УДК 541.136+546.34+544.463

Структура и электрохимические свойства твердых растворов LiCo_{1 – у}Fe_yPO₄ – высоковольтовых катодных материалов для литий-ионных аккумуляторов*

О. А. ПОДГОРНОВА, Н. В. КОСОВА

Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия)

E-mail: kosova@solid.nsc.ru

Аннотация

С помощью механохимически стимулированного карботермического восстановления оксидов железа и кобальта синтезированы однофазные высокодисперсные твердые растворы ${\rm LiCo_{1-y}Fe_yPO_4}$ во всем диапазоне составов $0 \le y \le 1$. Механическую активацию проводили с использованием планетарной мельнице АГО-2. По данным сканирующей электронной микроскопии, средний размер первичных частиц синтезированных образцов составляет 200–250 нм. Согласно результатам РФА, все образцы кристаллизуются в ромбической сингонии с пространственной группой *Pnma*. Объем элементарной ячейки возрастает с повышением содержания железа в образцах. Согласно ЯГР-спектроскопии, все ионы железа находятся в состоянии 2+ в октаэдрическом окружении, характерном для структуры оливина. Электрохимические свойства ${\rm Li1_-yFe_yPO_4}$ исследованы методом гальваностатического циклирования. Показано, что с увеличением содержания Fe происходит заметный сдвиг потенциала пары ${\rm Co}^{2+}/{\rm Co}^{3+}$ в сторону более низких напряжений, тогда как потенциал пары ${\rm Fe}^{2+}/{\rm Fe}^{3+}$ остается практически неизменным.

Ключевые слова: литий-ионные аккумуляторы, катодные материалы $LiCo_{1-y}Fe_yPO_4$, механическая активация, кристаллическая структура, циклирование

введение

В современном мире наблюдается растущий спрос на литий-ионные аккумуляторы (ЛИА). Область применения ЛИА разнообразна и охватывает практически все стороны жизнедеятельности современного индустриального общества: производство, быт, сферу отдыха. Создание крупногабаритных аккумуляторов для транспорта и накопителей энергии требует дальнейшего увеличения их емкостных и мощностных характеристик, работоспособности в широком интервале температур. Это стимулирует поиск новых электродных материалов и разработку новых методов их синтеза [1].

В последние годы большое внимание уделяется исследованию нового класса катодных материалов - ортофосфатов лития и переходных металлов со структурой оливина (пр. гр. Pnma), обладающих высоким рабочим напряжением и достаточно большой электрохимической емкостью. Железофосфат лития LiFePO₄ был впервые предложен в качестве катодного материала в 1997 г. [2], а его промышленный выпуск начался с 2010 г. Соединение LiFePO₄ характеризуется рабочим напряжением 3.4 В относительно пары Li/Li⁺ и удельной энергией 578 Вт · ч/г, отличается высокой химической, термической и структурной устойчивостью при циклировании. Благодаря своим свойствам, LiFePO₄ наиболее востребован как катодный материал для производства крупногабаритных аккумуляторов. В то же время он имеет низкую электрическую проводимость ($\sigma \sim 10^{-9}$ См/см), однако этот недо-

^{*} Материалы IV Международной конференции "Фундаментальные основы механохимических технологий", 25–28 июня 2013 г., Новосибирск

[©] Подгорнова О. А., Косова Н. В.

статок можно исправить, если получать LiFePO₄ в наноразмерном состоянии и осуществлять допирование и поверхностное модифицирование высокопроводящим углеродом [3].

В ряду структурных аналогов LiFePO₄ -LiMnPO₄ - LiCoPO₄ - LiNiPO₄ рабочее напряжение, а соответственно, удельная энергия и мощность аккумулятора, возрастают. Так, для LiCoPO₄ напряжение составляет 4.8 В, а удельная энергия - 801 Вт · ч/г, что в 1.5 раза выше, чем для LiFePO₄. Однако LiCoPO4 обладает еще более низкой электрической проводимостью ($\sigma \sim 10^{-15}$ См/см), а его рабочее напряжение превышает электрохимическое окно стабильности стандартного электролита (4.8 В). При более высоком напряжении происходит разложение электролита и его взаимодействие с катодным материалом. В результате катодный материал сильно деградирует, а аккумулятор теряет емкость в ходе циклирования [4].

