УДК 539.375

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИОНАЛОВ ЭНЕРГИИ В ДВУМЕРНОЙ ТЕОРИИ УПРУГОСТИ ДЛЯ ТЕЛ, СОДЕРЖАЩИХ КРИВОЛИНЕЙНЫЕ ТРЕЩИНЫ

Е. М. Рудой

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: rem@hydro.nsc.ru

Рассматриваются уравнения двумерной теории упругости в негладких областях. Области содержат криволинейные трещины, длина которых может меняться. На берегах трещин задаются условия в виде неравенств, описывающих взаимное непроникание берегов трещин. Доказана сходимость решений задач равновесия с возмущенной трещиной к решению задачи равновесия с невозмущенной трещиной в соответствующем пространстве. Получена производная функционала энергии по длине криволинейной трещины.

Ключевые слова: упругость, трещина, критерий Гриффитса, вариационное неравенство, производная функционала энергии, негладкая область.

Введение. В работе исследуется задача о равновесии упругого тела в рамках двумерной теории упругости. Тело содержит криволинейную трещину, на берегах которой задаются условия непроникания в виде системы равенств и неравенств. Тело изготовлено из однородного анизотропного материала, подчиняющегося закону Гука. Считается, что на внешней границе выполнены однородные краевые условия.

Рассматриваются математические вопросы теории трещин и, в частности, теории разрушения, в которой широко используется энергетический критерий Гриффитса. В соответствии с этим критерием развитие (распространение) трещины начинается тогда, когда производная функционала энергии по длине трещины достигнет критической величины 2γ , которая характеризуется физико-механическими свойствами материала.

В работе получена формула производной функционала энергии по параметру, характеризующему длину криволинейной трещины, на берегах которой задаются условия непроникания в виде системы равенств и неравенств. При этом установлена сильная сходимость решения задачи равновесия в возмущенной области к решению задачи равновесия в невозмущенной области.

В настоящее время имеется большое количество работ, в которых изучена зависимость решений эллиптических уравнений от параметров для различных возмущений областей. Случай гладких областей рассмотрен в [1]. Результаты, относящиеся к дифференцированию функционалов энергии для линейных краевых задач в негладких областях, можно найти в [2, 3].

Впервые производная функционалов энергии для нелинейных эллиптических задач с условиями в виде неравенств на границе была получена в [4]. При этом метод получения производной, описанный в [4], позволяет избежать вычисления краевых условий для материальной производной от решения, которая, вообще говоря, определяется неоднознач-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03-01-00124).

но. Затем были получены аналогичные производные для различных задач теории упругости [5–10] с использованием вариационных постановок [11]. При этом предполагалось, что трещины являются прямолинейными, либо накладывались дополнительные условия на возмущение области, при которых множество допустимых смещений точек тела для невозмущенной задачи переходит взаимно однозначно в множество допустимых смещений точек тела для возмущенной задачи равновесия.

С помощью полученных формул были выведены инвариантные интегралы типа Черепанова — Райса [4, 5, 10]. Такой интеграл определяет скорость высвобождения энергии при квазистатическом росте трещины и используется в механике разрушения при описании роста трещины. В работе [12] представлено математическое обоснование инвариантного интеграла для линейных задач.

В [10] рассмотрена задача о равновесии тела, состоящего из двух однородных анизотропных тел, на общей границе которых находится криволинейная трещина со свободными от напряжений берегами, и получена формула для производной функционала энергии по параметру, характеризующему изменение длины трещины. Для нахождения производной функционала энергии строилась замена координат, переводящая возмущенную область в невозмущенную взаимно однозначно. Так как на границе области заданы естественные краевые условия в виде равенств, то при такой замене координат пространство допустимых смещений с возмущенной областью отображается на пространство допустимых смещений с невозмущенной областью также взаимно однозначно, что существенно использовалось при выводе формулы для производной. Если же на границе области задавать краевые условия с односторонними ограничениями, то такой взаимной однозначности между пространствами допустимых смещений не будет.

Постановка задачи. Рассмотрим ограниченную область $\Omega \subset \mathbb{R}^2$ с кусочно-гладкой границей $\Gamma, \overline{\Omega} = \Omega \cup \Gamma$. Предположим, что область Ω делится кривой Σ на две подобласти Ω_1 и Ω_2 , т. е. $\overline{\Omega}_1 \cup \overline{\Omega}_2 = \overline{\Omega}, \overline{\Omega}_1 \cap \overline{\Omega}_2 = \overline{\Sigma}$. При этом границы областей Ω_1 и Ω_2 также являются кусочно-гладкими. Кривая Σ на плоскости (x_1, x_2) задается функцией $\psi \in H^3(-l_0, l_1)$ так, что $\Sigma = \{x_2 = \psi(x_1), -l_0 < x_1 < l_1\}, l_0 > 0, l_1 > 0$. Трещина Γ_l , лежащая внутри области Ω , описывается частью кривой Σ :

$$\Gamma_l = \{ x_2 = \psi(x_1), \quad 0 < x_1 < l \}, \qquad 0 < l < l_1,$$

где l — параметр, определяющий длину проекции Γ_l на ось x_1 .

