2014. Том 55, № 3

Май – июнь

C. 517 – 521

УДК 541.49:546.562:546.74

КРИСТАЛЛИЧЕСКИЕ И МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ БИС(2,2,6,6-ТЕТРАМЕТИЛ-3-МЕТИЛАМИНОГЕПТАН-5-ОНАТА) МЕДИ(II) И НИКЕЛЯ(II)

П.А. Стабников¹, С.И. Доровских¹, Н.В. Первухина¹, Л.Г. Булушева¹, Г.В. Романенко²

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск E-mail: stabnik@niic.nsc.ru ²Инатитут "Magadyugnodu ий томостарищеский неитр" СО РАН. Новосибирс

²Институт "Международный томографический центр" СО РАН, Новосибирск

Статья поступила 21 мая 2013 г.

С доработки — 11 ноября 2013 г.

Синтезированы и методом РСА определены кристаллические структуры (дифрактометр Bruker APEX-II с CCD детектором, λMoK_{α} , λCuK_{α} , графитовый монохроматор, T = 240(2)и 296(2) K) двух бисхелатов $M(tmih)_2$ (M = Cu(II), Ni(II), tmih = (CH₃)₃C(NCH₃)× ×CHCOC(CH₃)₃)⁻: Cu(tmih)₂ (I) (пр. гр. $P2_1/c$, a = 12,9670(8), b = 18,4921(9), c == 11,0422(6) Å, β = 93,408(4)°, V = 2643,1(3) Å³, Z = 4) и Ni(tmih)₂ (II) (пр. гр. $P2_1/c$, $a = 12,810(2), b = 18,529(2), c = 11,243(2) \text{ Å}, \beta = 91,959(7)^{\circ}, V = 2667,1(6) \text{ Å}^{3}, Z = 4)$. Komплексы изоструктурны, координационный полиэдр атомов металла — уплощенный тетраэдр, образованный двумя атомами О (Си—О 1,901(2), 1,892(2) Å, Ni—О 1,845(2), 1,833(2) Å) и двумя атомами N (Cu—N 1,976(3), 1,972(3) Å, Ni—N 1,911(2), 1,920(2) Å) лиганда, хелатные углы OMN (M = Cu(II), Ni(II)) лежат в интервале $87,4-93,1^{\circ}$, углы ОМО и NMN равны 162,2 и 167,2° в I, 171,1 и 173,2° в II. Структуры комплексов молекулярные, образованы изолированными молекулами, объединенными ван-дер-ваальсовыми взаимодействиями. Квантово-химическим гибридным методом М06 проведены расчеты строения хелатов меди(II) с заместителями у атома азота: H, CH₃, CH₂CH₃, СН(СН₃)₂ и С(СН₃)₃. Установлено, что в случае объемного заместителя у атома азота образование хелатов затруднено из-за внутрилигандного отталкивания атомов этого заместителя и трет-бутильной группы.

Ключевые слова: хелаты меди(II) и никеля(II), кристаллическая структура, стерические эффекты.

введение

Комплексы металлов с β-дикетонами и их азотзамещенными аналогами обладают летучестью, т.е. способностью переходить в газовую фазу при небольшом нагревании без разрушения молекул [1]. Благодаря этому данные соединения используют для получения металлических и оксидных покрытий (метод MO CVD) [2, 3]. При формировании металлических покрытий важно, чтобы прекурсор содержал как можно меньше атомов кислорода, которые могут окислять растущую пленку. В хелатных узлах β-кетоиминатов металлов его в 2 раза меньше, чем в β-дикетонатах металлов. В связи с этим при получении металлических покрытий методом MO CVD β-кетоиминаты более предпочтительны.

Несмотря на очевидные преимущества β-кетоиминатов, большинство примеров успешного использования хелатных комплексов металлов в процессе МО CVD относится к β-дикетонатам. Это объясняется трудностями синтеза как самих азотсодержащих лигандов, так и комплексов металлов с ними. Особый интерес для нас представлял лиганд 2,2,6,6-тетраметил-3-метил-

[©] Стабников П.А., Доровских С.И., Первухина Н.В., Булушева Л.Г., Романенко Г.В., 2014

аминогептан-5-он (метилкетоимин дипивалоилметана, Htmih) в связи с тем, что для него попытки синтеза комплексов меди(II) традиционными методами не были успешными. Кроме того, было установлено, что Htmih, растворенный в диоксане, не взаимодействует с металлическим натрием [4], что делает невозможным традиционный метод синтеза комплексов переходных металлов, использующих натриевую соль лиганда. В работе [4] было показано, что хелатообразование данного лиганда с металлами осложняется внутрилигандным отталкиванием заместителей.

