2013. Том 54, № 5

Сентябрь – октябрь

C. 845 - 851

УДК 546.46:[547.415.1:547.442.3]:543.442.3:543.573

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ДВУХ КОМПЛЕКСОВ, СОДЕРЖАЩИХ *mpuc*-(β-ДИКЕТОНАТО)МАГНАТ-АНИОН

Е.С. Викулова, Д.А. Пирязев, К.В. Жерикова, Н.И. Алфёрова, Н.Б. Морозова, И.К. Игуменов

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск E-mail: lazorevka@mail.ru

Статья поступила 18 сентября 2012 г.

С доработки — 15 октября 2012 г.

Методом РСА определены структуры комплексов (H₂TMEDA)[Mg(ptac)₃]₂ (**1**, TMEDA = = Me₂N(CH₂)₂NMe₂, ptac = 'BuCOCHCOCF₃) и (H₂TMEDA)[Mg(hfac)₃](hfac) (**2**, hfac = = CF₃COCHCOCF₃) при температуре 150 К. Кристаллографические данные для комплекса **1**: a = 10,2919(3), b = 10,9492(4), c = 15,4159(6) Å, $\alpha = 87,117(1)$, $\beta = 89,686(1)$, $\gamma = 79,864(1)^{\circ}$, пр. гр. $P\overline{1}$, Z = 1, R = 0,0573; для комплекса **2**: a = 12,9446(2), b = 23,0035(4), c = 13,1473(3) Å, $\beta = 98,779(1)$, пр. гр. $P2_1/n$, Z = 4, R = 0,0605. Структуры ионного типа, атом металла координирует 6 атомов кислорода трех β -дикетонатных лигандов. Расстояния Mg—O в комплексе **1** лежат в интервале 2,036(2)—2,0920(19) Å, в комплексе **2** — в интервале 2,051(2)—2,076(2) Å. Пространственную упаковку определяет система водородных связей между катионами (H₂TMEDA)²⁺ и анионами [Mg(ptac)₃]⁻ (**1**) или hfac⁻ (**2**). Проведено термогравиметрическое исследование комплекса **1**.

Ключевые слова: магний, β-дикетонаты, диамины, рентгеноструктурный анализ, термогравиметрия.

Химия комплексов магния с β-дикетонами интенсивно развивается с середины прошлого века в связи с их применением в процессах химического осаждения из газовой фазы (CVD) в качестве летучих предшественников для получения тонких пленок оксида магния, которые интенсивно используются в качестве буферных, диэлектрических, оптических, защитных или эмиссионных слоев в микроэлектронике [1-4]. За это время получено и исследовано большое количество как непосредственно β -дикетонатов магния [1, 5—7], так и их аддуктов с молекулами воды [8—10], спиртов [7, 11], глимов [12] и диаминов [11, 13—16]. Синтезированы также комплексы магния, состоящие из анионов [Mg(hfac)₃]⁻ и катионов протонированных аминов (тетраэтилэтилендиамина [15] и 1,8-бис(диметиламино)нафталена [17]). Образование подобных соединений считалось нехарактерным для магния; вместе с тем их существование открывает возможность создания нового класса Mg-содержащих летучих предшественников: комплексов M^I[Mg(β-dik)₃] (M^I — щелочной металл), перспективных для получения магнийсодержащих покрытий методом CVD. Так, было показано, что соединения подобного типа $M^{I}[M^{II}(hfac)_{3}]$ ($M^{II} = Co, M^{I} = K, Rb, Cs; M^{II} = Ni, M^{I} = Cs [18]$) $\mu M^{I}[M^{III}(\beta - dik)_{4}]$ ($M^{III} = Sc, Y,$ La, $M^{I} = K$, Cs, β -dik = hfac, MeCOCHCOCF₃ [19—21]; $M^{III} = Y$, $M^{I} = Cs$, β -dik = ptac [3]) являются летучими.

В настоящем сообщении представлен синтез, кристаллическая структура и термические свойства комплекса (H₂TMEDA)[Mg(ptac)₃]₂, а также кристаллическая структура его "аналога" (H₂TMEDA)[Mg(hfac)₃](hfac).