В работах [3, 5, 6] показано, что получение LiCoPO₄ в наноразмерном состоянии, допирование катионами других металлов и создание высокопроводящего углеродного покрытия с использованием различных углеродсодержащих прекурсоров обеспечивает удовлетворительные показатели катодного материала по электрической проводимости и циклируемости. Недавно авторы [7] обнаружили, что частичное замещение ионов Mn^{2+} на ионы Fe^{2+} в LiMnPO₄ приводит к сдвиту окислительновосстановительного потенциала пары $Mn^{2+}/$

Рис. 1. Дифрактограммы твердых растворов ${\rm LiCo_{1-y}Fe_yPO_4}$ (0 $\leq y \leq$ 1).

 ${\rm Mn^{3^+}}$ в область более низких напряжений. Подобные исследования проводятся и для LiCoPO₄ [8–11]. Сдвиг окислительно-восстановительного потенциала пары ${\rm Co^{2^+}/Co^{3^+}}$ в сторону более низких напряжений позволяет значительно улучшить электрохимические свойства LiCoPO₄ за счет уменьшения степени разложения электролита и деградации катодного материала.

Как правило, высокодисперсные катодные материалы для ЛИА получают растворными методами (например, золь-гель [12], гидротермальный [13]). Однако в ходе реализации данных методов образуются жидкие отходы, требующие дальнейшей утилизации. В Институте химии твердого тела и механохимии СО РАН (Новосибирск) развивается современный твердофазный, эко- и энергосберегающий

Рис. 2. Дифрактограмма LiCo_{0.9}Fe_{0.1}PO₄, уточненная по методу Ритвельда.

ма смеси исходных реагентов спосооствует значительному уменьшению температуры и времени последующего отжига, благодаря чему повышается однородность конечного продукта, а сам он находится в высокодисперсном состоянии [14].

В данной работе изучен твердофазный синтез твердых растворов $\text{LiCo}_{1-y}\text{Fe}_{y}\text{PO}_{4}$ ($0 \le y \le 1$) с использованием механохимически стимулированного карботермического восстановления оксидов железа и кобальта; проведены исследования их кристаллической, локальной структуры и электрохимических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Предварительную МА исходной многокомпонентной смеси реагентов: Li_2CO_3 , Co_3O_4 , Fe_2O_3 , $(NH_4)_2HPO_4$ и углерода – проводили в планетарной мельнице АГО-2. Отжиг механоактивированных смесей осуществляли в инертной атмосфере при 750 °С. Избыток углерода (2–3%) использовали для создания углеродного электронопроводящего покрытия.

Полученные образцы анализировали методами рентгенофазового анализа (РФА), мессбауэровской спектроскопии (ЯГР), сканирующей электронной микроскопии (СЭМ) и гальваностатического циклирования. Рентгеноструктурные исследования проводили с помощью дифрактрометра D8 Advance Bruker (CuK_α-излучение, шаг 0.02°/с). Уточнение параметров решетки по методу Ритвельда осуществляли с использованием пакета программ GSAS [15]. ЯГР-спектры регистрировали на ЯГР-спектрометре NZ-640 с ⁵⁷Со-источником излучения (Венгрия). Размер и морфологию частиц исследовали с помощью сканирующего электронного микроскопа Hitachi TM-1000 (Япония), а спектры EDX с помощью детектора TM1000 EDS. Циклирование проводили гальваностатическим методом в диапазоне напряжений 3-5 В при комнатной температуре, используя полуячейку с литиевым анодом и электролитом на основе раствора 1 M LiPF₆ в смеси этилен- и диметилкарбоната при скорости циклирования C/10, где C = 167 мA/г.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены дифрактограммы синтезированных твердых растворов LiCo_{1 – y}Fe_yPO₄ ($0 \le y \le 1$). Все образцы однофазные, кристаллизуются в ромбической сингонии с пр. гр. *Pnma*. Структуру можно представить как цепочку из октаэдров MO₆ (M = Co, Fe) вдоль оси c, которые связаны тетраэдрами PO₄³⁻ и образуют трехмерный каркас. Октаэдры MO₆, образующие зигзагообразные цепи, соединены между собой вершинами, а не гранями, что затрудняет электронный перенос [16]. Диффузия ионов лития реализуется по одномерным каналам вдоль оси b (направление [010]).

