УДК 519.6

ИССЛЕДОВАНИЕ УСТАНОВИВШИХСЯ ЛАМИНАРНЫХ ПОТОКОВ, ПОДВЕРГНУТЫХ ВОЗДЕЙСТВИЮ НАЧАЛЬНОГО ВОЗМУЩЕНИЯ

А. М. Липанов, С. А. Карсканов

Институт прикладной механики УрО РАН, 426067 Ижевск E-mails: ipm@udman.ru, ser@udman.ru

Анализируются результаты параметрического исследования стационарных несимметричных потоков. Методом установления решаются трехмерные нестационарные уравнения гидромеханики для сжимаемой среды. Рассматривается диапазон значений характерного числа Рейнольдса Re = 60 ÷ 350. Показано, что при Re = 90 симметричный поток становится асимметричным. Для воздуха это значение можно считать пороговым. В рассмотренных примерах вследствие асимметричности струи в окрестности левой границы области интегрирования верхняя отрывная зона оказывается меньше нижней. Определена зависимость размеров отрывных зон от числа Рейнольдса.

Ключевые слова: уравнения гидродинамики, число Рейнольдса, число Маха, число Прандтля, область интегрирования, отрывная зона.

Стационарные ламинарные потоки, в отличие от нестационарных ламинарных и турбулентных потоков, хорошо изучены и экспериментально, и теоретически [1]. Тем не менее подробных параметрических исследований, в частности для сжимаемых сред, не проводилось.

Вдали от левой границы канала (от входа в канал) сжимаемый симметричный ламинарный поток становится одномерным и для него выполняется равенство

$$\rho U = \text{const},$$

где ρ — функция скорости *U* газа. В результате для сжимаемого ламинарного потока не реализуется профиль Пуазейля [2]. Если значение характерного числа Рейнольдса Re больше некоторого значения Re₁, то ламинарный поток становится асимметричным [3]. Рассматриваемый в работе диапазон значений числа Рейнольдса Re = $60 \div 350$ характерен для различных технических устройств (водопроводные трубы, каналы газодинамической связи в летательных аппаратах и т. д.).

Для исследования ламинарных симметричных и несимметричных потоков сжимаемых сред будем рассматривать канал со скачком площади поперечного сечения на его входе (рис. 1). Канал представляет собой полость между двумя обтекаемыми поверхностями, не ограниченную в направлении координаты z.

Решается следующая система трехмерных нестационарных дифференциальных уравнений:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho U}{\partial x} + \frac{\partial \rho V}{\partial y} + \frac{\partial \rho W}{\partial z} = 0,$$

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 07-08-96044-р_урал_а) и в рамках гранта молодых ученых и аспирантов УрО РАН.

