯ В НИХ

Кварциты, слагающие жилу Магистральная, имеют пятнистую, разной степени интенсивности серую до синей окраску с неоднородно проявленной трещиноватостью. Они пронизаны серией субпараллельных тонких (до 10 см мощности) прожилков белого и светло-серого кварца. Простирание жилок близкое кварцитам, падение субвертикальное. Микроструктура кварцитов сотовая, со средним размером зерен 0.1—0.2 мм. Пятнистые разновидности кварцитов имеют неравномерную зернистость. Морфология крупных зерен причудливая, с извилистыми и зубчатыми границами. Крупные зерна (1—2 мм) растут за счет «поглощения» мелких при перекристаллизации. Среди кварцитов отмечаются участки с разной степенью выразительности бластопсаммитовой структуры, характеризующейся отчетливо наблюдаемым реликтовым мелкообломочным строением исходных пород. В разной степени окатанные зерна обломочного кварца обрастаются пленочным кварцем регенерации зерен. Помимо сульфидов в кварцитах развиты хлорит, мусковит, альбит, графит, апатит, циркон, бадделиит, рутил. Для оперяющих жил и прожилков, залегающих среди зеленых сланцев пенченгинской свиты, типичен крупнозернистый кварц светло-серого цвета с голубоватым оттенком.

Направление оптических осей кварца кварцитов и оперяющих кварцевых жил имеет тектоническую природу. В кварцитах проявлены один или два максимума ориентировки оптических осей минерала, лежащих в плоскости тела кварцитов. В оперяющих жилах максимумы положения оптических осей направлены перпендикулярно контакту жил и согласуются с ориентировкой жилы Магистральная. Вероятно, бластезный рост зерен кварца протекал в условиях тектонических напряжений, ориентированных вдоль плоскости тела кварцитов как по простиранию, так и по падению.

Для оперяющих кварцевых жил характерен однотипный набор сульфидов, но они различаются по содержанию золота. В одних жилах количество золота не превышает 1 г/т, а в других — постоянно отмечается видимое золото с содержаниями, по данным пробирного анализа и результатам отработки, от первых до сотен граммов и иногда килограммов на тонну жильного кварца. Для них типично наличие пустот со щетками друзовидного водяно-прозрачного кварца, зонок катаклаза и пластических дислокаций. В приповерхностной зоне этот кварц интенсивно обохрен гидрооксидами железа.

Нами исследованы флюидные включения в серии образцов мелкозернистых кварцитов жилы Магистральная, крупнозернистого молочно-белого с голубовато-серым оттенком кварца оперяющих жил выполнения с содержанием золота менее 1 г/т (слаборудного) и от 2.8 до 10 г/т.

Флюидные включения в кварцитах. Кварциты (обр. Г-393-45.5 и Г-393-51.9) сложены мелкими зернами кварца размером от 100 до 500 мкм. В зернах кварца законсервированы мельчайшие флюидные включения, их размер обычно колеблется от 3 до 5 мкм и редко достигает 7—10 мкм (рис. 2, *a*). Включения либо равномерно рассеяны по всему зерну кварца, либо образуют группы из 5—15 включений, не приуроченные к залеченным трещинам. Форма вакуолей — округло-удлиненная. Эти включения отнесены к первичным и мнимовторичным (первично-вторичным) образованиям. В первичных флюидных включениях обычно присутствуют две фазы ($\mathbb{X}_{H_{20}} + \Gamma$), очень редко три фазы ($\mathbb{X}_{H_{20}} + \mathbb{X}_{CO_2} + \Gamma$) и еще реже однофазные (газовые). Помимо первичных флюидных включений в кварцитах обнаружены вторичные существенно газовые включения ($\mathbb{X}_{H_{20}} \leq \Gamma$), которые приурочены к залеченным трещинам, рассекающим границы кварцевых зерен, либо к межзерновым границам. Газовые включения имеют самую разнообразную, но чаще удлиненную форму вакуолей, а их размеры значительно превосходят размер первичных и первично-вторичных включений и достигают 20—30 мкм. Кроме флюидных включений в матрице кварца присутствуют в обилии твердые углеродистые частички черного цвета самых разнообразных размеров, они и определяют серый цвет кварца кварцитов Магистральной жилы. Черные частички ки нередко присутствуют в офлоидных включениях.

Флюидные включения в кварце оперяющих жил с низким содержанием золота. В кварце оперяющих жил с содержанием золота менее 1 г/т (обр. Г-404-144.7 и Г-393-53.7) присутствуют двухфазные ($\mathcal{K}_{H_{20}} + \Gamma$) флюидные включения с различным соотношением жидкости и газа, которые колеблются от 80:20 до 40:60. Они образуют группы из 5—10 включений, находящихся внутри кварцевых

Рис. 2. Типы флюидных включений в кварцевых жилах Герфедского золоторудного месторождения.

a — кварциты, Au < 1—2 г/т; б, в — оперяющие кварцевые жилы: б — Au < 1 г/т, в — Au = 2.8—10.0 г/т. Ж_{H2O} — водный раствор хлоридов, Г — газовая смесь CO₂ + CH₄ + N₂.

зерен вне залеченных трещин и отнесенных нами к первичным образованиям. Размер включений от 5 до 15 мкм, форма вакуолей округло-угловатая (см. рис. 2, б). Изредка внутри этих включений присутствуют ксеногенные фазы в виде прозрачных кристалликов или твердых частичек черного цвета. Трехфазные флюидные включения ($\mathbb{X}_{H_{2O}} + \mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$) и однофазные ($\mathbb{X}_{CO_2+CH_4+N_2}$, $\Gamma_{CO_2+CH_4+N_2}$) образуют цепочки, не выходящие за пределы отдельных кварцевых зерен. На этом основании они отнесены к первично-вторичным образованиям.

Флюидные включения в кварце оперяющих жил с высоким содержанием золота. Флюидные включения в золотоносном кварце (обр. Г-406-199.6, Г-406-199.8 и Г-408-86.9) представлены сущест-

венно водным ($\mathbb{X}_{H_2O} + \Gamma$) и углекислотно-метан-азотным ($\mathbb{X}_{H_2O} + \mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$, $\mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$, $\Gamma_{CO_2+CH_4+N_2}$) типами (см. рис. 2, *в*). В существенно водном типе включений соотношение водной и газовой фазы колеблется от 20:80 до 50:50. Одни углекислотно-метан-азотные включения содержат фазу жидкой воды до 20—30 %, а другие — менее 10 %, которая невидима под микроскопом. Такие включения условно названы однофазными и заполнены они либо сжиженными, либо газообразными смесями $CO_2 + CH_4 + N_2$ (см. рис. 2, *в*). Размер этих включений могут встречаться в кварцевых зернах как совместно, образуя группы из 5—15 включений, так и порознь. В одних зернах кварца преобладает существенно водный тип включений ($\mathbb{X}_{H_2O} + \Gamma$), а в других — углекислотно-метан-азотный ($\mathbb{X}_{H_2O} + \mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$, $\mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$, $\Gamma_{CO_2+CH_4+N_2} \pm \Gamma$, $\Gamma_{CO_2+CH_4+N_2} \pm \Gamma$, $\Gamma_{CO_2+CH_4+N_2} \pm \Gamma$, $\mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$, $\Gamma_{CO_2+CH_4+N_2} \pm \Gamma$, в других — углекислотно-метан-азотный ($\mathbb{X}_{H_2O} + \mathbb{X}_{CO_2+CH_4+N_2} \pm \Gamma$). Черные частички углеродистого вещества размером 1—5 мкм также присутствуют внутри некоторых флюидных включений.