На рис. 2 приведена дифрактограмма LiCo_{0.9}Fe_{0.1}PO₄, уточненная по методу Ритвельда, а на рис. 3 представлены зависимости параметров элементарной ячейки от содержания железа. Видно, что параметры a и b возрастают с увеличением содержания Fe в образцах, а параметр c уменьшается. Анизотропное изменение параметров приводит к увеличению объема элементарной ячейки. Уточненные параметры элементарной ячейки синтезирован-

Рис. 3. Зависимости параметров a, b, c и объема элементарной ячейки (V) для твердых растворов $\text{LiCo}_{1-y}\text{Fe}_{y}\text{PO}_{4}$ от состава y.

Рис. 4. ЯГР-спектры твердых растворов ${\rm LiCo_{1-y}Fe_{y}PO_{4}}$ (0 $\leq y \leq$ 1).

ных образцов и их зависимость от содержания Fe хорошо согласуются с данными [8].

Локальная структура синтезированных твердых растворов LiCo_{1 – y}Fe_yPO₄ ($0 \le y \le 1$) исследована методом ЯГР-спектроскопии, который позволяет определить электронное состояние ионов Fe в исследуемом материале (рис. 4). Видно, что на всех спектрах присутствует один дублет, соответствующий ионам Fe²⁺ в октаэдрическом окружении, которое характерно для структуры оливина [17]. Наличие каких-либо примесных фаз не выявлено. Интенсивность дублета возрастает с увеличением содержания Fe в образцах. Данные по ширине, химическому сдвигу и квадрупольному расщеплению ЯГР-спектров приведены в табл. 1.

По результатам СЭМ, первичные частицы синтезированных образцов LiCoPO₄, LiCo_{0.5}Fe_{0.5}PO₄ и LiFePO₄ имеют форму, близкую к сферической, и средний размер 200–250 нм (рис. 5, *a*-*s*). Первичные частицы объединены в рыхлые вторичные агломераты размером 10–15 мкм. Химический состав синтезированных твердых растворов состава LiCo_{1-u}Fe_vPO₄ (0 ≤ $y \le 1$)

подтвержден методом энергодисперсионной рентгеновской спектроскопии (EDX). На рис. 5, *г* приведен EDX-спектр для образца LiCo_{0.5}Fe_{0.5}PO₄.

Известно, что зарядно-разрядные профили LiFePO₄ и LiCoPO₄ имеют вид плато, что

ТАБЛИЦА 1

Ширина, химсдвиг (IS), квадрупольное расщепление (QS) и состояние ионов Fe в твердых растворах LiCo_{1 – y}Fe_yPO₄ (0 $\leq y \leq 1$) по данным ЯГР-спектроскопии. Содержание Fe²⁺ составляет 100 %

y	Ширина, мм/с	QS, мм/с	IS, мм/с	
0.05	0.26	2.95	1.22	
0.10	0.25	2.96	1.22	
0.25	0.27	2.97	1.23	
0.50	0.33	2.91	1.22	
0.75	0.31	2.94	1.22	
0.90	0.31	2.94	1.23	
1	0.37	2.95	1.22	

коррелирует с двухфазным механизмом интеркаляции/деинтеркаляции ионов лития [4, 18]. Это означает, что в каждой точке экспериментальной кривой в материале присутствует две фазы – начальная LiMPO₄ и конечная MPO₄ (M = Fe, Co). На графике зависимости dQ/dU от напряжения наблюдаются пары соответствующих окислительно-восстановительных пиков. Особенностью LiCoPO₄ является наличие двух окислительных пиков, в отличие от одного для LiFePO₄, что объясняется образованием промежуточной фазы Li_{0.7}CoPO₄ в ходе заряда. Однако разряд LiCoPO₄ происходит в одну стадию без образования промежуточных фаз.