Рис. 1. Область интегрирования

$$\begin{split} \frac{\partial \rho U}{\partial t} &+ \frac{\partial}{\partial x} \left(\frac{p}{k M^2} + \rho U^2\right) + \frac{\partial \rho UV}{\partial y} + \frac{\partial \rho UW}{\partial z} = \\ &= \frac{1}{\text{Re}} \left\{\frac{\partial}{\partial x} \left[\frac{4}{3} \frac{\partial U}{\partial x} - \frac{2}{3} \left(\frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}\right)\right] + \frac{\partial}{\partial y} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right) + \frac{\partial}{\partial z} \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial x}\right)\right\}, \\ \frac{\partial \rho V}{\partial t} &+ \frac{\partial \rho V U}{\partial x} + \frac{\partial}{\partial y} \left(\frac{p}{k M^2} + \rho V^2\right) + \frac{\partial \rho V W}{\partial z} = \\ &= \frac{1}{\text{Re}} \left\{\frac{\partial}{\partial x} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right) + \frac{\partial}{\partial y} \left[\frac{4}{3} \frac{\partial V}{\partial y} - \frac{2}{3} \left(\frac{\partial U}{\partial x} + \frac{\partial W}{\partial z}\right)\right] + \frac{\partial}{\partial z} \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y}\right)\right\}, \\ \frac{\partial \rho W}{\partial t} &+ \frac{\partial \rho W U}{\partial x} + \frac{\partial \rho W V}{\partial y} + \frac{\partial}{\partial z} \left(\frac{p}{k M^2} + \rho W^2\right) = \\ &= \frac{1}{\text{Re}} \left\{\frac{\partial}{\partial x} \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y}\right) + \frac{\partial}{\partial z} \left[\frac{4}{3} \frac{\partial W}{\partial z} - \frac{2}{3} \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y}\right)\right]\right\}, \\ \frac{\partial \rho E}{\partial t} &+ \frac{\partial}{\partial x} \left[\left(\frac{p}{k M^2} + \rho E\right)U\right] + \frac{\partial}{\partial y} \left[\left(\frac{p}{k M^2} + \rho E\right)V\right] + \frac{\partial}{\partial z} \left[\left(\frac{p}{k M^2} + \rho E\right)W\right] = \\ &= \frac{1}{\text{Re}} \left\{-\frac{2}{3} \frac{\partial}{\partial x} \left[U \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}\right)\right] + 2 \frac{\partial}{\partial x} \left(U \frac{\partial U}{\partial x}\right) + \frac{\partial}{\partial y} \left[V \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)\right] + \\ &+ \frac{\partial}{\partial x} \left[W \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial x}\right)\right] + \frac{\partial}{\partial y} \left[U \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)\right] + \frac{\partial}{\partial y} \left[W \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial y}\right)\right] + \\ &+ \frac{\partial}{\partial z} \left[V \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}\right)\right] + 2 \frac{\partial}{\partial y} \left(V \frac{\partial V}{\partial y}\right) + \frac{\partial}{\partial z} \left[U \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial y}\right)\right] + \\ &+ \frac{\partial}{\partial z} \left[V \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}\right)\right] + 2 \frac{\partial}{\partial y} \left[W \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial y}\right)\right] + 2 \frac{\partial}{\partial z} \left[W \left(\frac{\partial U}{\partial z} + \frac{\partial W}{\partial y}\right)\right] + \\ &+ \frac{\partial}{\partial z} \left[V \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y}\right)\right] - \frac{2}{3} \frac{\partial}{\partial z} \left[W \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial V}{\partial z}\right)\right] + 2 \frac{\partial}{\partial z} \left[W \left(\frac{\partial U}{\partial z} + \frac{\partial V}{\partial y}\right) + \frac{\partial}{\partial z} \left[U \left(\frac{\partial U}{\partial z} + \frac{\partial V}{\partial y}\right)\right] + \\ &+ \frac{\partial}{\partial z} \left[V \left(\frac{\partial U}{\partial z} + \frac{\partial V}{\partial y}\right)\right] - \frac{2}{3} \frac{\partial}{\partial z} \left[W \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial y}\right)\right] + 2 \frac{\partial}{\partial z} \left[W \left(\frac{\partial U}{\partial z} + \frac{\partial V}{\partial y}\right) + \frac{\partial}{\partial z} \left[U \left(\frac{\partial U}{\partial z} + \frac{\partial V}{\partial y}\right)\right] + \\ &+ \frac{\partial}{\partial z} \left[V \left(\frac{\partial U}{\partial z} + \frac{\partial V$$

Уравнения (1) записаны в безразмерных переменных в ортогональной декартовой системе координат и имеют дивергентную форму. В результате под знаками частных производных по времени оказываются следующие параметры: плотность газа ρ ; компоненты вектора плотности тока ρU , ρV , ρW ; полная энергия единицы объема ρE . Переменные ρ , ρU , ρV , ρW , ρE являются неизвестными, определяемыми в результате решения уравнений (1). Остальные газодинамические параметры выражаются через эти пять переменных.

Для вычисления компонент U, V, W вектора скорости потока используем формулы

$$U = \frac{\rho U}{\rho}, \qquad V = \frac{\rho V}{\rho}, \qquad W = \frac{\rho W}{\rho}$$

Давление определяется из выражения [3]

$$p = k(k-1) \operatorname{M}^{2} \left(\rho E - \frac{(\rho U)^{2} + (\rho V)^{2} + (\rho W)^{2}}{2\rho} \right),$$

а температура рассчитывается с использованием уравнения состояния Клапейрона — Менделеева

$$p = \rho RT$$

по формуле

$$T = k(k-1) \operatorname{M}^{2} \left(\frac{\rho E}{\rho} - \frac{(\rho U)^{2} + (\rho V)^{2} + (\rho W)^{2}}{2\rho^{2}} \right)$$

(Е — удельная энергия газа).

Уравнения (1) содержат безразмерные комплексы

$$\operatorname{Re} = \frac{\rho_* U_* h}{\mu}, \quad \operatorname{Pr} = \frac{C_p \mu}{\lambda}, \quad \operatorname{M} = \frac{U_*}{c_*}, \quad c_* = \left(\frac{k p_*}{\rho_*}\right)^{1/2}, \quad k = \frac{C_p}{C_v},$$

где U_* — максимальное значение продольной компоненты вектора скорости потока на входе в канал; p_* , ρ_* — давление и плотность газа, соответствующие значению U_* ; μ , λ — вязкость и теплопроводность, которые в данной работе принимались постоянными; C_p , C_v — изобарная и изохорная теплоемкости газа.