МЕТОДЫ ИССЛЕДОВАНИЯ ФЛЮИДНЫХ ВКЛЮЧЕНИЙ

Флюидные включения в кварце исследовались методами термометрии и криометрии, КР-спектроскопии, газовой хроматографии и методом масс-спектрометрии с индуктивно связанной плазмой (ICP-MS) и атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (AES-ICP). Для определения температур общей гомогенизации, температур эвтектики и плавления льда растворов, температур частичной гомогенизации и плавления сжиженных газов использовалась микротермокамера THMSG-600 фирмы Linkam с диапазоном измерений температур от –196 до +600°C. Соленость минералообразующих растворов находили по температуре плавления льда, используя двухкомпонентную водно-солевую систему (NaCl—H₂O) [Киргинцев и др., 1972]. Состав водной фазы включений определялся на основании температуры эвтектики, характеризующей водно-солевую систему [Борисенко, 1977].

Анализ валового состава газовой фазы включений в кварце выполнен на хроматографической установке для одновременного определения CO_2 , CO, N_2 , H_2 , H_2S , SO_2 , H_2O , O_2 , CH_4 и других углеводородов, для которых экспериментально установлены следующие пределы обнаружения (нг): $CO_2 - 0.06$; $H_2O - 0.4$; $H_2 - 0.13$; $N_2 - 0.03$; CO - 0.5; $CH_4 - 0.03$; $C_2H_2 - 0.05$; $C_2H_4 + C_2H_6 - 0.04$; $C_3H_8 - 0.05$; $C_4H_{10} - 0.09$; $C_5H_{12} - 0.08$; $C_6H_{14} - 0.1$ [Осоргин, 1990]. Калибровка хроматографической установки, выполненная путем введения известных количеств чистых газовых компонентов, позволила установить погрешность определения компонентов: CO_2 , C_2 - C_n , N_2 , CO, CH_4 -2 отн. %; H_2 и H_2O -10 отн. %. Вскрытие флюидных включений проводилось при температуре 600°C из навески кварца (300 мг) размером 0.25-0.5 мм, отобранного вручную под бинокулярным микроскопом [Томиленко, Гибшер, 2001]. Состав газовой фазы индивидуальных флюидных включений исследован на одноканальном KP-спектрометре Ramanor U-1000 фирмы Jobin Yvon с помощью аргонового лазера мощностью 2 Вт по методике, изложенной в работе [Dubessy et al., 1989].

Методика подготовки проб и анализ состава флюидов методами ICP-MS и AES-ICP изложены в работах [Шацкий и др., 2006; Томиленко и др., 2008; Николаева и др., 2008]. Элементное определение выполнено на масс-спектрометре высокого разрешения с магнитным сектором ELEMENT фирмы Finnigan MAT (Германия) с использованием ультразвукового распылителя U-5000AT+ и на атомноэмиссионном спектрометре IRIS Advantage фирмы ThermoJarrell Intertechs Corporation (США). Расчет концентраций проводился с помощью внешней градуировки и с применением внутреннего стандарта.

Рис. 3. Гистограммы температур общей гомогенизации флюидных включений в кварцевых жилах Герфедского золоторудного месторождения.

а—*в*— см. рис. 2. *1*, 2 — вид гомогенизации: *1* — в жидкость, 2 — в газ. *N* — количество определений.

Таблица 1.	Результа	аты исследова	иния индивиду:	альных флюид	ных включений	в кварце золотору	дного месторожд	цения Герф	ед	
Тип кварцевых жил	№ образца	Генерация включений	Т _{обш. гом.} , °С	$T_{_{3\mathrm{HI}}},^{\circ}\mathrm{C}$	Соленость, мас. % NaCl-экв.	$\begin{array}{c} T_{\text{upab.}} \\ \text{CO}_2 \pm \text{CH}_4 \pm \text{N}_2, ^{\circ}\text{C} \end{array}$	$T_{ m vlact.rom.}$ ° C	Вид гомо- генизации	Плотность, г/см ³	Давление, кбар
					,					
	L-303-51 0	II, IIB	140-230	-18.521.3	1—6	-56.757.0	+25.3+7.2	Ľ	0.19 - 0.11	0.1 - 0.5
Кварциты,	C.I.C-CCC- I	В	310-330	_		-66.369.0				
$Au < 1 {\rm -\!\!-\!\!-} 2 \ r/r$	L 202 15 5	II, IIB	120-225	-18.020.5	0.57	-56.857.0	+19.5+5.0	Г	0.24-0.11	0.1-0.5
	C.C+-CCC- I	В	290—350			-58.359.4	+20.0+8.0	*		
	F 404 144 7	П	180-260	-18.321.5	3—10	-66.073.0	-54.057.9	*		
Оперяющие,	I -404-144./	IIB	260-300	-22.326.5	6—9	-56.977.5	-46.94.5	Г, Ж	0.03 - 0.8	0.52.0
$Au < 1 \ r/\tau$	L 303 53 7	П	150-300	-19.022.1	1.5-8.8	-65.768.7	-40.453.9	Γ		
	1.00-040- I	IIB	250-300			-56.978.3	-2.5+1.0	Г, Ж	0.8 - 0.4	0.51.1
	L-408-86 9	Ш	210-330	-28.730.1	4.5—10.5	-56.860.3	+6.0+10.8	ж	0.9—0.86	1.1-1.7
	1.00-001-1	IIB	190-350	-27.328.7	8—16	-57.159.8	+10.722.3	*	0.86 - 1.04	1.52.4
Оперяющие.	L 406 100 6	П	180—390	-27.831.5	610	-56.765.8	+14.824.4	*	0.74-1.05	1.7-2.2
Au = $2.8 - 10.0 \text{ r/r}$	0.661-004- I	IIB	230—400	-29.132.0	13—22	-56.966.0	+22.825.0	*	0.751.05	1.5—1.9
		П	200—370	-29.330.8	6-10	-57.065.8	+5.824.0	*	0.9 - 1.05	2.1—2.5
	Γ -406-199.8	IIB	150-390	-27.129.8	1520	-56.963.0	+19.225.0	\$	0.77 - 1.05	1.4—1.9
		*	310—330	-41.045.0	22—23.3					

Примечание. П — первичные, В — вгоричные, ПВ — первично-вторичные. Г — в газовую фазу, Ж — в жидкую фазу. Прочерк — не определялось.

По данным О.Д. Ставрова, Т.А. Зозули [Ставров, Зозуля, 1975; Ставров, 1978], структура кварца неблагоприятна для вхождения щелочных и щелочноземельных элементов, и их присутствие в кварце связано, видимо, с газово-жидкими включениями. При этом абсолютные содержания этих элементов естественно будут колебаться в зависимости от количества флюидных включений в кварце, а величина отношений Na/K, Rb/Sr, Ca/Mg и Fe/Mg во флюиде связана лишь с изменением этих параметров в самом гидротермальном растворе, из которого происходила кристаллизация кварца. Главным источником редкоземельных элементов в кварце являются газово-жидкие включения, на это указывают специальные исследования, проведенные в этом направлении [Новгородова и др., 1984; Винокуров и др., 1999; Томиленко и др., 2008]. Чистота отбора монофракций и крайне низкие содержания лантаноидов ($\Sigma La = 0.00n - 0.n$, г/т) в кварцах месторождения исключают присутствие в проанализированных пробах каких-либо минеральных примесей. Это позволяет предположить, что полученные результаты характеризуют в основном концентрации лантаноидов, щелочных и щелочноземельных элементов во флюидных включениях.