В настоящей работе описан метод синтеза Cu(tmih)₂ (I) и Ni(tmih)₂ (II) и определены их кристаллические структуры. Исследование влияния заместителя при атоме азота на структуру комплекса меди(II) с кетоиминами дипивалоилметана проведено с использованием квантовохимических расчетов в рамках теории функционала плотности (ТФП).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дипивалоилметан (Hdpm) и TiCl₄ были приобретены в фирме "Дальсиб". Также использовали 25%-й раствор CH₃NH₂ (ЧДА), металлический натрий (ЧДА), метанол (Ч), толуол (ОсЧ). Синтез 2,2,6,6-тетраметил-3-метиламиногептан-5-она (Htmih) проводили аминированием Hdpm газообразным NH_2CH_3 в присутствии TiCl₄, как это описано в [5]. Для синтеза I и II была разработана специальная методика. Сначала растворяли 0,340 г (2,5 ммоль) безводного CuCl₂ (MERCK) в 20 мл метанола. Отдельно в 20 мл метанола растворяли 0,120 г (5 ммоль) Na. После растворения Na добавляли 1 г (5 ммоль) Htmih. Затем приготовленные смеси объединяли. Реакционную колбу продували азотом в течение ночи. На следующий день добавили 30 мл толуола, нагрели до ~100 °C и при постоянном токе азота упарили до сухого остатка. Полученный твердый остаток растирали в ступке и сублимировали в вакуумной градиентной печи ($P \sim 10^{-2}$ Topp, t_{max} ~ 250 °C). Cu(tmih)₂ представляет собой кристаллический порошок зеленого цвета. Выход 50 %, T_{пл} 152—153 °C. Синтез II проводили аналогичным методом, только использовали 0,322 г (2,5 ммоль) NiCl₂, полученного по методике [6]. Ni(tmih)₂ представляет собой темно-фиолетовый мелкокристаллический порошок. Выход 50 %, T_{пл} 168—169 °C. Полученные соединения хорошо растворимы в органических растворителях; при упаривании их растворов на воздухе гидролизуются, но в твердом состоянии устойчивы. Элементный анализ на С, Н, N проведен на Carlo-Erba 1106. Для I найдено, %: С 63,0, Н 9,9, N 6,1, для СиС₂₄Н₄₄N₂O₂ рассчитано, %: С 63,2, Н 9,7, N 6,2. Для II найдено, %: С 63,9, Н 9,8; N 6,4, для NiC₂₄H₄₄N₂O₂ рассчитано, %: С 63,9, Н 9,8, N 6,2.

Термогравиметрические измерения проводили с использованием микротермовесов TG 209 F1 Iris® фирмы NETZSCH. Масса навески 20 мг, Al₂O₃-тигель, в атмосфере гелия, скорость потока газа 70 мл/мин, скорость нагрева 10 град./мин. Обработку результатов экспериментов проводили с использованием стандартного пакета программного обеспечения Proteus Analysis [7]. Результаты представлены на рис. 1 и 2.

Рис. 1. Кривые потери массы: Cu(tmih)₂ I (*a*), Cu(tih)₂ (*б*), Cu(dpm)₂ (*в*), где tih — 2,2,6,6тетраметил-3-аминогептан-5-он

Puc. 2. Кривые потери массы: Ni(tmih)₂ **II** (*a*), Ni(tin)₂ (*δ*), Ni(dpm)₂ (*в*)

Таблица 1

Параметр	Ι	П			
Стехиометрическая формула	CuC ₂₄ H ₄₄ N ₂ O ₂	NiC ₂₄ H ₄₄ N ₂ O ₂			
Молекулярный вес	456,15	451,32			
Температура, К	240(2)	296(2)			
Длина волны, Å	0,71073	1,54178			
Сингония	Моноклинная	Моноклинная			
Пространственная группа	$P2_{1}/c$	$P2_{1}/c$			
Параметры ячейки: <i>a</i> , <i>b</i> , <i>c</i> , Å	12,9670(8), 18,4921(9), 11,0422(6)	12,810(2), 18,529(2), 11,243(2)			
β, град.	93,408(4)	91,959(7)			
<i>V</i> , Å ³	2643,1(3)	2667,1(6)			
Ζ	4	4			
$d_{\text{выч}}, \Gamma/\text{см}^3$	1,146	1,124			
μ, мм ⁻¹	0,846	1,185			
Размер кристалла, мм	0,28×0,03×0,02	0,24×0,05×0,04			
Область съемки θ, град.	1,92—27,50	3,45—66,11			
<i>I</i> _{<i>hkl</i>} измеренных	39356	12452			
$I_{hkl} > 2\sigma_I$	5998 ($R_{\rm int} = 0,1477$)	4173 ($R_{\rm int} = 0.0754$)			
GOOF для F_{hkl}^2	0,735	1,072			
$R(I>2\sigma_I)$	$0,0471 (wR_2 = 0,0844)$	$0,0477 (wR_2 = 0,1417)$			
<i>R</i> (<i>I_{hkl}</i> изм.)	$0,1780 (wR_2 = 0,1053)$	$0,0542 (wR_2 = 0,1468)$			