На рис. 6 приведены зарядно-разрядные профили синтезированных твердых растворов $LiCo_{1-y}Fe_{y}PO_{4}$ ($0 \le y \le 1$) в диапазоне напряжений 3-5 В при скорости циклирования С/10. Видно, что на кривых присутствует два плато - при 3.4 и 4.8 В. Первое плато при 3.4 В соответствует окислительно-восстановительной паре ${\rm Fe}^{2+}/{\rm Fe}^{3+},$ а второе (при 4.8 В) – паре Co^{2+}/Co^{3+} . На графиках зависимости dQ/dUот напряжения присутствует три окислительных и два восстановительных пика (рис. 7). Из данных рис. 7 и табл. 2 следует, что с увеличением содержания Fe в образцах потенциал пары Со²⁺/Со³⁺ заметно смещается в область более низких значений напряжения (от 4.92 В для LiCoPO₄ до 4.69 В для состава LiCo_{0.1}Fe_{0.9}PO₄), тогда как потенциал пары Fe²⁺/Fe³⁺ практически не изменяется. Стоит также отметить, что окислительный пик при 4.81 В, соответствующий образованию проме-

Рис. 5. Микрофотографии LiCoPO₄ (a), LiCo_{0.5}Fe_{0.5}PO₄ (б), LiFePO₄ (в) и EDX-спектр для LiCo_{0.5}Fe_{0.5}PO₄ (г).

Рис. 6. Зарядно-разрядные профили для твердых растворов LiCo $_{1-u}{\rm Fe}_u{\rm PO}_4~(0\leq y\leq 1).$

жуточной фазы $Li_{0.7}CoPO_4$, исчезает при переходе к составу $LiCo_{0.5}Fe_{0.5}PO_4$. Для составов с $y \ge 0.5$ в области высоких напряжений фиксируется только по одному окислительному пику, т. е. промежуточная фаза, скорее всего, не образуется. Возможно, это связано

ТАБЛИЦА 2

Изменение потенциалов пар ${\rm Fe}^{2+}/{\rm Fe}^{3+}$ и Со $^{2+}/{\rm Co}^{3+}$ при циклировании LiCo $_{1-y}{\rm Fe}_y{\rm PO}_4$ (0 $\leq y \leq$ 1), В

\overline{y}	$\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$		Co ²⁺ /Co ³⁺		
	Заряд	Разряд	Заряд		Разряд
0	_	_	4.81	4.92	4.72
0.05	_	_	4.77	4.87	4.72
0.10	_	_	4.77	4.87	4.72
0.25	3.54	3.42	4.74	4.84	4.74
0.50	3.49	3.40	-	4.80	4.71
0.75	3.49	3.42	-	4.77	4.70
0.90	3.47	3.40	-	4.69	4.61

Рис. 7. Зависимости dQ/dU от напряжения для твердых растворов LiCo $_{1-y}{\rm Fe}_{y}{\rm PO}_{4}~(0\leq y\leq 1).$ 1 – заряд, 2 – разряд.

со сменой механизма деинтеркаляции лития с двухфазного на однофазный, что наблюдалось нами ранее в случае твердых растворов LiFe_{1 – y}Mn_yPO₄ [19]. Значительный сдвиг потенциала пары $\text{Co}^{2+}/\text{Co}^{3+}$ в область более низких напряжений позволяет проводить циклирование катодных материалов на основе LiCoPO₄ с участием пары $\text{Co}^{2+}/\text{Co}^{3+}$ в области напряжений до 4.85 В, т. е. без превышения электрохимического окна стандартного электролита [20, 21].

Изменение потенциала окислительно-восстановительной пары $\mathrm{Co}^{2^+}/\mathrm{Co}^{3^+}$ при цикли-

Рис. 8. Зарядно-разрядный профиль и зависимость dQ/dU от напряжения для механической смеси 0.9LiCoPO₄/0.1LiFePO₄. 1 – заряд, 2 – разряд.

ровании обусловлено частичным замещением Co^{2+} на Fe^{2+} в структуре $\mathrm{LiCoPO_4}$ с образованием твердых растворов $\mathrm{LiCo_1}_{-y}\mathrm{Fe_yPO_4}$ и некоторым изменением в электронной структуре. Это отличает твердые растворы $\mathrm{LiCo_1}_{-y}\mathrm{Fe_yPO_4}$ от механических смесей $\mathrm{LiCoPO_4}$ и

Рис. 9. Зависимость удельной разрядной емкости от номера цикла для твердого раствора LiCo $_{0.9}$ Fe $_{0.1}$ PO $_4$ (1) и механической смеси 0.9LiCoPO $_4/0.1$ LiFePO $_4$ (2).