[©] Викулова Е.С., Пирязев Д.А., Жерикова К.В., Алфёрова Н.И., Морозова Н.Б., Игуменов И.К., 2013

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Общая процедура синтеза. Навеску MgSO₄·7H₂O помещали в коническую колбу с присоединенным к ней обратным холодильником, растворяли в 10 мл воды, добавляли TMEDA и перемешивали в течение 30 мин. Затем в реакционную смесь вводили раствор β-дикетона в 10 мл EtOH и перемешивали в течение 6 ч. Синтез проводили при комнатной температуре.

(H₂TMEDA)[Mg(ptac)₃]₂ (1) формировался в виде белого осадка после 3 ч перемешивания реакционной смеси. Осадок отфильтровывали, промывали водой, сушили на воздухе. Продукт очищали перекристаллизацией из хлороформа. Из 1,26 г MgSO₄·7H₂O (5,1 ммоль), 0,59 г TMEDA (0,77 мл, 5,1 ммоль) и 2,03 г Hptac (1,45 мл, 10,3 ммоль) получено 2,06 г (1,54 ммоль) комплекса 1. Выход 90 %. Элементный анализ (ат.%): для $C_{54}H_{78}F_{18}O_{12}N_2Mg_2$ найдено: С 49,0, H 5,6, N 2,3, F 25,8; вычислено: С 48,5, H 5,9, N 2,1, F 25,6. ИК спектр (см⁻¹): 3044, 2969, 2873 (v_s+v_{as}(CH)); 2736 v(NH); 1661, 1643 (v(C=O)+v(C=C)); 1591—1492 (v(C=O)+v(C=C)+ δ (HCH)+ +деф. цикла); 1475, 1466 δ (HCH)_{Me}; 1395, 1365 δ (HCH)_{/fBu}; 1300 (v(CC)+v_{as}(CF)+деф. цикла); 1254, 1153 (v(CC)+деф. цикла); 1182, 1129 (v_s(CF)+деф. цикла); 1020 δ (HCH); 993, 970, 952 (δ (HCH)+ +деф. цикла); 578, 474 (v(MgO)); 692, 520 (δ (FCF)+деф. цикла). Кристаллы 1, пригодные для PCA, получали медленной кристаллизацией из хлороформа.

(H₂TMEDA)[Mg(hfac)₃](hfac) (2). При взаимодействии 0,86 г MgSO₄·7H₂O (3,5 ммоль), 0,41 г ТМЕDA (0,53 л, 3,5 ммоль) и 1,47 г Hhfac (1,05 л, 7,1 ммоль) в описанных условиях выпадения осадка не наблюдали. После синтеза органическую часть реакционной смеси экстрагировали хлороформом, масса твердого вещества после упаривания растворителя составила 1,20 г. Варьирование условий как синтеза, так и перекристаллизации выделяемого твердого остатка приводит к образованию исключительно смеси продуктов, среди которых удалось получить пригодные для РСА кристаллы комплекса 2 (с использованием хлороформа или толуола в качестве растворителя).

Методы исследования. Элементный CHNF анализ образцов был выполнен в Новосибирском институте органической химии им. Н.Н. Ворожцова согласно опубликованным методикам [22, 23]. ИК спектры поглощения исследуемых образцов снимали на спектрометре Scimitar FTS 2000 в области 375—4000 см⁻¹. Образцы готовили прессованием в виде таблеток с KBr. Отнесение полос ИК спектров проводили путем сравнения с литературными данными [24— 27]. Термический анализ проводили на термоанализаторе Netzsch TG 209 F1 Iris, выпускаемом с прилагаемым пакетом программ Proteus analysis [28]. Масса навески составляла 10 мг. Эксперимент проводили в атмосфере гелия (30,0 мл/мин, открытый тигель Al₂O₃, 10 град./мин).

Рентгеноструктурный анализ комплексов 1 и 2 проведен по стандартной методике на автоматическом четырехкружном дифрактометре Bruker X8 Apex, оснащенном двухкоординатным ССД-детектором, при температуре 150 К с использованием молибденового излучения $(\lambda = 0.71073 \text{ Å})$ и графитового монохроматора. Интенсивности отражений измерены методом ϕ -сканирования узких (0,5°) фреймов. Кристаллографические характеристики и детали дифракционных экспериментов приведены в табл. 1. Поглощение учтено полуэмпирически по программе SADABS [29]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном приближении с помощью комплекса программ SHELXTL [29]. Основные длины связей приведены в табл. 2. Координаты атомов депонированы в Кембриджском банке структурных данных (КБСД, депозитарные коды 895277 и 895278 для комплексов 1 и 2 соответственно), откуда могут быть получены по запросу на сайте www.ccdc.cam.ac.uk/data request/cif. *трет*-Бутильные группы двух лигандов ptac в комплексе 1 разупорядочены вследствие вращения вокруг связи С-С. Вес мажорных компонент составляет 80 и 55 %. Две трифторметильные группы комплекса 2 разупорядочены на три позиции, поэтому соответствующие атомы фтора описаны в изотропном приближении. Координаты атомов водорода при атомах азота уточнены по дифракционным данным.