Величины U_* , p_* , ρ_* , h использовались в качестве масштабов для компонент вектора скорости движения, давления, плотности и линейных размеров соответственно. Безразмерное время рассчитывалось по формуле

 $t_* = h/U_*.$

При решении уравнений (1) ставились следующие начальные условия:

$$U = V = W = 0, \qquad p = p_{\mathrm{H}}, \qquad T = T_{\mathrm{H}}.$$

Для компонент вектора скорости на входе в канал в качестве граничных задавались условия

$$V_0 = W_0 = 0; (2)$$

$$U_0 = \varphi(y, \delta_U) + C_1(P_0 - \langle P \rangle)\varphi(y, \delta_S);$$
(3)

$$\varphi(y,\delta_{\xi}) = \begin{cases} 1 - (1 - y/\delta_{\xi})^N, & 0 \leq y \leq \delta_{\xi}, \\ 1, & \delta_{\xi} < y \leq h - \delta_{\xi}, \\ 1 - ((y - h + \delta_{\xi})/\delta_{\xi})^N, & h - \delta_{\xi} < y \leq h, \end{cases} \quad \xi \to (U,S),$$

для энтропийной функции S₀ в ядре потока на входе в канал — условие

$$p_0 = S_0 \rho_0^{\kappa}.$$

Здесь δ_U , δ_S — толщины динамического и теплового пограничных слоев; N — порядок аппроксимации выражения, используемого при вычислении частных производных от гидродинамических параметров по пространственным координатам; коэффициент C_1 определяется по формуле $C_1 = 1/(k \text{ M})$ [4]; $\langle P \rangle$ — среднее давление на входе в канал. Разность $P_0 - \langle P \rangle$ в среднем по поперечному сечению канала на его входе равна нулю, но при любом значении *у* отлична от нуля. За счет этого условие (3) оказывается нестационарным и позволяет "выводить" за пределы области интегрирования возмущения, достигающие левой границы канала.

На выходе из канала задавалось условие

$$p = p_a + C_2 \sigma(t), \tag{4}$$

где p_a — безразмерное давление окружающей среды; C_2 — переменная величина, определяемая по формуле [4]

$$C_2 = \frac{k \,\mathrm{M}}{2H + \mathrm{M}\langle m \rangle(t)};\tag{5}$$

$$\sigma(t) = m(L,t) - \langle m \rangle(t); \tag{6}$$

$$\langle m \rangle(t) = \frac{1}{L} \int_{S} m(x,t) \, dx, \qquad m(x,t) = \iint_{S(x)} \rho U \, dy \, dz, \qquad m(L,t) = \iint_{S(L)} \rho U \, dy \, dz,$$

L — длина канала; H — полувысота канала на его правой границе (в направлении координаты y); S(x) — площадь поперечного сечения канала. Разность $m(L,t) - \langle m \rangle(t)$ в уравнении (6) является знакопеременной и позволяет выводить возмущения за пределы области интегрирования через правую границу канала. Остальные параметры (U, V, W, T)на выходе определяются экстраполяцией с заданной точностью из внутренних точек на границу вдоль оси x.

На обтекаемых поверхностях использовались условия прилипания

$$U = V = W = 0,$$

а также условие адиабатичности

$$\frac{\partial T}{\partial n} = 0,$$

поскольку рассматривались режимы течения, когда температура потока близка к температуре обтекаемой поверхности.

С целью выделения из бесконечно большой области интегрирования в направлении координаты z объема конечных размеров одна из плоскостей z = const канала выбиралась в качестве плоскости симметрии z = 0. Затем на расстоянии от плоскости z = 0, равном $\pm H_z$, задавались условия периодичности

$$U_+ = U_-, \quad V_+ = V_-, \quad W_+ = W_-, \quad p_+ = p_-, \quad \rho_+ = \rho_-.$$

Расстояние H_z принималось равным 1,5. Это значение H_z считалось приемлемым в работе [5] и выбиралось в работе [3] при $M \leq 0,6$ и $\text{Re} \leq 10^4$.

Помимо перечисленных условий на входе в канал задавалось трехмерное возмущение. Для этого на первых ста шагах интегрирования по времени компоненты V_0 и W_0 вектора скорости рассчитывались по формулам

$$V_0 = W_0 = 0, 1U_0, \tag{7}$$

поэтому в течение промежутка времени $t = 0 \div 0.2$ поток на входе был трехмерным, направленным влево и вверх. Начиная с момента t = 0.2 (100 шагов интегрирования по времени) условия (7) заменялись на условия (2). При $\text{Re} \leq 200$ длина канала L = 30, при Re > 200 L = 60.