Пусть вектор $\boldsymbol{\nu} = (\nu_1, \nu_2) = (-\psi_{x_1}, 1)/\sqrt{1 + \psi_{x_1}^2}$ является вектором нормали к кривой Σ . Считаем, что берег Σ^+ соответствует положительному направлению нормали, Σ^- — отрицательному.

Обозначим через Ω_0 область, ограниченную Γ , $\overline{\Gamma}_l^+$ и $\overline{\Gamma}_l^-$, т. е. $\Omega_0 = \Omega \setminus \overline{\Gamma}_l$. Задача равновесия будет рассматриваться в области Ω_0 , имеющей негладкую границу $\Gamma \cup \Gamma_l^+ \cup \Gamma_l^-$.

Введем вектор перемещений $\boldsymbol{W} = (u_1, u_2)$. Предполагаем, что тело изготовлено из однородного упругого материала, который подчиняется закону Гука. Запишем формулы для компонент тензоров деформаций и напряжений

$$\varepsilon_{ij}(\boldsymbol{W}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \qquad \sigma_{ij}(\boldsymbol{W}) = c_{ijkl} \varepsilon_{kl}(\boldsymbol{W}), \qquad i, j = 1, 2$$

с симметричным и положительно-определенным тензором коэффициентов упругости $\{c_{ijkl}\}$, т. е. $c_{ijkl} = c_{jikl} = c_{klij}$, $c_{ijkl}\xi_{kl}\xi_{ij} \ge c_0\xi_{ij}\xi_{ij}$, $c_0 > 0$, $\xi_{ij} = \xi_{ji}$. Для простоты вычислений будем полагать, что c_{ijkl} — константы.

Считаем, что на внешней границе выполнены следующие краевые условия:

$$\boldsymbol{W} = 0 \qquad \text{Ha} \quad \boldsymbol{\Gamma}. \tag{1}$$

Условия (1) соответствуют условию защемления на внешней границе.

Пусть $\Pi(\Omega_0; W)$ — функционал потенциальной энергии тела:

$$\Pi(\Omega_0; \boldsymbol{W}) = \frac{1}{2} \int_{\Omega_0} \sigma_{ij}(\boldsymbol{W}) \varepsilon_{ij}(\boldsymbol{W}) - \int_{\Omega_0} \boldsymbol{f} \cdot \boldsymbol{W}.$$

Здесь $\boldsymbol{f} = (f_1, f_2)$ — заданный вектор внешних сил, $\boldsymbol{f} \in [C^1(\overline{\Omega})]^2$.

Определим функциональное пространство, в котором будет исследоваться задача равновесия. Пусть подпространство $H^{1,0}(\Omega_0)$ пространства Соболева $H^1(\Omega_0)$ состоит из функций, обращающихся в нуль на Г. Обозначим через $H(\Omega_0)$ декартово произведение двух таких подпространств: $H(\Omega_0) = H^{1,0}(\Omega_0) \times H^{1,0}(\Omega_0)$. Следует отметить, что функции из $H(\Omega_0)$ могут принимать, вообще говоря, различные значения на берегах трещины Γ_l^+ и Γ_l^- .

Для того чтобы предотвратить проникание берегов трещины друг в друга, будем рассматривать следующее условие типа Синьорини:

$$[\boldsymbol{W}] \cdot \boldsymbol{\nu} \ge 0 \qquad \text{Ha} \quad \Gamma_l. \tag{2}$$

Здесь $[\mathbf{W}] = \mathbf{W}^+ - \mathbf{W}^- (\mathbf{W}^+, \mathbf{W}^- -$ значения функции \mathbf{W} на положительном и отрицательном берегах разреза Γ_l соответственно). Следует отметить, что условие (2) инвариантно относительно выбора направления нормали $\boldsymbol{\nu}$, так как при изменении направления на $-\boldsymbol{\nu}$ значение скачка $[\cdot]$ на берегах трещины также меняет знак.

