Физика ГОРЕНИЯ И ВЗРЫВА

ПИСЬМА В РЕДАКЦИЮ

№ 5
1992 г.

Ю. П. Вешапошников, В. Е. Кожевников, А. Б. Степанов, В. Н. Чернухин

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК АММИАЧНОЙ СЕЛИТРЫ И ЕЕ СМЕСЕЙ С КВАРЦЕВЫМ ПЕСКОМ ПРИМЕНЕНИТЕЛЬНО К СВАРКЕ ВЗРЫВОМ

При сварке взрывом в некоторых случаях [1, 2] требуются ВВ со скоростью детонации $D = 1 \div 1,5$ км/с, достаточно стабильной по всей длине свариваемых пластин. Это достигается для некоторых ВВ [3] на пределе возможного при толщине заряда H, близкой к критической. К таким высокоскоростным ВВ относятся исследованные в настоящей работе аммиачная селитра марки ЖВК (ГОСТ 14702-79) и ее смеси с кварцевым песком марки КО16А (ГОСТ 21438—84).

Скорость детонации измеряли аналогично [3], а интегральный показатель подтранспортировки k продуктов детонации определяли по [4]. Использовали заряды размером $300 \times 450 \times H$ мм. При их инициировании с помощью «боевика» (дополнительный заряд из аммонита ЖВК размером $30 \times 300 \times H$ мм на торце основного заряда) среднеквадратичное отклонение значений D вдоль кривых 1 и 2 (см. рисунок) $\sigma \leq \pm 150$ м/с.

У смесей селитры/песок даже при соотношении компонентов по объему $C_r = 15/1$ детонация без «боевика» как правило затухала. В случае $C_r < 8/1$ и при $H < 40$ мм смесь не детонировали и с «боевиком». В опытах с селитрой (когда ее инициировали детонатором без «боевика» и увеличивали толщину заряда до значений $H > 50$ мм), так и для смесей с $C_r = 8/1 \div 15/1$ величина $\sigma \approx \pm 400$ м/с. Полученные из опытов значения k для смеси селитры зависят от D, что согласуется с [4, 5]. С точностью не хуже 2 % эта зависимость описывается соотношением

$$k = 1,53 \ arctg(D^2/2,25 + D^2/2,08)^2,$$

где D берется в км/с. Для смеси селитры — песок в диапазоне $C_r = 5/1 \div 10/1$ $k = 1,8$.

Таким образом, проведенные исследования позволяют определять параметры соударения пластин при сварке взрывом и прогнозировать качество получаемых соединений при использовании селитры ЖВК и ее смесей с кварцевым песком ($C_r \approx 5/1$).

![Зависимость $D(H)$](image)

1 — селитра; 2 — селитра/песок ($C_r = 5/1$). Каждая точка кривых — результат усреднения не менее 15 значений.
ЛИТЕРАТУРА

2. Бешапоцинов Ю. П., Кожевников В. Е., Чернухин В. И. Получение биметалла алюминий + сталь с использованием остаточного давления продуктов детонации // Обработка материалов импульсными нагрузками: Тем. сб. науч. тр.— Новосибирск: СКБ ИТП, ИТПМ СО АН СССР.— 1990.— С. 130—132.

3. Кожевников В. Е., Бешапоцинов Ю. П., Глади И. К. и др. Детонация плоских зарядов смесевых ВВ применительно к сварке взрывом // ФТВ.— 1990.— 26, № 3.— С. 115—118.

4. Бешапоцинов Ю. П., Кожевников В. Е., Нав В. В., Чернухин В. И. Метание пластин слоем смесевых ВВ // ФТВ.— 1998.— 24, № 4.— С. 120—123.

6. Екатеринбург Поступила в редакцию 12/III 1992

УДК 534.222.2 + 662.215.4

С. Г. Андреев, В. С. Соловьев

К АНАЛИЗУ ПРОЦЕССА ЦЕНТРИФУГИРОВАНИЯ ЗАРЯДОВ ВВ
ИЗ УТИЛИЗИРУЕМЫХ ВЗРЫВНЫХ УСТРОЙСТВ

В настоящее время актуальной задачей безопасного и экологического извлечения ВВ из корпусов взрывных устройств является разработка методов их утилизации. Если в корпусе корпуса, паром близкой к цилиндрической, имеется свободное отверстие, то ВВ можно выбросить вдоль камеры за счет его вращения вокруг оси, параллельной оси взрывного устройства. При анализе процесса центрифугирования ВВ необходимо отметить следующие вопросы: при каких условиях центробежные силы недосягают для удержания ВВ в корпусе и при каких условиях торможение ВВ, выброшенного из корпуса на улавливатель, будет безопасным.

Ответ на первый вопрос в первую очередь дает анализ зависимости средних «равновесивающих» напряжений σ в сечении цилиндрического тела из ВВ плотностью ρ диаметром D от расстояния х до «свободного» торца, обращенного к отверстию (этот торец удален от оси вращения на расстояние R). В предположении, что касательные напряжения на поверхности цилиндрического тела в момент «нарушения равновесия», т. е. начала схода тела или его фрагментов с круговой траектории (выброса из корпуса), равны предельному значению τ (в частности, прочности ВВ на сдвиг), а внешнее давление на «свободный» торец равно p0, имеем (ρ0 может быть равно и атмосферному давлению p0):

\[\sigma = (1/\rho - 2x/2x - 4\tau x R/D - \rho_0/p_0). \]

где v — частота вращения; \(A = \sqrt{\rho / 2\rho} \); \(x = x/R \); \(\sigma = \sigma / \rho_0 \); \(\tau = \tau / \rho_0 \).

Анализ (1) совместно с данными о возможных значениях τ (характеристики прочности ВВ на сдвиг либо сцепления его с корпусом устройства), предельных значениях σ (характеристики прочности ВВ на разрыв либо его сцепление с дном корпуса) и размеров камеры, показывает на возможность выброса цилиндрического заряда как в сильном, так и в диспергированном состоянии (разрушенном на мелкие фрагменты, которые могут выбрасываться даже через сужающиеся отверстия). В обоих случаях ВВ, выбрасываемое на улавливатель со скоростью \(\sim 2.1 \rho R \), приобретает новую, поврежденную структуру.

Наиболее опасной из возможных ситуаций, возникающих в частности при ударном торможении ВВ на улавливателе, будет возбуждение...