Рис. 2. Эволюция компоненты Wвектора скорости потока во времени при Re = 200: $a-t=5,6; \ b-t=28$

Первые и вторые частные производные по пространственным переменным рассчитывались методом, предложенным в [6], с использованием рекомендаций из работы [3]. Интегрирование по времени выполнялось по явно-неявной схеме со вторым порядком точности.

Об эволюции внесенного в течение трехмерного возмущения можно судить по характеру изменения во времени и пространстве компоненты вектора скорости W (рис. 2). В данном случае Re = 200, когда течение асимметрично.

Как и в случае симметричного потока, наблюдаются два "возвышения", начинающиеся в отрывных зонах, но в отличие от случая симметричного течения [2] их максимумы не совпадают. Распределение W(x) немонотонное. При этом максимум зависимости W(x)расположен ближе к входной части канала.

На рис. 2,*a* зависимость W(x, y) при z = 0 показана для момента времени t = 5,6 после 2800 шагов интегрирования по времени, что соответствует стадии развития процесса, когда начинает выполняться равенство $\partial W/\partial x \big|_{x=0} = 0$. При этом возмущение смещается в глубь канала на расстояние $x \approx 5$. Со временем компонента W уменьшается. При t = 28она уже на порядок меньше, чем при t = 5,6, и ее влиянием на гидродинамические параметры можно пренебречь. К этому времени возмущение распространяется на расстояние x > 15 при общей длине канала L = 30. Таким образом, не достигнув правой границы, внесенное в канал возмущение затухает. В этих условиях гидродинамические параметры изменяются нестационарно. Более того, заполнение канала осуществляется двумерным нестационарным потоком.

Рис. 3. Зависимость параметров потока от времени при Re = 200: 1, 2 — давление (1 — на входе в канал, 2 — в точке (15; 1,5; 0)); 3, 4 — продольная компонента скорости (3 — на входе в канал; 4 — в точке (15; 1,5; 0))

Рис. 4. Изменение компоненты V вектора скорости потока по длине канала (Y = 1,5, Z = 0) при различных значениях числа Рейнольдса: 1 — Re = 90; 2 — Re = 200; 3 — Re = 350

При том же значении числа Рейнольдса Re = 200 давление p и продольная компонента U вектора скорости потока на левой границе изменяются во времени до момента t = 280(рис. 3).

Вниз по потоку ряд параметров остаются нестационарными в течение более длительного промежутка времени. Так, при x = 15 продольная компонента U остается изменяющейся во времени почти в два раза дольше (кривая 4 на рис. 3), хотя давление становится стационарным почти в то же время, что и при x = 0 (кривая 2 на рис. 3).

Если характерное число Рейнольдса больше некоторого значения, двумерный стационарный поток становится асимметричным. На рис. 4 показано изменение вертикальной составляющей вектора скорости потока на оси канала (Y = 1,5, Z = 0). Асимметричность существенна в окрестности левой границы. Струя отклоняется от первоначального направления сначала вверх, затем вниз. После этого движение стремится к одномерному и при Re = 350 становится одномерным на расстоянии x = 38. В случае Re = 200 одномерный поток имеет место при $x \ge 30$.

С увеличением числа Рейнольдса максимальные значения напряжения трения ($\tau = \mu(\partial U/\partial y)|_{y=0,3}$) на нижней и верхней стенках канала увеличиваются (табл. 1). Максимальные градиенты вертикальной компоненты V вектора скорости потока на обтекаемых поверхностях также растут и находятся в окрестности точки присоединения потока.

Максимумы и минимумы (по модулю) вертикальной компоненты вектора скорости потока на оси канала в зависимости от Re приведены в табл. 2, откуда следует, что пороговое значение числа Рейнольдса $\text{Re}_1 = 90$. При $\text{Re} < \text{Re}_1$ поток симметричный, при $\text{Re} > \text{Re}_1$ абсолютные значения вертикальной компоненты V резко увеличиваются.

На рис. 5,*а* показаны линии тока струи при Re = 200. Вследствие асимметричности потока в окрестности левой границы верхняя отрывная зона значительно меньше нижней.