Введем множество допустимых смещений

$$K_0(\Omega_0) = \{ \boldsymbol{W} \in H(\Omega_0) \mid [\boldsymbol{W}] \cdot \boldsymbol{\nu} \ge 0$$
 п. в. на $\Gamma_l \},$

которое включает условия (1) на внешней границе Γ и условие (2) непроникания берегов трещины. Задачу о равновесии тела сформулируем как задачу минимизации функционала энергии $\Pi(\Omega_0; \mathbf{W})$ на множестве допустимых смещений $K_0(\Omega_0)$:

$$\Pi(\Omega_0; \boldsymbol{W}_0) = \inf_{\boldsymbol{W} \in K_0(\Omega_0)} \Pi(\Omega_0; \boldsymbol{W}).$$
(3)

Так как $\Pi(\Omega_0; \mathbf{W})$ — слабо полунепрерывный снизу и коэрцитивный функционал, $K_0(\Omega_0)$ — замкнутое и выпуклое множество, $H(\Omega_0)$ — гильбертово пространство, то существует решение $\mathbf{W}_0 \in K_0(\Omega_0)$ задачи (3), которое является единственным и, в силу того, что функционал $\Pi(\Omega_0; \mathbf{W})$ — выпуклый и дифференцируемый, удовлетворяет вариационному неравенству

$$\int_{\Omega_0} \sigma_{ij}(\boldsymbol{W}_0) \varepsilon_{ij}(\boldsymbol{W} - \boldsymbol{W}_0) \ge \int_{\Omega_0} \boldsymbol{f} \cdot (\boldsymbol{W} - \boldsymbol{W}_0) \qquad \forall \, \boldsymbol{W} \in K_0(\Omega_0).$$
(4)

Вариационное неравенство (4) эквивалентно задаче минимизации (3) [11].

Заметим, что решение задачи (3) в области Ω_0 удовлетворяет уравнениям равновесия

$$-\frac{\partial \sigma_{ij}(\boldsymbol{W}_0)}{\partial x_j} = f_i, \qquad i = 1, 2 \quad \text{п. в. в} \quad \Omega_0,$$
(5)

граничному условию (1), условию непроникания (2) и краевым условиям на трещине Γ_l

$$[\sigma_{\nu}(\boldsymbol{W}_{0})] = 0, \quad \sigma_{\nu}(\boldsymbol{W}_{0}) \leq 0, \quad \boldsymbol{\sigma}_{\tau}(\boldsymbol{W}_{0}) = 0, \quad \sigma_{\nu}(\boldsymbol{W}_{0})[\boldsymbol{W}_{0}] \cdot \boldsymbol{\nu} = 0, \tag{6}$$

которым можно придать точный смысл в пространстве $(H_{00}^{1/2}(\Gamma_l))^*$, где $(H_{00}^{1/2}(\Gamma_l))^*$ — сопряженное пространство к $H_{00}^{1/2}(\Gamma_l)$ [11]. Операторы $\sigma_{\nu}(\mathbf{W})$ и $\sigma_{\tau}(\mathbf{W}) = (\sigma_{\tau 1}(\mathbf{W}), \sigma_{\tau 2}(\mathbf{W}))$ обозначают нормальные напряжения и касательную компоненту вектора сил на Γ_l соответственно и определяются по формулам

$$\{\sigma_{ij}(\boldsymbol{W})
u_j\} = \sigma_{
u}(\boldsymbol{W})\boldsymbol{\nu} + \boldsymbol{\sigma}_{ au}(\boldsymbol{W}).$$

Далее рассмотрим семейство областей с трещинами, зависящее от малого параметра δ . Определим множество

$$\Gamma_{l+\delta} = \{ x_2 = \psi(x_1), \ 0 < x_1 < l+\delta \}, \qquad 0 < l+\delta < l_1,$$

характеризующее возмущение трещины Γ_l вдоль кривой Σ . Обозначим через $\Omega_{\delta} = \Omega \setminus \overline{\Gamma}_{l+\delta}$ область с трещиной $\Gamma_{l+\delta}$. Определим функционал потенциальной энергии тела, занимающего возмущенную область Ω_{δ} , в виде

$$\Pi(\Omega_{\delta}; \boldsymbol{W}) = \frac{1}{2} \int_{\Omega_{\delta}} \sigma_{ij}(\boldsymbol{W}) \varepsilon_{ij}(\boldsymbol{W}) - \int_{\Omega_{\delta}} \boldsymbol{f} \cdot \boldsymbol{W}.$$