LiFePO₄ аналогичного состава, где такого эффекта не наблюдается. На зарядно-разрядном профиле и кривой зависимости dQ/dU от напряжения для механической смеси 0.9LiCoPO₄/0.1LiFePO₄ (рис. 8) видно, что потенциал пары Co^{2+}/Co^{3+} не изменяется. Удельная разрядная емкость для твердого раствора LiCo_{0.9}Fe_{0.1}PO₄ существенно выше удельной емкости для механической смеси 0.9LiCoPO₄/0.1LiFePO₄, как на первом, так и на последующих циклах (рис. 9).

ЗАКЛЮЧЕНИЕ

Таким образом, реализован простой механохимически стимулированный твердофазный синтез однофазных высокодисперсных твердых растворов $LiCo_{1-y}Fe_yPO_4$ ($0 \le y \le 1$) путем карботермического восстановления оксидов кобальта и железа. Показано, что все полученные образцы кристаллизуются в ромбической сингонии с пространственной группой Рпта, при этом объем элементарной ячейки возрастает с увеличением содержания Fe. Установлено, что с увеличением содержания Fe в образцах потенциал пары Co²⁺/Co³⁺ заметно сдвигается в область более низких напряжений. Благодаря этому катодные материалы на основе LiCoPO₄ можно использовать в аккумуляторах со стандартным электролитом.

Авторы выражают благодарность Н. В. Булиной, В. Р. Подугольникову, С. А. Петрову и Е. Т. Девяткиной за помощь, оказанную в проведении исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1 Hu M., Pang X., Zhou Z. // J. Power Sources. 2013. Vol. 237. P. 229.
- 2 Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. // J. Electrochem. Soc. 1997. Vol. 144. P. 1188.
- 3 Sharabi R., Markevich E., Borgel V., Salitra G., Aurbach D., Semrau G., Schmidt M. A., Schall N., Stinner C. // Electrochem. Commun. 2011. Vol. 13. P. 800.
- 4 Bramnik N. N., Nikolowski K., Baehtz C., Bramnik K. G., Ehrenberg H. // Chem. Mater. 2007. Vol. 19. P. 908.
- 5 Wolfenstine J. // J. Power Sources. 2006. Vol. 158. P. 1431.
- 6 Satya Kishore M. V. V. M., Varadaraju U. V. // Mater. Res. Bull. 2005. Vol. 40. P. 1705.
- 7 Kosova N. V., Devyatkina E. T., Slobodyuk A. B., Petrov S. A. // Electrochim. Acta. 2012. Vol. 59. P. 404.
- 8 Nyten A., Thomas J.O. // Solid State Ionics. 2006. Vol. 177. P. 1327.
- 9 Wang D., Wang Z., Huang X., Chen L. // J. Power Sources. 2005. Vol. 146. P. 580.
- 10 Han D. W., Kang Y. M., Yin R. Z., Song M. S., Kwon H. S. // Electrochem. Commun. 2009. Vol. 11. P. 137.
- 11 Allen J. L., Jow T. R., Wolfenstine J. // J. Power Source. 2011. Vol. 196. P. 8656.
- 12 Yang J., Xu J. J. // J. Electrochem. Soc. 2006. Vol. 153. P. A716.
- 13 Huang X., Ma J., Wu P., Hu Y., Dai J., Zhu Z., Chen H., Wang H. // Mater. Lett. 2005. Vol. 59. P. 578.
- 14 Kosova N., Devyatkina E. // Solid State Ionics. 2004. Vol. 172. P. 181.
- 15 Toby B. H. // J. Appl. Cryst. 2001. Vol. 34. P. 210.
- 16 Amine K., Yasuda H., Yamachi M. // Electrochem. Solid-State Lett. 2000. Vol. 3(4). P. 178.
- 17 Yamada A., Kudo Y., Liu K. Y. // J. Electrochem. Soc. 2001. Vol. 148. P. A1153.
- 18 Kobayashi G., Nishimura S. I., Park M. S., Kanno R., Yashima M., Ida T., Yamada A. // Adv. Funct. Mater. 2009. Vol. 19. P. 395.
- 19 Kosova N. V., Devyatkina E. T., Ancharov A. I., Markov A. V., Karnaushenko D. D., Makukha V. K. // Solid State Ionics. 2012. Vol. 225. P. 564.
- 20 Osnis A., Kosa M., Aurbach D., Major D. T. // J. Phys. Chem. C. 2013. Vol. 117. P. 17919.
- 21 Muraliganth T., Manthiram A. // J. Phys. Chem. C. 2010. Vol. 114. P. 15530.