Таблица 1

Re	$(\tau _{y=0})_{\max} \cdot 10^5$	$(\tau _{y=3})_{\max} \cdot 10^5$	$(\partial V/\partial y _{y=0})_{\max}$	$(\partial V/\partial y _{y=3})_{\max}$
$150 \\ 200 \\ 300$	$1,176 \\ 1,722 \\ 2,966$	2,080 3,274 4,216	$0,011 \\ 0,019 \\ 0,046$	$0,020 \\ 0,035 \\ 0,064$
350	3,380	4,570	0,061	0,078

Максимальные значения напряжения трения и градиентов вертикальной компоненты вектора скорости на стенках канала

Т	аб	л	ит	па	2
_	~ ~	• •	** *	-	_

Максимумы и минимумы вертикальной составляющей вектора скорости потока на оси симметрии канала

Re	$V_{ m max}$	$ V_{\min} $	Re	$V_{\rm max}$	$ V_{\min} $
90	0,005	0,003	300	0,168	0,200
120	0,074	0,055	350	0,171	0,218
150	$0,\!122$	0,090	400	0,173	0,233
200	$0,\!151$	$0,\!134$			

Рис. 5. Линии тока установившегося течения: $a - \text{Re} = 200; \ 6 - \text{Re} = 300$

Обогнув нижнюю отрывную зону, поток отклоняется вниз, при этом вверху образуется еще одна отрывная зона на участке $13 \leq x \leq 17$.

Увеличение числа Рейнольдса оказывает существенное влияние на размеры третьей отрывной зоны. При Re = 150 эта зона отсутствует, при Re = 200 имеет размеры, указанные выше, а при Re = 300 (рис. $5, \delta$) ее размеры практически такие же, как и у второй отрывной зоны.

При Re = 200 стационарные значения продольной и вертикальной компонент вектора скорости (табл. 3) существенно изменяются при x < 30, и только при x > 30 течение можно считать одномерным.

В зависимости от координаты x безразмерное давление p в окрестности левой границы растет и достигает максимума p_m в точке x_m , затем оно уменьшается до значения $p_L \approx 1$ на правой границе канала. При большей длине канала значение p_m увеличивается, а при увеличении числа Рейнольдса уменьшается. Некоторые результаты расчетов изменения давления приведены в табл. 4.

Таблица З

Изменение продольной и вертикальной компонент вектора скорости потока на оси канала при ${
m Re}=200$

x	U	V	x	U	V
0	0,990	0	15	$0,\!573$	-0,003
3	0,906	0,015	18	0,564	0,026
6	0,510	-0,003	24	$0,\!540$	0,008
11	0,725	-0,134	30	0,513	0,001

Таблица 4

Максимальное давление, давление на входе в канал и на выходе из него

Re	L	p_m	p_0	p_L	x_m
150	30	1,017	0,926	1,002	$16,\!37$
200	30	1,003	0,917	1,001	22,50
300	60	1,019	0,937	1,004	33,75
350	60	1,014	0,933	1,004	40,00

Рис. 6. Поле плотности при Re = 200

На рис. 6 показано поле плотности в плоскости (x, y). Его конфигурация соответствует одномерному потоку только при x > 25.

ЛИТЕРАТУРА

1. Кочин Н. Е. Теоретическая гидромеханика / Н. Е. Кочин, И. А. Кибель, Н. В. Розе. М.: Физматгиз, 1963. Ч. 2.

- Липанов А. М., Карсканов С. А. Установление и эволюция параметров симметричного ламинарного потока в плоском канале с внезапным расширением // ПМТФ. 2007. Т. 48, № 1. С. 35–42.
- Липанов А. М. Численный эксперимент в классической гидромеханике турбулентных потоков / А. М. Липанов, Ю. Ф. Кисаров, И. Г. Ключников. Екатеринбург: Изд-во УрО РАН, 2001.
- Федорченко А. Т. О проблеме вывода вихрей через проницаемую границу рассчитанной области нестационарного дозвукового потока // Журн. вычисл. математики и мат. физики. 1986. Т. 26, № 1. С. 114–129.
- 5. Рождественский Б. Л., Симакин И. Н. Моделирование турбулентных течений в плоском канале // Журн. вычисл. математики и мат. физики. 1985. Т. 25, № 1. С. 96–121.
- Zalesak S. T. A physical interpretation of the Richtmyer two-step Lax Wendroff scheme, and its generalization to higher spatial order // Advances in computer methods for partial differential equations V: Proc. of the 5th IMACS Intern. symp. on comput. methods for partial differential equations, Bethlehem (Pennsylvania, USA), June 19–21, 1984. New Brunswick: Rutgers Univ. Press, 1984. P. 491–496.

Поступила в редакцию 5/XII 2006 г., в окончательном варианте — 31/V 2007 г.