Давление флюида в системе $H_2O-CO_2-CH_4$ определялось по двум сингенетичным включениям, находящимся в одном сообществе (одной группе): одно включение существенно водное газово-жидкое $(\mathcal{K}_{H_2O} + \Gamma)$ и второе углекислотно-метановое $(\mathcal{K}_{CO_2 \pm CH_4} \pm \Gamma_{CO_2 \pm CH_4})$. По газово-жидкому включению замерялась температура общей гомогенизации, а по углекислотно-метановому определялся вид гомогенизации (в газ или жидкость), замерялись температуры частичной гомогенизации и плавления сжиженного газа. По пересечению изотерм температур плавления и частичной гомогенизации сжиженного газа по vX-диаграмме для системы CO_2 --CH₄ [Heyen et al., 1982; Regis et al., 1994] оценивался молярный объем в углекислотно-метановых включениях. Плотность и давление рудообразующего флюида в системе H_2O --CO₂--CH₄, учитывая значения молярного объема и температур общей гомогенизации, рассчитывались по программе Isochor [Bakker, 2001], используя уравнения из работы [Duan et al., 1992a,b; 1996].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ФЛЮИДНЫХ ВКЛЮЧЕНИЙ

Температура общей гомогенизации флюидных включений. Полученные результаты по температуре общей гомогенизации флюидных включений приведены в табл. 1 и на рис. 3. Первичные флюидные включения в кварце кварцитов показали, что интервал температур общей гомогенизации составляет 120—230°C с максимумом гомогенизаций при 150—200°C (см. рис. 3, *a*). Все первичные включения гомогенизировались в жидкую фазу, а вторичные — в газовую фазу при 290—350°C.

Флюидные включения оперяющих жил с низким содержанием золота гомогенизировались в жидкую (150—300°С) и в газовую (250—400°С) фазы (см. рис. 3, б). При этом максимальное количество гомогенизаций как в жидкую, так и в газовую фазы происходило при 250—300°С.

Флюидные включения в кварце оперяющих жил с высоким содержанием золота гомогенизировались при более высоких температурах. Общий интервал температур гомогенизаций составляет 150— 400°С, с максимумом гомогенизаций при 300—350°С (см. рис. 3, *в*). В процессе нагревания 90 % флюидных включений гомогенизировались в жидкую фазу, остальные — в газовую (300—350°С).

I—3 — типы кварцевых жил: *I* — кварциты, Au < 1—2 г/т; 2, 3 — оперяющие: 2 — Au < 1 г/т, 3 — Au = 2.8—10.0 г/т.

Типы кварцевых	№ образца; его		Содержа	ание, г/т		Содер	жание, м	10л. %	CO /(CO + CH)	СО /СН
жил	часть	CO ₂	H ₂ O	N ₂	CH ₄	С	0	Н	$CO_2/(CO_2 + CII_4)$	CO ₂ /CII ₄
	Г-393-51.9	44	950	2.0	20.0	1.3	32.7	66.0	0.04	2.2
Кварциты, Ан < 1 - 2 г/т	Г-393-45.5; а	23	132	0.0	6.0	3.5	33.0	63.5	0.15	3.8
	Г-393-45.5; б	10	70	0.0	4.0	3.5	32.0	64.5	0.12	2.5
Оперяющие, Au < 1 г/т	Г-404-144.7	46	220	2.0	20.0	5.0	31.0	64.0	0.17	2.3
	Г-393-53.7	86	910	10.0	40.0	2.6	32.0	65.4	0.09	2.2
	Г-408-86.9; а	104	464	9.0	20.0	4.0	34.0	62.0	0.18	5.2
	Г-408-86.9; б	122	402	8.0	30.0	6.0	33.0	61.0	0.23	4.1
Оперяющие, Au = 2.8—10.0 г/т	Г-406-199.6; б	442	1600	10.0	20.0	4.0	36.0	60.0	0.22	20.2
	Г-406-199.8; а	348	1500	10.0	20.0	3.3	35.4	61.3	0.19	17.4
	Г-406-199.8; б	416	1100	10.0	20.0	5.0	36.7	58.3	0.27	20.8

Таблица 2. Состав газовой фазы флюидных включений в кварце золоторудного месторождения Герфед (по данным газовой хроматографии)

Состав и соленость водной фазы включений. В кварце кварцитов температура эвтектики ($T_{_{3BT}}$) водной фазы флюидных включений колеблется в достаточно узком интервале ($-18.0...-21.3^{\circ}$ С) и близка к водно-солевой системе NaCl—H₂O. Температура плавления льда меняется от -0.1 до -3.5° С, соответствуя солености 0.5—7.0 мас. % NaCl-экв. (рис. 4, см. табл. 1).

В водной фазе флюидных включений в кварце оперяющих жил с низким содержанием золота температура эвтектики меняется от -18.3 до -22.1°C и также близка к водно-солевой системе NaCl— H_2O , $T_{_{эвт.}}$ которой составляет -21.2°C [Киргинцев и др., 1972]. Температура плавления ($T_{_{плав.}}$) льда колеблется от -0.5 до -6.0°C, соответствуя солености 1.5—10 мас. % NaCl-экв.

Более низкие температуры эвтектики и плавления льда характерны для водной фазы флюидных включений оперяющих жил с высоким содержанием золота. Выявлены две группы включений с разными температурами. Для первой $T_{_{98T.}} = -27.3...-32.0^{\circ}$ С, $T_{_{плав. льда}} = -3.0...-16.0^{\circ}$ С, для второй — $T_{_{98T.}} = -41.0...$ – 45.0°С, $T_{_{плав. льда}} = -18.5...-21.5^{\circ}$ С. По своим характеристикам водный раствор первой группы включений близок к водно-солевой системе с хлоридом Mg, а второй — Са, соленость соответственно составляет 6.0—20.0 и 22.0—23.3 мас. %.

Состав газовой составляющей флюидов кварцитов жилы Магистральная, по данным хроматографии, представлен (г/т) CO₂ (10—44), H₂O (70—950), N₂ (0—2), CH₄ (4—20). Отношение CO₂/ (CO₂ + H₂O) колеблется в интервале от 0.04 до 0.15, a CO₂/CH₄ — от 2.2 до 3.8 (табл. 2).

Флюиды оперяющих жил с низким содержанием золота (менее 1 г/т) уже более обогащены H_2O (220—910 г/т), CO_2 (46—86), N_2 (2—10), CH_4 (20—40), возрастает величина $CO_2/(CO_2 + H_2O)$ (от 0.09 до 0.17), CO_2/CH_4 не превышает 2.3.

