ОБ ОДНОЙ ЗАДАЧЕ СОПРЯЖЕНИЯ ВИХРЕВЫХ ТЕЧЕНИЙ ИДЕАЛЬНОЙ ЖИДКОСТИ

И. И. Вайнштейн, В. К. Юрковский
(Красноярск, Томск)

Как известно, решения уравнения

\[\partial^2 \psi / \partial x^2 + \partial^2 \psi / \partial y^2 = F(\psi), \]

где \(F \) — произвольная функция от \(\psi \), можно рассматривать как пример установившегося течения идеальной жидкости. Предполагая движение идеальной несжимаемой жидкости как предельное движение вязкой жидкости, в уравнении (1) функцию \(F(\psi) \) можно заменить на постоянную [1].

Рассмотрим следующую модельную задачу со специально выбранной кусочно-постоянной зависимостью. В ограниченной области \(D \) с границей \(\Gamma \) требуется найти непрерывно-дифференцируемое решение уравнения

\[\partial^2 \psi / \partial x^2 + \partial^2 \psi / \partial y^2 = \begin{cases} \omega, & \text{если } \psi < 0 \\ -\omega_1, & \text{если } \psi > 0 \end{cases} \]

(\(\omega, \omega_1 \) — неотрицательные постоянные) при краевом условии

\[\psi|_\Gamma = q(s). \]

Если в уравнении (2) положить \(\omega_1 = 0 \), то получается уравнение, описывающее движение идеальной жидкости по схеме работы [2]. Течение этого типа для случая ограниченной области изучалось в [3], а для случая неограниченной области — в [4—7].

Задача (2), (3) имеет тривиальное решение

\[\psi = \psi_0 + \frac{\omega_1}{2\pi} \int_D Gd\psi_d, \]

где \(\psi_0 \) — гармоническая функция, удовлетворяющая условию (3); \(G \) — функция Грна области \(D \) задачи Дирихле для оператора Лапласа. В [3] доказано существование при определенных условиях нетривиального решения для случая \(\omega_1 = 0 \). Выведем условие, при котором существует нетривиальное решение задачи (2), (3). Из этого условия при \(\omega_1 = 0 \) получается более простая оценка, чем в [3].

Пусть \(q(s) \leq C; B_1 \) — круг наибольшего радиуса такой, что \(B_1 \subseteq D \) (без ограничения общности можно считать, что его центр совпадает с началом координат); \(B_2 \) — круг наименьшего радиуса с центром в начале координат такой, что \(B_2 \supseteq D \). Радиус \(B_1 \) равен \(R_1 \), радиус \(B_2 \) = \(R_2 \).

Имеет место следующее утверждение: при выполнении неравенства

\[\omega \sim \frac{\omega_1 R_2^3}{R_1^3} \cdot \frac{4\varepsilon}{R_1^3} \]

задача (2), (3) имеет отличное от тривиального решение. Докажем это. Если в качестве области \(D \) взять круг \(B_1 \), в (2) положить \(\omega_1 = 0 \) и в (3)
\(\varphi(s) = C + \omega_n \frac{R_o^2}{4} \), то при выполнении условия (4) задача имеет два ненулевых решения (находятся в явном виде). Это значит, в частности, что существует круг \(B_a < B_1 \) радиуса \(a \), в котором соответствующее решение отрицательно.

Рассмотрим вспомогательную задачу

\[
\frac{\partial^2 \psi_n}{\partial x^2} + \frac{\partial^2 \psi_n}{\partial y^2} = \begin{cases}
\frac{\omega_n}{2} (1 - \theta \psi_n) - \frac{\omega_n}{2} (1 + \theta \psi_n), & \text{если } x, y \in B_a \\
\frac{\omega_n}{2} (1 - \theta \psi_n), & \text{когда } x, y \in D \setminus \overline{B}_a,
\end{cases}
\]

(5)

(6)

Решение ищем в классе непрерывно-дифференцируемых в области \(D \) функций. Задача (5), (6) эквивалентна интегральному уравнению

\[
\psi_n = \psi_0 - \omega_n \int_{B_a} G d\xi dx + \frac{1}{2\pi} \int_{\partial B_a} \int_{B_a} |\omega_1 (1 + \theta \psi_n) - \\
- \omega (1 + \theta \psi_n)| G d\xi dx.
\]

(7)

При помощи теоремы Шаудера устанавливается существование решения уравнения (7) при любом \(n \) и \(x, y \in D \setminus \overline{B}_a \). Подставляя это решение в правую часть уравнения (7), определим функцию \(\psi_n \) во всей области \(D \). Полученная функция — решение задачи (5), (6). Из свойств интеграла типа потенциала следует, что она в каждой фиксированной замкнутой области \(\overline{B} \subset D \) имеет первые производные, удовлетворяющие условию Гельдера, причем константа и показатель не зависят от \(n \).