Аналогично пространству $H(\Omega_0)$ определим пространство $H(\Omega_\delta)$. Введем множество допустимых смещений точек тела, занимающего возмущенную область Ω_δ , формулой

$$K_{\delta}(\Omega_{\delta}) = \{ \boldsymbol{W} \in H(\Omega_{\delta}) \mid [\boldsymbol{W}] \cdot \boldsymbol{\nu} \ge 0$$
 п. в. на $\Gamma_{l+\delta} \}$

В области Ω_{δ} сформулируем задачу равновесия как задачу минимизации функционала энергии на множестве допустимых смещений $K_{\delta}(\Omega_{\delta})$:

$$\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) = \inf_{\boldsymbol{W} \in K_{\delta}(\Omega_{\delta})} \Pi(\Omega_{\delta}; \boldsymbol{W}),$$
(7)

которая, в свою очередь, эквивалентна вариационному неравенству

$$\int_{\Omega_{\delta}} \sigma_{ij}(\boldsymbol{W}^{\delta}) \varepsilon_{ij}(\boldsymbol{W} - \boldsymbol{W}^{\delta}) \ge \int_{\Omega_{\delta}} \boldsymbol{f} \cdot (\boldsymbol{W} - \boldsymbol{W}^{\delta}) \qquad \forall \, \boldsymbol{W} \in K_{\delta}(\Omega_{\delta})$$

и имеет единственное решение $W^{\delta} \in K_{\delta}(\Omega_{\delta})$ в силу тех же соображений, что и для задачи (3).

Основная цель настоящей работы — найти производную функционала энергии по параметру возмущения области Ω_0 , который характеризует изменение длины трещины Γ_l , т. е. вычислить предел

$$G = \lim_{\delta \to 0} \frac{\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta}$$

где W_0, W^{δ} — решения задач равновесия в невозмущенной и возмущенной областях соответственно. Величина G характеризует скорость высвобождения энергии при квазистатическом росте трещины. Согласно критерию Гриффитса [13, 14] трещина начнет распространяться, когда G достигнет некоторого критического значения 2γ , характерного для материала, из которого изготовлено тело. Величина γ определяет поверхностную энергию, приходящуюся на единицу свободной поверхности тела, в нашем случае — на единицу длины трещины.

Вспомогательные утверждения и формулы. Следуя [4, 8], введем отображение возмущенной области Ω_{δ} на исходную область Ω_0 . Пусть $B_{\epsilon} \subset \mathbb{R}^2$ — шар радиуса $\epsilon > 0$ с центром, расположенным в вершине трещины $(l, \psi(l))$. Будем считать, что ϵ достаточно мало́, так что $\overline{B}_{\epsilon} \subset \Omega$ и вторая вершина трещины $(0, \psi(0))$ лежит вне замкнутого шара \overline{B}_{ϵ} . Возьмем гладкую срезающую функцию θ такую, что $\sup \theta \subset B_{\epsilon}$ и $\theta \equiv 1$ в $B_{\epsilon/2}$. Для достаточно малых $\delta < \epsilon/2$, таких, что $(l + \delta, \psi(l + \delta)) \in B_{\epsilon}$ (такое включение возможно в силу гладкости функции ψ), рассмотрим преобразование независимых переменных

$$y_1 = x_1 - \delta\theta(x_1, x_2), \qquad y_2 = x_2 + \psi(x_1 - \delta\theta(x_1, x_2)) - \psi(x_1)$$

$$((y_1, y_2) \in \Omega_0, \quad (x_1, x_2) \in \Omega_\delta),$$
(8)

которое отображает возмущенную область Ω_{δ} на невозмущенную область Ω_0 взаимно однозначно. Функциональная матрица преобразования

$$A = \frac{\partial(y_1, y_2)}{\partial(x_1, x_2)} = \begin{pmatrix} 1 - \delta\theta_{,1}(\boldsymbol{x}) & (1 - \delta\theta_{,1}(\boldsymbol{x}))\psi'(x_1 - \delta\theta(\boldsymbol{x})) - \psi'(x_1) \\ -\delta\theta_{,2}(\boldsymbol{x}) & 1 - \delta\theta_{,2}(\boldsymbol{x})\psi'(x_1 - \delta\theta(\boldsymbol{x})) \end{pmatrix}$$

 $(\psi'(t) = d\psi(t)/dt, \, \boldsymbol{x} = (x_1, x_2))$ имеет якобиан

$$J_{\delta} = 1 - \delta \frac{\partial \theta}{\partial \tau}, \qquad \frac{\partial}{\partial \tau} \equiv \frac{\partial}{\partial x_1} + \psi'(x_1) \frac{\partial}{\partial x_2},$$

который строго положителен при малых δ . Производная $\partial/\partial \tau$ обозначает дифференцирование вдоль кривой Σ , где $\boldsymbol{\tau} = (-\nu_2, \nu_1)$ — касательный вектор к Σ .