Таблица 1

Кристаллографичес	кие данные и условия эксперимент	па для комплексов 1 и 2

Соединение	1	2
Брутто-формула	$C_{54}H_{76}F_{18}N_2O_{12}Mg_2$	$C_{26}H_{22}F_{24}N_2O_8Mg$
Молекулярный вес	1335,79	970,77
Сингония	Триклинная	Моноклинная
Пространственная группа	$P\overline{1}$	$P2_1/n$
Параметры ячейки: <i>a</i> , <i>b</i> , <i>c</i> , Å;	10,2919(3), 10,9492(4), 15,4159(6);	12,9446(2), 23,0035(4), 13,1473(3);
α, β, γ, град.	87,117(1), 89,686(1), 76,864(1)	98,799(1)
$V, Å^3; Z$	1689,56(10); 1	3868,81(13); 4
Плотность (расчетная), г/см ³	1,313	1,667
Коэффициент поглощения, мм ⁻¹	0,139	0,208
<i>F</i> (000)	696	1936
Размер кристалла, мм	0,40×0,30×0,25	0,40×0,30×0,20
Область θ, град.	2,03—25,68	2,06—25,00
Диапазон h, k, l	$-11 \le h \le 12, -12 \le k \le 13,$	$-15 \le h \le 15, -28 \le k \le 27,$
	$-18 \le l \le 18$	$-15 \le l \le 15$
Число измерен. / независ. реф-	15449 / 6270	31425 / 6822
лексов	[R(int) = 0,0326]	[R(int) = 0,0422]
Полнота сбора данных по $\theta = 25,0^\circ, \%$	97,9	99,9
Макс. и мин. пропускание	0,9660 и 0,9464	0,9596 и 0,9214
Число рефлексов / огр. / пара- метров	4739 / 0 / 403	6822 / 0 /578
S -фактор по F^2	1,000	1,038
R -фактор [$I > 2\sigma(I)$]	$R_1 = 0,0573, \ wR_2 = 0,1494$	$R_1 = 0,0605, \ wR_2 = 0,1405$
<i>R</i> -фактор (все данные)	$R_1 = 0,0783, \ wR_2 = 0,1657$	$R_1 = 0,0809, \ wR_2 = 0,1555$
Макс. и мин. остаточной эл. плотности, е/Å ³	0,678 и –0,444	0,68 и -0,49

Таблица 2

	~		F = (0, 1'') = (0, 1'') = (0, 1'')
Изопанные опин	л связен н валентные	2 углы для анионов	$2 M \sigma (B - d k)_{2} $
1150pannoic onune		<i>yenoi onn annono</i>	, [1115(p unit)]

Связь	Длина, Å		VDOT	Величина, град.		
	[Mg(ptac) ₃] ⁻	[Mg(hfac) ₃] ⁻	9101	[Mg(ptac) ₃] ⁻	[Mg(hfac) ₃] ⁻	
Mg(1) - O(1)	2,0394(19)	2,061(2)	O(1) - Mg(1) - O(2)	84,76(8)	85,53(9)	
Mg(1)—O(2)	2,053(2)	2,058(2)	O(1) - Mg(1) - O(3)	101,60(8)	86,65(10)	
Mg(1)—O(3)	2,068(2)	2,057(2)	O(1) - Mg(1) - O(4)	89,96(8)	89,82(10)	
Mg(1)—O(4)	2,053(2)	2,076(2)	O(1) - Mg(1) - O(5)	96,76(8)	93,93(10)	
Mg(1)—O(5)	2,0920(19)	2,060(2)	O(2)—Mg(1)—O(5)	96,07(8)	92,94(10)	
Mg(1)—O(6)	2,036(2)	2,051(2)	O(3)—Mg(1)—O(5)	84,08(8)	90,56(7)	
O(1)—C(2A)	1,280(3)	1,245(2)	O(4) - Mg(1) - O(2)	94,92(8)	90,55(10)	
O(2)—C(4A)	1,240(3)	1,246(4)	O(4)—Mg(1)—O(3)	84,35(8)	86,05(10)	
O(3)—C(2B)	1,263(3)	1,252(4)	O(6)—Mg(1)—O(2)	83,39(8)	94,88(10)	
O(4)—C(4B)	1,247(3)	1,248(4)	O(6)—Mg(1)—O(3)	90,21(8)	92,96(10)	
O(5)—C(2C)	1,286(3)	1,249(4)	O(6)—Mg(1)—O(4)	87,91(8)	90,64(10)	
O(6)—C(4C)	1,236(3)	1,245(4)	O(6)—Mg(1)—O(5)	87,65(8)	85,60(9)	