Применяя теорему Арцелла, устанавливаем компактность последовательности \(\psi_n \) в пространстве непрерывно-дифференцируемых функций. Пусть подпоследовательность \(\psi_{n_k} \) сходится к непрерывно-дифференцируемой функции \(\psi^* \). Покажем, что функция \(\psi^* \) является ненулевым решением задачи (2), (3).

Пусть в некоторой точке \(x_0, y_0 \in D \setminus \overline{B}_a \), \(\psi^*(x_0, y_0) > 0 \). Тогда она будет больше нуля и в некоторой круговой окрестности. Рассматривая теперь уравнение (5) в этой окрестности и переходя в нем к пределу при \(n_k \to \infty \), получим

\[
\frac{\partial^2 \psi^*}{\partial x^2} + \frac{\partial^2 \psi^*}{\partial y^2} = - \omega_n.
\]

Аналогично показывается, что в точках, где \(\psi^* < 0 \), \(\frac{\partial^2 \psi^*}{\partial x^2} + \frac{\partial^2 \psi^*}{\partial y^2} = \omega_n \). Далее, при \(x, y \in B_a \), получаем

\[
\psi_n < V = C + \frac{\omega_n R_o^2}{4} - \frac{\omega_n}{2\pi} \int_{B_a} G B_a d\xi dx.
\]

Из определения области \(B_a \) следует, что функция \(V \) отрицательна в области \(B_a \). Тогда \(\psi_n \), a значит, и \(\psi^* \) отрицательны в \(B_a \). То, что \(\psi^* \)
удовлетворяет уравнению при переходе через границу области B_3, следует из её гладкости.

Полагая в (4) $\omega_1 = 0$, получим условие $\omega \geq 4Ce/R_1^2$, при котором существует отличное от тривиального решение задачи, описывающее течение по схеме М. А. Лаврентьева для случая ограниченной области.

Постурила 14 X 1975

ЛИТЕРАТУРА

2. Лаврентьев М. А. Вариационные методы в краевых задачах для систем уравнений гидродинамического типа. М., Изд-во АН СССР, 1962.
3. Гоззливтк М. А. Математическая модель отрывных течений несжимаемой жидкости. — «Докл. АН СССР», 1962, т. 147, № 6.
5. Шабат А. Б. Об одной схеме плоского движения жидкости при наличии на дне трещин. — ПМФ, 1962, № 4.

УДК 536.25

ЕСТЕСТВЕННАЯ КОНВЕКЦИЯ СЖИМАЕМОЙ ЖИДКОСТИ В СФЕРИЧЕСКИХ ПРОСЛОЙКАХ

Г. В. Петровский, Н. М. Станкович

(Москва)

Изучение конвективных течений вязкой сжимаемой жидкости в сферических прослойках представляет значительный интерес для различных технических приложений. В настоящее время накоплен обширный экспериментальный материал [1—4], который позволяет получить средние характеристики теплообмена, установить тип течения и классифицировать режимы течения в зависимости от значения числа Грасгофа и отношения диаметров сфер. В [3] представлены также температурные профили для широкого диапазона изменения чисел Прандтля. Все экспериментальные работы посвящены изучению конвекции при условии более нагретой внутренней сферической поверхности.

Теоретический анализ задачи проведен в работах [5, 6]. В [5] исследовалась стационарная осесимметричная естественная конвекция несжимаемой жидкости, заключенной между изотермическими концентрическими сферами для низких чисел Рэлея ($Ra < 10^9$). Решения основных уравнений найдены путем разложения температуры T и функции тока ψ в ряд по степеням числа Рэлея и оценке первых трех членов в каждом из этих рядов. Для одного частного случая приводится конфигурация линий тока, распределение скорости и температуры, данные о потоках тепла на поверхности сфер.

В результате использования теории подобия в [6] получен закон теплообмена при естественной конвекции в цилиндрических и сферических прослойках с учетом кривизны области. В настоящее время наряду с экспериментальными и аналитическими методами исследования все большее значение приобретает численный эксперимент, позволяющий изучить достаточно полные физические