Во флюидах оперяющих жил с высоким содержанием золота (2.8—10 г/т) по данным газовой хроматографии (см. табл. 2) определены повышенные количества по сравнению с первыми двумя типами кварцевых жил CO₂ (104—442 г/т), H₂O (402—1600), N₂ (8.0—10.0), содержание метана не опускается ниже 20 г/т. В однофазных включениях, заполненных сжиженным газом, в процессе замораживания обнаружены твердые фазы, которые плавились при температурах от +13.8 до +16.1°С. Последние характерны для газогидратов метана [Collins, 1979]. В дальнейшем наличие метана в этих включениях подтверждено КР-анализом, показавшим, что содержание CH₄ в газовой фазе флюидов может достигать 40.1 мол. % (табл. 3). Отношение CO₂/(CO₂ + H₂O) во флюиде меняется от 0.18 до 0.23, a CO₂/CH₄ — от 4.1 до 20.8. Состав летучих из флюидных включений в кварце кварцитов на тройной диаграмме C—O— H (рис. 5) изменяется однонаправленно, с явным тяготением тренда к воде, а в составе летучих из оперяющих жил существенно увеличивается доля углекислоты.

Исследование газовой фазы индивидуальных флюидных включений методом КР-спектроскопии показало, что газовая составляющая флюидов в кварцитах представлена CO_2 и CH_4 в количествах от 98.7 до 99.7 и от 0.3 до 1.5 мол. % соответственно (см. табл. 3). В газовой фазе флюидных включений из кварца оперяющих жил с низким содержанием золота преобладает метан, содержание которого колеблется от 11.3 до 100 мол. %. Содержание CO_2 меняется от 0.0 до 83.0 мол. %, а азота — от 0.0 до 6.0 мол. %. В газовой фазе флюидных включений оперяющих жил с высоким содержанием золота преобладает CO_2 с содержанием 71.8—97.9 мол. %. Содержание метана колеблется от 1.2 до 19.9 мол. %, а азота — от 0.0 до 11.4 мол. % (см. табл. 3).

	№ образца;	Т _{плав.}		Т	Вилгомо	Содер	жание, м	юл. %	Парие	Плот-
тип кварцевых жил	его часть; № включения	CO ₂ —CH ₄ —N °C	2,	¹ част. гом., °С	генизации	CO ₂	CH4	N ₂	ние, кбар	ность, г/см ³
	Г-393-45.5-1	-56.9		+7.2	Г	98.7	1.3	0.0	0.1	0.12
	Г-393-45.5-2	-56.7		+19.5	»	99.5	0.5	0.0	0.4	0.19
Кварциты,	Г-393-45.5-3	-57.0		+10.0	»	99.6	0.4	0.0	0.2	0.14
Au < 1—2 г/т	Г-393-51.9-1	-56.8		+25.3	»	99.7	0.3	0.0	0.5	0.24
	Г-393-45.5-2	-57.3		+18.5	»	98.5	1.5	0.0	0.3	0.18
	Г-404-144.7; 1; 1				_	0.0	100.0	0.0	_	
	Г-404-144.7; 1; 2				_	0.0	100.0	0.0	_	_
	Г-404-144.7; 1; 3	-72		-61.7	ГЖ	45.6	49.1	5.3	_	_
	Г-404-144.7; 1; 4	-66.6		-49.3	Ж	68.8	28.6	2.6	_	_
	Г-404-144.7; 1; 6	_				53.4	46.6	0.0	_	—
	Г-404-144.7; 1; 7				_	0.0	100.0	0.0	_	_
	Г-404-144.7; 1; 8	_			_	0.0	100.0	0.0	_	_
Оперяющие,	Г-404-144.7; 4; 10	-70		-57.5	Г	58.9	41.1	0.0	0.5	0.33
Аu < 1 г/т	Г-404-144.7; 5; 11	_				0.0	100.0	0.0	_	—
	Г-404-144.7; 1; 13	-182.5		-82.8	Г	0.0	100.0	0.0	_	—
	Г-404-144.7; 1; 14	-182.5		-82.7	Ж	0.0	100.0	0.0	_	—
	Г-393-53.7; б; 1	-63.8		-32.0	»	82.7	11.3	6.0	_	—
	Г-393-53.7; б; 2	-65.1		-40.0	»	83.0	17.0	0.0	1.5	0.76
	Г-393-53.7; б; 3	-64.9		-38.7	»	85.1	14.9	0.0	1.8	0.78
	Г-393-53.7; б; 4	-64.4		-38.3	»	81.9	18.1	0.0	2.0	0.79
	Г-393-53.7; б; 5				—	82.2	17.8	0.0	_	—
Оперяющие, Au = 2.8—10.0 г/т	Г-408-86.9; 1; 2	_			_	71.8	19.9	8.3	_	—
	Г-408-86.9; іі; 1	-58.1		-22.3	Ж	90.7	9.3	0.0	2.5	0.95
	Г-408-86.9; іі; 2	-63.0		-18.5	»	74.0	15.1	10.9	_	—
	Г-408-86.9; іі; 3				—	79.7	15.7	4.6	-	—
	Г-408-86.9; іі; 4				—	91.6	6.3	2.1	—	—
	Г-408-86.9; іі; 5			—	_	92.4	7.6	0.0	-	—
	Г-408-86.9; іі; 6				—	90.2	3.9	5.9	—	—
	Г-408-86.9; іі; 7				—	88.0	4.1	7.9	_	—
	Г-408-86.9; 2; 1	-62.1		10.7	Ж	89.0	11.0	0.0	1.1	0.71
	Г-408-86.9; 2; 2				—	81.4	18.6	0.0	_	—
	Г-408-86.9; 3; 1	-61.9		-9.5	Ж	90.1	9.9	0.0	1.9	0.79
	Г-408-86.9; 3; 2				»	91.8	6.6	1.6	_	—
	Г-408-86.9; 3; 3	-59.5		6.0	»	96.3	2.7	1.0	1.7	0.8
	Г-406-199.6; 2; 2	-57.3		-0.2	»	86.8	5.8	7.4	_	—
	Г-406-199.6; 2; 3			-24	»	78.7	9.8	11.4	-	—
	Г-406-199.6; 2; 4			6	»	93.0	5.7	1.3	-	—
	Г-406-199.6; 2; 5	-61.2		-21.0	»	85.6	14.4	0.0	2.4	0.87
	Г-406-199.8; 1; 1	-59.1		-7.9	»	97.9	1.2	0.9	2.3	0.90
	Г-406-199.8; 1; 2	-59.2		1.4	»	88.2	5.5	6.1	-	—
	Г-406-199.8; 1; 3	-60.0		0.2	-	95.6	3.6	0.8	1.9	0.83
	Г-406-199.8; 1; 5	-62.4		-10	Ж	95.0	4.4	0.6	1.7	0.79
	Г-406-199.8; 1; 6				»	95.7	2.0	2.3	-	
	Г-406-199.8; 1; 7	-63.0		-23.6	»	93.8	4.5	1.7	-	—
	Г-406-199.8; 1; 8	-		-0.5	»	94.0	4.8	1.3	-	
	Г-406-199.8; 1; 9	-62.6		-18.5	»	96.7	1.7	1.6		—

Таблица 3. Результаты криометрических и КР-спектроскопических исследований индивидуальных флюидных включений в кварце золоторудного месторождения Герфед

							0	кончани	е табл. 3
Тип кваршевых	№ образца;	<i>Т</i> _{плав.}	T	Вид гомо-	Содер	жание, м	юл. %	Лавле-	Плот-
жил	его часть; № включения	CO ₂ —CH ₄ —N ₂ , °C	°С	генизации	CO ₂	CH_4	N_2	ние, кбар	ность, г/см ³
	Г-406-199.8; 2; 1		-9.5	»	92.0	8.0	0.0		_
Оперяющие,	Г-406-199.8; 2; 2			—	97.6	2.4	0.0	-	—
	Г-406-199.8; 2; 3	-63.0	-23.6	Ж	91.4	8.6	0.0	2.0	0.82
71u 2.0 10.01/1	Г-406-199.8; 2; 5			_	96.9	3.1	0.0		—
	Г-406-199.8; 2; 6	_	-19.5	ж	93.5	6.5	0.0	_	

Примечание. ГЖ — с критическими явлениями (исчезновение мениска газ—жидкость). Прочерк — не определялось.