Рис. 1. Фрагмент структуры комплекса 1: строение аниона [Mg(ptac)₃]⁻ с нумерацией атомов. Атомы водорода не приведены для упрощения картины

Рис. 2. Структурообразующий фрагмент комплекса **1**: два аниона [Mg(ptac)₃]⁻ и один катион (H₂TMEDA)²⁺, связанные между собой водородными связями (изображены пунктиром).

С целью упрощения рисунка атомы водорода, не участвующие в образовании водородных связей, не приведены, а для разупорядоченных групп анионов изображены только мажорные компоненты

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура комплекса 1 ионного типа содержит катионы H_2TMEDA^{2+} и анионы $[Mg(ptac)_3]^-$ (рис. 1, 2). При этом два аниона и один катион связаны между собой двумя симметричнозависимыми водородными связями O(5)...HN(1), длины которых равны 1,929 Å, угол N(1)HO(5) = 166(3)° (см. рис. 2). Данные фрагменты (см. рис. 1) формируют кристаллическую упаковку, в мотиве которой можно выделить две псевдоцепочки: вдоль направления (001) и (100); последняя является гофрированной.

Координационное окружение магния представляет собой искаженный октаэдр, в вершинах которого располагаются 6 атомов кислорода трех лигандов рtac (см. рис. 2). Длины связей Mg—O лежат в интервале 2,036(2)—2,0920(19) Å, при этом наибольшим является расстояние между атомом магния и кислородом O(5), принимающим участие в образовании водородной связи (см. табл. 2).

Три лиганда рtac координированы к атому магния бидентатно-циклическим способом, причем все трифторметильные группы обращены в сторону катиона. Образованные при этом шестичленные металлоциклы не являются плоскими, углы между плоскостями OMgO и OC γ O в случае лигандов *A*, *B* и *C* составляют 20,85(13), 25,18(15) и 10,11(15)° соответственно. Таким образом, наименьший изгиб имеет цикл, атом кислорода которого (O(5)) образует водородную связь с катионом. Хелатные углы меньше 90° (см. табл. 2).

Во всех лигандах рtac (см. табл. 2) наблюдается незначительное характерное [30, 31] укорочение расстояния С—С γ со стороны трифторметильных групп (С(2*i*)—С(3*i*), *i* = A, B, C) по сравнению с таковыми со стороны *трет*-бутильных групп (С(3*i*)—С(4*i*), *i* = A, B, C). Первые укладываются в интервал 1,361(4)—1,368(4) Å, а вторые лежат в интервале 1,422(4)—1,439(4) Å. Также наблюдается некоторое растяжение связей С—О со стороны трифторметильных групп: их длины составляют 1,263(3)—1,286(3) Å, тогда как расстояния С—О со стороны *трет*бутильных групп составляют 1,236(3)—1,247(3) Å. Следует отметить, что расстояние С(2С)— O(5) практически не увеличено по сравнению с остальными расстояниями С—О со стороны трифторметильных групп.

Таким образов, образование водородной связи O(5)...HN(1) не приводит к изменению длины связи C(2C)—O(5), оказывая влияние только на длину связи Mg—O(5).