Кристаллографические данные и условия дифракционного эксперимента для комплексов І и ІІ

Из результатов термогравиметрических исследований следует, что замена одного из атомов кислорода на группу NH или NCH₃ увеличивает летучесть комплекса, но при этом снижает его термическую устойчивость, в особенности для метилзамещенных кетоиминатов. Из рис. 1 и 2 следует, что летучесть комплексов меди(II) выше, чем их никелевых аналогов, но термическая устойчивость никелевых комплексов выше.

Рентгеноструктурный анализ. Монокристаллы, пригодные для структурного анализа, выращены при обычных условиях в токе сухого азота при упаривании гептановых растворов комплексов. Параметры элементарных ячеек и массивы экспериментальных отражений при 240(2) К для Cu(tmih)₂ I и при 296(2) К для Ni(tmih)₂ II получены на автоматическом дифрактометре Bruker APEX-II с CCD детектором по стандартной методике (λ Mo K_{α} для I, λ Cu K_{α} для I, графитовый монохроматор) [8]. Поглощение учтено полуэмпирически, опираясь на интенсивности эквивалентных рефлексов (SADABS) [8]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов с использованием комплекса программ SHELX97 [9]. Атомы водорода лигандов локализованы геометрически и уточнены в приближении жесткого тела. Кристаллографические данные и детали дифракционного эксперимента приведены в табл. 1. Структурные данные для Cu[(CH₃)₃C(NCH₃)CHCOC(CH₃)₃]₂ I и Ni[(CH₃)₃C(NCH₃)CHCOC(CH₃)₃]₂ II депонированы в КБСД (ССDC 938738 и ССDC 938737).

ОПИСАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР КОМПЛЕКСОВ І И ІІ

Комплексы Cu(tmih)₂ I и Ni(tmih)₂ II изоструктурны, строение молекул с нумерацией атомов показано на рис. 3. Координационный полиэдр атомов металла — уплощенный тетраэдр, образованный двумя атомами O (Cu—O 1,901(2), 1,892(2) Å, Ni—O 1,845(2), 1,833(2) Å) и двумя атомами N (Cu—N 1,976(3), 1,972(3) Å, Ni—N 1,911(2), 1,920(2) Å) лиганда tmih, хелатные углы OMN (M = Cu(II), Ni(II)) лежат в интервале 87,4—93,1°, углы OMO и NMN равны 162,2

и 167,2° в I, 171,1 и 173,2° в II (табл. 2). Координационное окружение атома Ni(II) более близко к квадратному. Длины связей в комплексах I и II хорошо согласуются с известными литературными данными [10]. Молекулы ML_2 (M = Cu(II), Ni(II), L = tmih) неплоские, металлоциклы развернуты относительно друг друга на 50,4 и 56,6° для I и II соответственно. Структуры комплексов образованы изолированными молекулами, объединенными ван-дер-ваальсовыми взаимодействиями.

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ

Для ряда комплексов меди(II) состава Cu(L_x)₂, где L = 2,2,6,6-тетраметил-3-(R-амино)гептан-5-он, для L₁ R = H, для L₂ R = CH₃, для L₃ R = C₂H₅, для L₄ R = CH(CH₃)₂, для L₅ R = C(CH₃)₃ были проведены квантово-химические расчеты в приближении ТФП с использованием гибридного обменно-корреляционного функционала M06, специально параметризованного для металлоорганических соединений [11], в рамках пакета программ Jaguar [12]. Для атома меди использован набор базисных функций LACVP*+, включающий эффективный остовный потенциал. Атомные орбитали легких элементов описывали 6-31G*+ базисным набором с поляризационными (*) и диффузными (+) функциями для всех элементов, за исключением водорода. Геометрия комплексов была оптимизирована аналитическим методом до величины градиента 5 · 10⁻⁴ ат. ед. для смещения положения атомов. Расчет матрицы вторых производных для определения соответствия структуры минимуму на поверхности потенциальной энергии не проводили.