Редкоземельные, щелочные и щелочноземельные элементы в кварцевых жилах. Результаты исследования концентраций редкоземельных (РЗЭ), щелочных и щелочноземельных элементов в кварцевых жилах Герфедского месторождения приведены в табл. 4, 5. В кварцитах наблюдаются небольшие вариации содержаний всех РЗЭ, а также их суммарной концентрации, Σ РЗЭ = 0.0354—0.1169 г/т (см. табл. 4). Такая же тенденция отмечена и в оперяющих кварцевых жилах с высоким содержанием золота. Суммарная концентрация лантаноидов в них меняется от 0.0202 до 0.1169 г/т. Широкие вариации содержаний всех РЗЭ характерны для кварцевых жил с низким содержанием золота (Au < 1 г/т). $\Sigma P3Э =$ = 0.026—2.7145 г/т. Проанализированным кварцам свойствен отрицательный тип распределения концентраций РЗЭ, т.е. отчетливое преобладание легких РЗЭ над тяжелыми, в частности, выражающееся величиной La/Yb. Последнее достигает наибольших значений (5.0—173.3) в оперяющих кварцевых жилах с низким содержанием золота. Для оперяющих жил с высоким содержанием золота эта величина колеблется от 5.5 до 30.0, а для кваршитов отношение La/Yb меняется еще в более узком интервале (от 1.0 до 5.25) (см. табл. 4). Во всех типах кварца выявлены слабые отрицательные аномалии европия (рис. 6). На диаграмме $\Sigma P33$ —(Eu/Sm)_N (рис. 7) проявлены некоторые геохимические особенности $\Sigma P33$ в кварце месторождения Герфед. Намечается тенденция к обратно пропорциональной зависимости между величинами ΣРЗЭ и отношением (Eu/Sm)_N в оперяющих жилах и прямо пропорциональная зависимость между этими величинами в кварцитах.

Результаты определения концентраций щелочных и щелочноземельных элементов показали (см. табл. 5), что флюиды оперяющих золотоносных кварцевых жил обогащены K, Li и Rb, оперяющие жилы с низким содержанием золота обогащены Sr и Na, а кварциты обеднены Rb и Sr при близких содержаниях Na и K. Выявлены более широкие интервалы отношений Rb/Sr, Na/K и Fe/Mg в оперяющих золотоносных жилах, которые превышают в несколько раз величины этих отношений в кварцитах и оперяющих жилах с низким содержанием золота (см. табл. 5).

Рис. 5. Состав газовой составляющей флюидов (мас. %) в кварцевых жилах Герфедского золоторудного месторождения по данным газовой хроматографии (*a*) и КР-спектроскопии (*б*).

Усл. обозн. см. на рис. 4.

Эле-	Тип кварцевых жил									
мент,	кварі	циты, Au < 1-	—2 г/т	оперяющие	е, Au < 1 г/т		оперяющи	4e, Au = 2.8–	—10.0 г/т	
$n \cdot 10^{-2}$	Г-393-	Г-393-	Г-393-	Г-404-	Г-393-	Г-406-	Г-406-	Г-406-	Г-408-	Г-408-
	51.9	45.5; a	45.5; б	144.7	53.7	199.6	199.8; a	199.8; б	86.9; a	86.9; б
La	0.6	2.1	0.5	52.0	0.5	0.6	0.5	2.2	2.1	0.5
Ce	1.1	4.3	1.1	114.0	0.9	0.9	1.1	4.1	4.0	0.8
Pr	0.1	0.6	0.2	17.0	0.1	0.1	0.2	0.6	0.6	0.2
Nd	0.5	2.2	0.6	63.0	0.4	0.3	0.5	1.9	2.4	0.4
Sm	0.2	0.4	0.2	11.0	0.1	0.04	0.1	0.6	0.5	0.1
Eu	0.02	0.1	0.07	2.7	0.06	0.01	0.03	0.04	0.1	0.03
Gd	0.2	0.6	0.5	8.3	0.2	0.01	0.07	0.5	0.5	0.1
Tb	0.03	0.06	0.09	0.7	0.02	Н.п.о.	0.01	0.1	0.05	0.01
Dy	0.2	0.5	0.7	1.8	0.1	0.02	0.05	0.7	0.2	0.07
Но	0.06	0.08	0.1	0.2	0.02	Н.п.о.	0.01	0.1	0.04	0.01
Er	0.2	0.3	0.4	0.4	0.08	0.02	0.03	0.4	0.1	0.03
Yb	0.3	0.4	0.5	0.3	0.1	0.02	0.03	0.4	0.2	0.04
Lu	0.03	0.05	0.07	0.05	0.02	Н.п.о.	Н.п.о.	0.05	0.03	0.01
Eu/Eu*	0.1	0.2	0.2	0.3	0.4	0.4	0.4	0.1	0.2	0.3
Eu/Sm	0.1	0.25	0.35	0.24	0.6	0.25	0.3	0.07	0.2	0.3
La/Yb	2.0	5.2	1.0	173.3	5.0	30.0	16.7	5.5	10.5	12.5
Eu*	0.2	0.5	0.35	9.65	0.15	0.025	0.085	0.55	0.5	0.1
ΣLa, г/т	0.0354	0.117	0.05	2.71	0.026	0.020	0.026	0.117	0.108	0.023

Таблица 4. Содержание лантаноидов в кварце золоторудного месторождения Герфед

Примечание. Еu* = $(Sm + Gd)_N/2$. Н.п.о — ниже предела обнаружения.

Лантаноиды определены методом ICP-MS в ИГМ СО РАН (г. Новосибирск), аналитики О.А. Козьменко, И.В. Николаева, С.В. Палесский.

			в кварі	te somorop.	ydnoro med	порождени	ал герфед					
					Тип ква	рцевых жил						
Элемент, n · 10 ⁻² г/т	Кварці	иты, Au < 1	—2 г/т	Оперя Au <	ющие, 1 г/т		Оперяю	цие, Au = 2.8-	—10.0 г/т			
1 10 1/1	Г-393-	Г-393-	Г-393-	Г-404-	Г-393-	Г-406-	Г-406-	Г-406-	Г-408-	Г-408-		
	51.9	45.5; a	45.5; б	144.7	53.7	199.6	199.8; a	199.8; б	86.9; a	86.9; б		
Li	0.1	0.1		0.1		0.3	0.4	0.2	0.1	0.1		
Na	53.5	35.6	8.6	193.0	644.5	34.9	28.5	277.0	58.9	36.5		
Κ	51.2	18.4	8.7	75.8	128.5	20.8	12.9	254.0	32.3	60.8		
Rb	8.3	4.2	1.4	16	5.3	4.3	2.4	63.0	8.1	13.0		
Sr	14.0	24.0	25.0	44.0	175.0	9.5	20.0	15.0	23.0	18.0		
Cs	0.7	0.3	0.2	0.8	1.1	0.7	1.5	1.8	1.1	1.1		
Ca	62.28	136.73	188.3	110.5	89.79	118.97	76.05	116.33	62.05	14.74		
Mg	3.9	4.05	4.4	18.3	3.55	5.15	3.05	8.95	4.55	4.75		
Fe	28.4	6.7	4.8	547.5	130.5	43.3	95.65	239.0	126.5	25.6		
Na/K	1.04	1.9	1.0	2.6	5.0	1.7	2.2	1.0	1.8	0.6		
Rb/Sr	0.6	1.18	0.06	0.4	0.03	0.4	0.12	4.2	0.4	0.7		
Ca/Mg	16	34	43	6	25	23	25	13	14	3.0		
Fe/Mg	7.3	1.6	1.1	30	37	8.4	31.4	26.7	27.8	5.4		
Сумма, г/т	2.22	2.06	2.41	10.06	11.48	2.37	2.4	9.75	3.16	17.2		