Т	а (5л	И	Ц	а	3

1			2		
Связь	Длина, Å	Связь	Длина, Å	Угол	Величина, град.
Комплекс 1		Комплекс 2			
N(1)—C(1)	1,498(3)	N(1)—C(13)	1,492(5)	C(11)—N(1)—C(13)	112,8(3)
N(1)—C(3)	1,497(3)	N(2)—C(14)	1,511(5)	C(15)-N(2)-C(14)	114,5(4)
N(1)—C(2)	1,491(3)	N(1)—C(11)	1,495(5)	C(12) - N(1) - C(13)	112,8(3)
C(1)—C(1')*	1,514(5)	N(2)—C(15)	1,457(5)	C(16)—N(2)—C(14)	114,3(3)
Угол	Величина, град.	N(1)—C(12)	1,492(5)	C(11)—N(1)—C(12)	111,6(3)
C(3) - N(1) - C(1)	111,5(2)	N(2)—C(16)	1,493(5)	C(15)—N(2)—C(16)	110,2(3)
C(2) - N(1) - C(1)	110,6(2)	C(13)—C(14)	1,484(5)	N(1)—C(13)—C(14)	113,7(3)
C(2) - N(1) - C(3)	110,3(2)			N(2) - C(14) - C(13)	113,7(3)
$N(1) - C(1) - C(1')^*$	110,1(3)				

Избранные длины связей и валентные углы для катиона H₂TMEDA²⁺

* 1-*x*, 1-*y*, 1-*z*.

Две половины катиона H_2TMEDA^{2+} в структуре 1 симметрично связаны центром инверсии, расположенным на его связи С—С. Длины связей N—С практически равны и близки к расстоянию C(1)—C(1') (табл. 3). Оба атома азота тетраметилэтилендиамина связаны с катионами водорода, что подтверждается наличием максимума электронной плотности на дифрактограмме PCA и величинами углов CN(1)C, близкими к тетраэдрическим. Кроме того, наличие протона, связанного с атомом азота, также доказывает наличие в ИК спектре соединения 1 полосы при 2736 см⁻¹, относящейся к валентным колебаниям связи N—H группы R_3NH^+ [26]. Ранее было показано, что ¹H ЯМР спектроскопия в применении к подобным соединениям не позволяет детектировать наличие протона, что связано с участием протона связи N—H в быстром обмене [15]. Таким образом, использование ИК спектроскопии для подтверждения строения подобных соединений обладает несомненным преимуществом. Строение катиона H_2TMEDA^{2+} в структуре соединений 1 и 2 принципиально не различается (см. табл. 3).

В отличие от комплекса 1, в состав соединения 2 помимо аниона $[Mg(\beta-dik)_3]^-$ и катиона H_2TMEDA^{2+} входит также анион соответствующего β -дикетона. Структура 2 ионная, однако водородных связей между комплексным анионом и катионом не обнаружено. Оба протона частицы H_2TMEDA^{2+} участвуют в образовании водородных связей с ионом hfac⁻, причем каждый атом кислорода карбонильной группы контактирует с каждым из протонов катиона (средн. длина 2,84(3) Å, значения углов NHO лежат в интервале 134(3)—140(4)°, рис. 3, *a*). Взаимодействие между образованным таким образом фрагментом и анионом [Mg(hfac)₃]⁻ можно описать как кулоновское. В пространственной упаковке можно выделить слои из анионов [Mg(hfac)₃]⁻ и пар { H_2TMEDA^{2+} + hfac⁻}, расположенные вдоль направления (001).

Структура аниона [Mg(hfac)₃]⁻ (см. рис. 3, δ) принципиально не отличается ни от описанной ранее [15, 17], ни от строения аналогичных анионов [M^{II}(hfac)₃]⁻, содержащих другой металлоцентр (M^{II} = Mn, Fe [32], Co [32, 33], Ni [32, 34], Cu [17, 32, 33], Zn [35]). Заметным различием в координационном окружении центрального атома в указанных анионах является только тетрагональное искажение октаэдра в случае атома меди, обусловленное эффектом Яна—Теллера. Между анионами [Mg(hfac)₃]⁻ и [Mg(ptac)₃]⁻ существуют различия в пространственном строении, обусловленные, по-видимому, большим объемом лиганда рtac (см. табл. 2). Так, длины связей Mg—O в соединении **2** лежат в более узком интервале, чем в соединении **1** (2,051(2)—2,076(2) Å и 2,036(2)—2,0920(19) Å соответственно), а изгиб металлоциклов в анионе [Mg(hfac)₃]⁻ существенно меньше, чем в анионе [Mg(ptac)₃]⁻: для соединения **2** углы между плоскостями ОМgO и ОС γ O в случае лигандов *A*, *B* и *C* составляют 15,92, 6,02 и 1,70° соответственно. Соединений, содержащих анион типа [M^{II}(ptac)₃]⁻, в доступной литературе не найдено.