Рассчитанные длины связей и углы для координационного узла и для атома азота хелатного цикла приведены в табл. 3 вместе с экспериментальными величинами, определенными из структурной расшифровки синтезированных комплексов. Хорошее согласие рассчитанных и экспериментальных значений указывает на применимость используемого квантово-химического подхода для исследования данного класса соединений. Из сопоставления данных, приведенных в табл. 3, следует, что при увеличении объема заместителя у атома азота увеличивается разворот металлоциклов от ~0° для Cu(L₁)₂ до ~64° для Cu(L₅)₂, что объясняется отталкиванием атомов заместителя от атомов второго лиганда. Увеличение объема заместителя также приводит к отталкиванию атомов заместителя от атомов *трет*-бутильной группы собственного ли-

Таблица З

Связь	$Cu(L_1)_2$		$Cu(L_2)_2$		$Cu(L_3)_2$	$Cu(L_4)_2$	$Cu(L_5)_2$
	Эксп.	Расчет	Эксп.	Расчет	Расчет	Расчет	Расчет
Cu N	1 0000	1 0160	1 076 1 072	1 0007	1 0744	2 0038	1 0872
	1,9099	1,9100	1,970, 1,972	1,9997	1,9/44	1 9505	1,9872
N—C:	0.880*	1,9710	1 468	1,9517	1,9437	1,9505	1,5048
$N - C_{\alpha}$	2,283	1,3120	1,311	1,3166	1,3221	1,3212	1,3313
$C_i - N - C_{\alpha}$	115,6*	116,12*	123,6	125,19	126,10	124,88	132,42
N—Cu—O	88,19, 91,81	91,06	87,4—93,1	92,45	95,37	95,76	101,81
Разворот металлоциклов	0	0,34	12,8	26,69	47,85	59,26	63,80

Экспериментальные и расчетные длины связей, Å и углы (град.) комплексов меди(II)

* Для связи N—H и угла H—N—C $_{\alpha}$ разворот хелатов — угол между прямыми (N—O) и (N'—O') двух хелатов.

ганда, что отражается в удлинении связей N— C_{α} от 1,3120 до 1,3313 Å и связей N— C_i от 1,4533 до 1,5048 Å. Кроме того, увеличивается как хелатный угол N—Cu—O, так и угол C_i—N— C_{α} .

Проведенные расчеты показали, что образование хелатов меди(II) с кетоиминатами дипивалоилметана, у которых имеются объемные заместители у атома азота вплоть до $-C(CH_3)_3$, возможно, но увеличение объема заместителя приводит к искажению молекулы в целом (разворот металлоциклов, деформация хелатного узла и увеличение расстояния N—C_i). Все эти изменения можно объяснить отталкиванием заместителя при атоме азота от других атомов при хелатообразовании.

Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований № 14-03-00386а.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Игуменов И.К., Чумаченко Ю.В., Земсков С.В.* Проблемы химии и применения β-дикетонатов металлов / Ред. В.И. Спицин. М.: Наука, 1982.
- 2. *Разуваев Г.А., Грибов Б.Г., Домрачев Г.А. и др.* Металлоорганические соединения в электронике. М.: Наука, 1972.
- 3. Сыркин В.Г. СVD-метод. Химическое парофазное осаждение. М.: Наука, 2000.
- 4. Стабников П.А., Булушева Л.Г., Алферова Н.И., Смоленцев А.И., Корольков И.А., Первухина Н.В., Байдина И.А. // Журн. структур. химии. 2012. 53, № 4. С. 751 757.
- 5. Stabnikov P.A., Zharkova G.I., Baidina I.A., Tkachev S.V., Krisyuk V.V., Igumenov I.K. // Polyhedron. 2007. 26. P. 4445 4450.
- 6. Руководство по неорганическому синтезу / Под ред. Г. Брауэра. М.: Мир, 1985. Т.5.
- 7. NETZSCH Proteus Thermal Analysis v.4.8.1. NETZSCH—Gerätebau—Bayern, Germany, 2005.
- Bruker AXS Inc., APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA, 2004
- 9. Sheldrick G.M. SHELX97 Release 97-2, University of Gottingen, Germany, 1998.
- 10. Allen F.H., Kennard O., Watson D.G. // J. Chem. Soc. Perkin Trans. 1987. N 12. P. S1 S19.
- 11. Zhao Y., Truhlar D.G. // Theor. Chem. Account. 2008. 120. P. 215 241.
- 12. Jaguar, version 7.8. Schrödinger, LLC, New York, NY, 2011.