Содержание щелочных и щелочноземельных элементов в кварце золоторудного месторождения Герфед

Примечание. Элементы определены методом AES-ICP в ИГМ СО РАН, аналитики О.А. Козьменко, И.В. Николаева, С.В. Палесский. Прочерк — не определялось.

Таблица 5.

Рис. 6. Геохимические спектры содержаний РЗЭ, нормированных по хондриту [Sun, McDonough, 1989], в кварцевых жилах Герфедского золоторудного месторождения.

Усл. обозн. см. на рис. 4.

Давление флюидной системы. В кварце кварцитов обнаружено и проанализировано всего несколько включений, содержащих углекислоту и метан. Температура плавления твердой углекислоты в них меняется от -56.7 до -57.0°C с температурой частичной гомогенизации от +5.0 до +25.3°C при гомогенизации в газовую фазу. Плотность в системе CO₂—CH₄ при этих температурах меняется от 0.11 до 0.24 г/см³ соответственно. В сингенетичных газово-жидких включениях температура общей гомогенизации колеблется в интервале 180—220°C. При полученных параметрах, используя программу Isochor [Bakker, 2001], рассчитанное давление рудообразующего флюида в кварцитах составляет 0.1— 0.5 кбар.

Во флюидных включениях из кварца оперяющих жил с низким содержанием золота законсервирован флюид с разной плотностью смеси углекислоты с метаном, которая равна 0.3—0.80 г/см³. Температура гомогенизации сингенетичных газово-жидких включений колеблется от 260 до 300°С. Давление флюида при этих параметрах составляет 0.5—2.0 кбар.

В золотоносных оперяющих жилах смесь углекислоты с метаном во флюидных включениях гомогенизировалась только в жидкую фазу при –23.6...+10.7°С, что соответствует плотности 0.95—0.71 г/см³. Температуры общей гомогенизации в сингенетичных газово-жидких включениях замерены в интервале 290—340°С. Флюид с такими параметрами мог существовать при давлениях от 1.1 до 2.5 кбар.

Рис. 7. Сумма лантаноидов (Σ РЗЭ) — величина отношения (Eu/Sm)_N в кварцевых жилах Герфедского золоторудного месторождения.

Усл. обозн. см. на рис. 4.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты изучения флюидных включений в кварце кварцитов и оперяющих кварцевых жил с низким и высоким содержанием золота позволяют охарактеризовать основные физико-химические параметры их формирования. В табл. 1 обобщены основные параметры образования трех типов кварца, а на рис. 4—7 эти результаты представлены графически. Кварциты жилы Магистральная сформированы в основном гомогенными низкосолеными (0.5—7.0 мас. % NaCl-экв.), существенно водно-хлоридными флюидами при 120—230°С и флюидном давлении 0.1—0.5 кбар. Флюид кварцитов обеднен углекислотой по сравнению с оперяющими жилами (см. табл. 3, рис. 5).

На кварциты накладывались более поздние оперяющие жилы с низким содержанием золота. Температура формирования этих жил несколько выше (150—300°С), чем у кварцитов (120—230°С). Соленость флюидов увеличивалась до 10 мас. % NaCl-экв. по сравнению с соленостью флюидов в кварцитах. Флюид представлен гомогенным и гетерогенным существенно водным типом с низким СО₂ (40—80 г/ т), но повышенным содержанием метана (до 20—40 г/т). О чем свидетельствует отношение $CO_3/$ $CH_4 = 0.9 - 2.4$. На кварциты накладывался еще один тип оперяющих жил, но уже с высоким содержанием золота. Эти оперяющие жилы образовывались при более высоких температурах (150—400°С), чем кварциты (120—230°С) и оперяющие жилы с низким содержанием золота (150—300°С). Максимальное флюидное давление также определено в золотоносных кварцевых жилах, которое менялось от 1.1 до 2.5 кбар. В этих же жилах отмечена и повышенная соленость флюидов до 23.0 мас. % NaCl-экв., превышаюшая в 2—4 раза соленость флюидов в кварцитах и оперяющих жилах с низким содержанием золота. Газовая составляющая флюидов золотоносных оперяющих жил обогащена в основном углекислотой (см. рис. 5) с CO₂/(CO₂ + H₂O) = 0.18—0.27 и CO₂/CH₄ = 4.1—20.8 (см. табл. 2). Для золотоносных кварцев характерно присутствие в одной группе флюидных включений с различным соотношением СО, и H₂O, которое меняется в широком интервале от 10:90 до 90:10 соответственно. Такой разброс может быть диагностическим признаком вскипания (гетерогенизации) флюидов [Рёддер, 1987; Robert, Kelly, 1987], а кипение флюида является эффективной причиной отложения золота [Bowers, 1991].

По данным газовой хроматографии и КР-спектроскопии газовая составляющая флюидов, формирующих кварцевые жилы месторождения Герфед, представлена смесью $H_2O-CO_2-CH_4-N_2$. Повышенные содержания метана и азота в кварцевых жилах, возможно, связаны с процессами разрушения аммонийсодержащих силикатов вмещающих пород, в которых азот в форме NH_4^+ изоморфно замещает калий [Bottrell, Miller, 1990]. Смеси ($CH_4 + N_2$), в которых CO_2 присутствует в виде незначительной примеси, могли образоваться при взаимодействии графита с NH_3 вмещающих пород по реакции:

$$3C + 4NH_3 = 3CH_4 + 2N_2$$

а при участии водного флюида — по реакции:

5

$$C + 4NH_3 + 2H_2O = 4CH_4 + 2N_2 + CO_2$$

[Генкин и др., 2002].

Смеси углекислоты и метана могли образоваться при взаимодействии углерода и воды [Naden, Shepherd, 1989] по реакции:

$$2C + 2H_2O = CH_4 + CO_2.$$

Углерод постоянно присутствует во вмещающих породах Енисейского кряжа в виде графита, антраксолита и керита [Захарова, 1975] и, по-видимому, он мог быть одним из источников метана и азота во флюиде кварцевых жил.