Рис. 3. Структурообразующие фрагменты комплекса **2**: катион H_2 TMEDA²⁺, связанный водородными связями с анионом hfac⁻; атомы водорода, не участвующие в образовании водородных связей, не приведены (*a*); анион [Mg(hfac)₃]⁻ (δ)

Для других элементов II группы Периодической системы структуры, содержащие именно анионы $[M^{II}(\beta-dik)_3]^-$, также неизвестны. Этот факт можно объяснить увеличением ионного радиуса элементов. Так, для кальция описана структура, содержащая анион $[Ca(adtfac)_3(H_2O)]^-$ (adtfac = AdCOCHCOCF₃, Ad = 1-адамантил), в котором координационное число кальция равно 7 [36]. Для стронция координационное число в подобных анионах составляет 8 ($[Sr(tfac)_4]^2^-$, tfac = CH₃COCHCOCF₃ [37], $[Sr(btfac)_4]^{2-}$, btfac = PhCOCHCOCF₃ [38]), для бария — 8 ($[Ba(hfac)_4]^{2-}$ [39]) или 9 ($[Ba(hfac)_5]^{3-}$ [40]).

Термическое поведение комплекса **1** в интервале температур 25—250 °С исследовали методом термогравиметрии (рис. 4). Наличие нескольких пиков на кривой DTG свидетельствует о многоступенчатости процесса, что, по-видимому, связано с протекающими параллельно процессами сублимации и разложения. Элементный анализ сублимата (110—130 °С, 10⁻³ Торр) показывает практически полное отсутствие азота (0,3 ат.%, на уровне погрешности метода). Сопоставление результатов элементного анализа и данных ИК спектроскопии позволяет идентифицировать сублимат как Mg(ptac)₂(H₂O)₂ (для $C_{16}H_{24}O_6F_6Mg$ найдено (ат.%): С 43,3, Н 5,4, F 24,7; рассчитано: С 42,6, Н 5,4, F 25,2; характеристичные полосы ИК спектра (см⁻¹) коррелируют с представленными в литературе [10]: 3434 v(OH); 2976, 2881 v(CH); 1627 (v(C=O)+ +v(C=C)+ δ (HOH)); 1304 (v(CC)+ v_{as} (CF)+деф. цикла); 1196, 1143 (v_s (CF)+деф. цикла); 580, 482

v(MgO)). По нашему мнению, при нагревании комплекс 1 разлагается согласно уравнению

$(H_2TMEDA)[Mg(ptac)_3]_2 \rightarrow$

 $\rightarrow 2Mg(ptac)_2 + TMEDA^+ + 2Hptac^+$, (1) причем образующийся Mg(ptac)_2 (строение его неизвестно, но предположительно по аналогии с другими β -дикетонатами магния соединение представляет собой олигомер

Рис. 4. Термограмма комплекса 1 (атмосфера Не, скорость нагрева 10 град./мин)

 $[Mg(ptac)_2]_n$, n = 2 - 3 [6, 7]) при попадании на воздух поглощает воду, превращаясь в комплекс $Mg(ptac)_2(H_2O)_2$, что согласуется с литературными данными о поведении β -дикетонатов магния [10].