Преобладание CO₂ над CH₄ и N₂ во флюидах золотоносных кварцевых жил, на что указывают данные хроматографии (см. табл. 2) и КР-спектроскопии (см. табл. 3), свидетельствует об интенсивном притоке CO₂ из внешнего источника, в качестве которого можно рассматривать глубинные высокотемпературные процессы декарбонатизации под воздействием ближайшего к жиле Магистральная Татарского гранитоидного массива. В углекислых средах золото является наиболее активным, об этом свидетельствуют экспериментальные данные [Caxapoвa и др., 1999]. При температурах выше 250—300°C соотношение CO₂ и CH₄ зависит только от активности кислорода [Банникова, 1990]. Результаты химического моделирования [Mernagh, Bierlein, 2008] также показали, что CO₂ и другие газы во флюиде играют важную роль. Она заключается в буферировании активности кислорода флюида в широком температурном интервале, а также из-за влияния CO₂ на флюидную несмесимость (как в закрытых, так и открытых системах). Вариации в содержаниях CO₂ в рудообразующих флюидах приводят к значительным изменениям в содержаниях золота в рудах [Mernagh, Bierlein, 2008]. Последнее убедительно показано на конкретном примере золоторудного месторождения Советское на Енисейском кряже, где была выявлена положительная корреляция между содержаниями CO₂ во флюиде и золота в кварце [Томиленко, Гибшер, 2001; Tomilenko et al., 2010].

Выявленные особенности поведения лантаноидов во флюидах кварцевых жил месторождения Герфед могут служить основанием для ряда генетических выводов. Вполне очевидным с этих позиций является образование кварцитов из растворов, непосредственно связанных с вмещающими породами пенченгинской свиты. На это указывает однотипный характер распределения РЗЭ, который выражается отношением La/Yb в кварцитах жилы Магистральная и вмещающих породах пенченгинской свиты [Ножкин и др., 2010]. Значения La/Yb составляют в среднем в кварцитах 2.7, в породе — 9.1. Оперяющие же кварцевые жилы характеризуются повышенными значениями La/Yb, которые колеблются в среднем от 15 до 89, что может указывать на увеличение доли, производной гранитоидов татарско-аяхтинского комплекса. Во флюидах кварцевых жил месторождения Герфед выявлены отрицательные аномалии европия и низкие концентрации суммы редкоземельных элементов (ΣРЗЭ < 0. *п* г/т). Такие свойства типичны для метаморфогенного флюида [Bau et al., 1991; Monecke et al., 2002; Jiang et al., 2004]. Разновекторная тенденция между ΣРЗЭ и Eu/Sm в кварцитах и оперяющих кварцевых жилах (см. рис. 7) говорит о разных источниках флюидов при формировании этих жил. Таким источником РЗЭ в кварцитах, вероятнее всего, были близлежащие метаморфические породы, на что указывает узкий интервал отношений Rb/Sr, Na/K и Fe/Mg, свидетельствующий об однородности источника. Более широкие интервалы отношений Rb/Sr, Na/K и Fe/Mg в золотоносных жилах, превышающие в несколько раз величины этих отношений в кварцитах и оперяющих жилах с низким содержанием золота, обусловлены, вероятнее всего, двумя причинами. Первая — более длинным путем золотоносного флюида. При движении такого флюида через породы разного состава в процессе обменных реакций (флюид—порода) должны меняться и величины отношений щелочных и щелочноземельных элементов. На такие изменения обратили внимание Дж. Ридли с соавторами [Ridley et al., 1996; Ridley, Mengler, 2000] при исследовании архейских жильных месторождений золота. Вторая причина заключается в изначально разных источниках гидротермальных растворов, формирующих три типа кварца месторождения Герфед.

выводы

Образование трех типов кварцевых тел месторождения Герфед происходило из различающихся по составу и термобарогеохимическим параметрам флюидов.

Кварциты жилы Магистральная сформированы в основном гомогенными главным образом воднохлоридными, низкосолеными (0.5—7.0 мас. % NaCl-экв.) флюидами от 120 до 230°C при давлении от 0.1 до 0.5 кбар.

Оперяющие кварцевые жилы с низким содержанием золота формировались уже при более высоких температурах (150—300°С) и давлениях (0.5—2.0 кбар) гомогенными и гетерогенными флюидами. Соленость флюидов увеличивалась до 10 мас. % NaCl-экв. Газовая составляющая этих флюидов уже более обогащена CO₂ (до 80 г/т), N₂ (до 10 г/т) и CH₄ (до 40 г/т).

Оперяющие кварцевые жилы с высоким содержанием золота образовывались при еще более высоких температурах (150—400°С) и давлениях (1.1—2.5 кбар) углекислотно-водными гетерогенными флюидами. Газовая составляющая этих флюидов представлена смесью CO₂ (до 440 г/т), N₂ (до 10 г/т) и CH₄ (до 30 г/т). Соленость флюидов достигала 20—23 мас. % NaCl-экв.

Участки с промышленным содержанием золота формировались при наложении достаточно соленых, высокотемпературных водно-углекислотных флюидов, которые извлекали золото из слабозолотоносных кварцитов и оперяющих жил, концентрируя его в штокверкообразных телах месторождения Герфед.

ЛИТЕРАТУРА

Банникова Л.А. Органическое вещество в гидротермальном образовании. М., Наука, 1990, 207 с. Борисенко А.С. Изучение солевого состава растворов газово-жидких включений в минералах методом криометрии // Геология и геофизика, 1977 (8), с. 16—27.

Винокуров С.В., Коваленкер В.А., Сафонов Ю.Г., Керзин А.Л. Лантаноиды в кварцах эпитермальных золоторудных месторождений: распределение и генетическое значение // Геохимия, 1999, № 2, с. 171—180.

Генкин А.Д., Вагнер Ф.Е., Крылова Т.Л., Цепина А.И. Золотоносный арсенопирит и условия его образования на золоторудных месторождениях Олимпиада и Ведуга (Енисейский кряж, Сибирь) // Геология рудных месторождений, 2002, т. 44, № 1, с. 59—76.

Гофман Э. О золотых промыслах Восточной Сибири // Горный журнал, ч. IV, 1844, № 11, с. 196—277.

Захарова Е.М. Минералы углерода в рудах Енисейского кряжа // Геология рудных месторождений, 1975, № 3, с. 114—120. **Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г.** Растворимость неорганических веществ в воде. Справочник. Л., Химия, 1972, 244 с.

Кренделев Ф.П., Лучко А.Г. Новый тип золотого оруденения на Енисейском кряже // Вопросы геологии месторождений золота. Материалы II конференции по изучению месторождений золота Сибири. Т. 239. Томск, Изд-во ТПИ, 1970, с. 78—87.

Ли Л.В. Золоторудные месторождения докембрия Енисейского кряжа // Геология и полезные ископаемые Центральной Сибири. Вып. 1. Красноярск, КНИИГиМС, 1997, с. 184—248.

Ли Л.В., Нелюбов В.А. Структурные особенности локализации золотого оруденения некоторых месторождений Енисейского кряжа // Геология и геофизика, 1970 (10), с. 45—51.

Ли Л.В., Неволин В.А., Шерман М.Л., Круглов Г.П., Шохина О.И., Бовин Ю.П. Золоторудные формации // Геология и металлогения Енисейского рудного пояса. Красноярск, КНИИГиМС, 1985, с. 134—178.

Мейстер А.К. Бассейны рек Удерея и Удоронги // Геологические исследования в золотоносных областях Сибири, Енисейский золотоносный район. Вып. І. СПб., Типография Стасюлевича, 1900, с. 59—85.

Мейстер А.К. Геологические исследования в северо-западной части Енисейского округа // Геологические исследования в золотоносных областях Сибири. Енисейский золотоносный район. Вып. IV. СПб., Типография Стасюлевича, 1903, с. 1—24.