Работа выполнена при поддержке Российского фонда фундаментальных исследований грант № 12-03-31277 мол а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Hatch L.F., Sutherland G. // J. Org. Chem. 1948. 13, N 2. P. 249.
- 2. Zhao Yu-W., Suhr H. // Appl. Phys. A. 1992. 54. P. 451.
- 3. Vikulova E.S., Zherikova K.V., Zelenina L.N. et al. // Key Eng. Mat. 2012. 508. P. 215.
- 4. Raj A.M.E., Jayachandran M., Sanjeeviraja C. // CIRP J. Manuf. Sci. Techn. 2010. 2. P. 93.
- 5. Hammond G.B., Nonhebel D.C., Wu Ch-H.S. // Inorg. Chem. 1963. 2, N 1. P. 73.
- 6. Weiss E., Kopf J., Gardein T. et al. // Chem. Ber. 1985. 118. P. 3529.
- 7. Hatanpää T., Ihanus J., Kansikas J. et al. // Chem. Mater. 1999. 11, N 7. P. 1846.
- 8. Morosin B. // Acta Crystallogr. 1967. 22. P. 315.
- 9. Кузьмина Н.П., Рязанов М.В., Троянов С.И. и др. // Кординац. химия. 1999. 25, № 6. С. 409.
- Морозова Н.Б., Жаркова Г.И., Стабников П.А. и др. Синтез и физико-химическое исследование β-дикетонатов щелочно-земельных металлов. – Новосибирск, 1989. – (Препринт / АН СССР. Сибирское отделение. Институт неорганической химии; № 89-08).
- 11. Hatanpää T., Kansikas J., Mutikainen I. et al. // Inorg. Chem. 2001. 40, N 4. P. 788.
- 12. Fragala M.E., Toro R.G., Rossi P. et al. // Chem. Mater. 2009. 21, N 10. P. 2062.
- 13. Соболева И.Е., Троянов С.И., Кузьмина Н.П. // Координац. химия. 1996. 22, № 8. С. 579.
- 14. Babcock J.R., Benson D.D., Wang A. et al. // Chem. Vapor Depos. 2000. 6, N 4. P. 180.
- 15. Wang L., Yang Yu, Ni J. et al. // Chem. Mater. 2005. 17, N 23. P. 5697.
- 16. Maria M., Selvakumar J., Raghunathan V.S. et al. // Surf. Coat. Tech. 2009. 204. P. 222.
- 17. Truter M.R., Vickery B.L. // J. Chem. Soc., Dalton Trans. 1972. P. 395.
- 18. Гуревич М.З., Сас Т.М., Мазепова Н.Е. и др. // Журн. неорган. химии. 1975. 20. С. 735.
- 19. Гуревич М.З., Степин Б.Д., Зеленцов В.В. // Журн. неорган. химии. 1970. 15. С. 890.
- 20. Lippard S.J. // J. Amer. Chem. Soc. 1966. 88. P. 4800.
- 21. Гуревич М.З., Сас Т.М., Степин Б.Д. и др. // Журн. неорган. химии. 1971. 16. С. 2099.
- 22. Фадеева В.П., Морякина И.М. // Изв. СО АН ССС. Сер. хим. 1981. 6. С. 113.
- 23. Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Anal. Chem. 2008. 63. P. 1094.
- 24. Strukl J.S., Walter J.L. // Spectrochim. Acta A. 1971. 27. P. 209.
- Nakamoto K. Infrared and Raman spectra of inorganic and organic compounds. –New York: John Wiley & Sons, Inc., 1997.
- 26. Гордон А., Форд Р. Спутник химика: Пер. с англ. М.: Мир, 1976.
- 27. Basova T.V., Kiselev V.G., Filatov E.S. et al. // Vib. Spectroscop. 2012. 61. P. 219.
- 28. NETZSCH Proteus Thermal Analysis v.4.8.1. NETZSCH-Gerätebau. Bayern, Germany, 2005.
- 29. Bruker: SADABS, SAINT and SHELXTL. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.
- 30. Gromilov S.A., Baidina I.A. // J. Struct. Chem. 2004. 45, N 6. P. 1031.
- 31. Zherikova K.V., Kuratieva N.V., Baidina I.A. et al. // J. Struct. Chem. 2010. 51, N 6. P. 769.
- 32. Villamena F.A., Dickman M.H., Crist D.L.R. // Inorg. Chem. 1998. 37, N 7. P. 1446.
- 33. Mehdi H., Binnemans K., Van Hecke K. et al. // Chem. Commun. 2010. 46. P. 234.
- 34. Фурсова Е.Ю., Кузнецова О.В., Овчаренко В.И. и др. // Изв. А. Сер. хим. 2008. **6**. С. 1175.
- 35. Coles S.J., Granifo J., Hursthouse M.B. et al. // Acta Crystallogr. 2001. E57. P. m535.
- 36. Pochekutova T.S., Khamylov V.K., Fukin G.K. et al. // Polyhedron. 2011. 30. P. 1945.
- 37. Darr J.A., Drake S.R., Hursthouse M.B. et al. // J. Chem. Soc., Dalton Trans. 1997. P. 945.
- 38. Marchetti F., Pettinari C., Pettinari R. et al. // Inorg. Chem. 2006. 45, N 7. P. 3074.
- 39. Otway D.J., Rees Jr. W.S. // Coord. Chem. Rev. 2000. 210. P. 279.
- 40. Huang L., Turnipseed S.B., Haltiwanger R.C. et al. // Inorg. Chem. 1994. 33, N 4. P. 798.