Николаева И.В., Палесский С.В., Козьменко О.А., Аношин Г.Н. Определение редкоземельных и высокозарядных элементов в стандартных геологических образцах методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) // Геохимия, 2008, № 10, с. 1085—1091.

Новгородова М.И., Веретенников В.М., Боярская Р.В., Дрункин В.И. Геохимия элементов примесей в золотоносном кварце // Геохимия, 1984, № 3, с. 370—383.

Ножкин А.Д., Дмитриева Н.В., Туркина О.М., Маслов А.В., Ронкин Ю.Л. Метапелиты нижнего докембрия Енисейского кряжа: РЗЭ-систематика, источники сноса, палеогеодинамика // Докл. РАН, 2010, т. 434, № 6, с. 796—801.

Осоргин Н.Ю. Хроматографический анализ газовой фазы в минералах. Новосибирск, 1990, 32 с. (Препринт/ИГиГ СО АН СССР; № 11).

Рёддер Э. Флюидные включения в минералах. М., Мир, 1987, 631 с.

Сазонов А.М., Звягина Е.А., Полева Т.В., Хохлов А.Н., Власов В.С., Тишин П.А., Малышева К.И. Геолого-структурная позиция и типизация золоторудных полей Восточной части Енисейского кряжа // Геология и минерально-сырьевые ресурсы Центральной Сибири. Материалы юбилейной научно-практической конференции. Красноярск, ОАО «Красноярскгеолсъемка», 2010а, с. 94—101.

Сазонов А.М., Ананьев А.А., Полева Т.В., Хохлов А.Н., Власов В.С., Звягина Е.А., Федорова А.В., Тишин П.А., Леонтьев С.И. Золоторудная металлогения Енисейского кряжа: геолого-структурная позиция, структурные типы рудных полей // Journal of Siberian Federal University. Engineering & Technologies, 2010б, № 4, с. 371—395.

Сахарова М.С., Ряховская С.К., Турчкова А.Г. Посткристаллизационные преобразования золото-кварцевых агрегатов в гидротермальных условиях (экспериментальные данные) // Геохимия, 1999, № 5, с. 486—493.

Середенко Г.А. Генетические особенности развития золотого оруденения Енисейского кряжа // Критерии отличия метаморфогенных и магматогенных гидротермальных месторождений. Новосибирск, Наука, 1985, с. 53—58.

Ставров О.Д. Геохимия лития, рубидия и цезия в магматическом процессе. М., Недра, 1978, 213 с.

Ставров О.Д., Зозуля Т.А. Величина отношения К/Rb в кварце оловорудных месторождений — индикатор их связи с магматическими источниками // Геохимия, 1975, № 7, с. 1043—1048.

Томиленко А.А., Гибшер Н.А. Особенности состава флюида в рудных и безрудных зонах Советского кварц-золоторудного месторождения (по данным изучения флюидных включений) // Геохимия, 2001, № 2, с. 167—177.

Томиленко А.А., Гибшер Н.А., Козьменко О.А., Палесский С.В., Николаева И.В. Лантаноиды во флюидных включениях, кварце и зеленых сланцах из золотоносных и безрудных кварцево-жильных зон Советского кварц-золоторудного месторождения, Енисейский кряж, Россия // Геохимия, 2008, № 4, с. 438—444.

Шацкий В.С., Ситникова Е.С., Козьменко О.А., Палесский С.В., Николаева И.В., Заячковский А.А. Поведение несовместимых элементов в процессе ультравысокобарического метаморфизма (на примере пород Кокчетавского массива) // Геология и геофизика, 2006, т. 47 (4), с. 485—498. Bakker R.J. Fluids: new software package to handle microthermometric data and to calculate isochors // Mem. Geol. Soc., 2001, № 7, p. 23—25.

Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium // Chem. Geol., 1991, v. 93, p. 219–230.

Bottrell S.H., Miller M.F. The geochemical behavior of nitrogen compounds during the formation of black shale hosted quartz-vein gold deposits, North Wales // Appl. Geochem., 1990, v. 5, № 3, p. 289—296.

Bowers T.S. The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures // Geochim. Cosmochim. Acta, 1991, v. 55, p. 2417—2434.

Collins P.L.F. Gas hydrates in CO₂-bearing fluid inclusions and the use of freezing data bar estimation of salinity // Econ. Geol., 1979, v. 74, p. 1435—1444.

Duan Z., Moller N., Weare J.H. An equation of state for the CH₄-CO₂-H₂O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bars // Geochim. Cosmochim. Acta, 1992a, v. 56, p. 2605—2617.

Duan Z., Moller N., Weare J.H. An equation of state for the CH₄-CO₂-H₂O system: II. Mixtures from from 50 to 1000°C and 0 to 1000 bars // Geochim. Cosmochim. Acta, 1992b, v. 56, p. 2619—2631.

Duan Z., Moller N., Weare J.H. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture *PVTX* properties // Geochim. Cosmochim. Acta, 1996, v. 60, p. 1209—1216.

Dubessy J., Poty B., Ramboz C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions // Eur. J. Miner., 1989, № 1, p. 517—534.

Heyen G., Ramboz C., Dubessy J. Stimulation des équilibres de phases dans le système CO_2 -CH₄ en dessous de 50°C et de 100 bar. Application aux inclusions fluides // C.R. Acad. Sc. 1982, Série 2, t. 294, p. 203—206.

Jiang S.-Y., Yu J.-M., Lu J.-J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from Yunlong tin deposit, Yunnan, China: implication for migmatite-hydrothermal fluid evolution and ore genesis // Chem. Geol., 2004, v. 209, p. 193—213.

Mernagh T.P., Bierlein F.P. Transport and precipitation of gold in Phanerozoic metamorphic terranes from chemical modeling of fluid-rock interaction // Econ. Geol., 2008, v. 103, p. 1613—1640.

Monecke T., Kempe U., Götze J. Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study // Earth Planet. Sci. Lett., 2002, p. 709—724.

Naden J., Shepherd Th. Role of methane and carbon dioxide in gold deposition // Nature, 1989, v. 342, № 6521, p. 793—795.

Regis T., Kerkhof M.A., Dubessy J. *VX* properties of CH_4 - CO_2 and CO_2 - N_2 fluid inclusions: modeling for $T < 31^{\circ}C$ and P < 400 bars // Eur. J. Miner., 1994, v. 6, No 6, p. 753—771.

Ridley J., Mikuchi E.J., Groves D.I. Archean lode gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal systems // Ore Geol. Rev., 1996, v. 10, p. 279–293.

Ridley J., Mengler F. Lithological and structural controls on the form and setting of vein stockwork orebodies at the Mount Chariotte gold deposit, Kalgoorlie // Econ. Geol., 2000, v. 95, p. 85—99.

Robert F., Kelly W.C. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibe green-stone belt, Quebec, Canada // Econ. Geol., 1987, v. 82, p. 1464—1482.

Sun S.S., McDonough W.F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes // Geol. Soc. Spec. Pub., 1989, v. 42, p. 313—345.

Tomilenko A.A., Gibsher N.A., Dublaynsky Y.V., Dallai L. Geochemical and isotopic properties of fluid from gold-bearing and barren quartz veins of the Sovetskoye deposit (Siberia, Russia) // Econ. Geol., 2010, v. 105, N 2, p. 375—394.

Поступила в редакцию 28 марта 2011 г.