Так как пространство $H^3(-l_0, l_1)$ вложено в $C^2[-l_0+\delta_1, l_1-\delta_1]$, где $\delta_1 > 0$ — достаточно малая величина [15], то в окрестности B_{ϵ} справедливы следующие формулы Тейлора:

$$\psi'(x_1 \pm \delta\theta(\boldsymbol{x})) = \psi'(x_1) \pm \delta\theta(\boldsymbol{x})\psi''(x_1) + R_{\pm}(\delta, \boldsymbol{x}), \tag{9}$$

где $R_{\pm} = o(\pm \delta \theta(\boldsymbol{x}))$ — дополнительные члены в форме Пеано [16]. В силу гладкости θ и ψ имеют место сходимости

$$\frac{R_{\pm}(\delta, \boldsymbol{x})}{\delta} \to 0$$
 сильно в $L_{\infty}(\Omega),$ (10)

и, кроме того, $R_{\pm}(\delta, \cdot) \in H^1(\Omega)$.

В силу (9) функциональная матрица А допускает представление

$$A = I - \delta \begin{pmatrix} \theta_{,1}(\boldsymbol{x}) & \theta(\boldsymbol{x})\psi''(x_1) + \theta_{,1}(\boldsymbol{x})\psi'(x_1) \\ \theta_{,2}(\boldsymbol{x}) & \theta_{,2}(\boldsymbol{x})\psi'(x_1) \end{pmatrix} + \begin{pmatrix} 0 & R_1(\delta, \boldsymbol{x}) \\ 0 & R_2(\delta, \boldsymbol{x}) \end{pmatrix},$$
(11)

где

$$R_{1}(\delta, \boldsymbol{x}) = R_{-}(\delta, \boldsymbol{x}) - \delta^{2} \theta(\boldsymbol{x}) \theta_{,1}(\boldsymbol{x}) \psi''(x_{1}) + \delta \theta_{,1}(\boldsymbol{x}) R_{-}(\delta, \boldsymbol{x}),$$

$$R_{2}(\delta, \boldsymbol{x}) = \delta^{2} \theta_{,2}(\boldsymbol{x}) \psi''(x_{1}) - \delta R_{-}(\delta, \boldsymbol{x}).$$
(12)

Из (10) и предполагаемой гладкости функций θ и ψ очевидно, что функции R_i (i = 1, 2) равномерно ограничены по δ , \boldsymbol{x} при малых δ и $R_i = o(\delta)$.

Так как при преобразовании независимых переменных (8) область Ω_{δ} отображается на область Ω_0 взаимно однозначно, то существует обратное преобразование $\boldsymbol{x} = \boldsymbol{x}(\delta, \boldsymbol{y})$, отображающее область Ω_0 на область Ω_{δ} . Обозначим через $\tilde{u}(\boldsymbol{y}), \boldsymbol{y} \in \Omega_0$ преобразованную функцию $u(\boldsymbol{x}), \boldsymbol{x} \in \Omega_{\delta}$, т. е. $\tilde{u}(\boldsymbol{y}) = \tilde{u}(x_1 - \delta\theta(\boldsymbol{x}), x_2 + \psi(x_1 - \delta\theta(\boldsymbol{x})) - \psi(x_1)) \equiv u(\boldsymbol{x})$. Используя (11), можно переписать формулы преобразования производных в виде

$$\frac{\partial u}{\partial x_1} = \frac{\partial \tilde{u}}{\partial y_1} - \delta\theta_{,1}\frac{\partial \tilde{u}}{\partial y_1} - \delta(\theta\varphi)_{,1}\frac{\partial \tilde{u}}{\partial y_2} + R_1\frac{\partial \tilde{u}}{\partial y_2},$$

$$\frac{\partial u}{\partial x_2} = \frac{\partial \tilde{u}}{\partial y_2} - \delta\theta_{,2}\frac{\partial \tilde{u}}{\partial y_1} - \delta(\theta\varphi)_{,2}\frac{\partial \tilde{u}}{\partial y_2} + R_2\frac{\partial \tilde{u}}{\partial y_2},$$
(13)

где $\varphi(x_1, x_2) = \psi'(x_1)$. Поэтому компоненты преобразованных тензоров деформаций и напряжений принимают вид

$$\varepsilon_{ij}(\boldsymbol{W}) = \varepsilon_{ij}(\boldsymbol{\tilde{W}}) - \delta E_{ij}^{\delta}(\theta; \boldsymbol{\tilde{W}}) + o(\delta)r_{ij}(\boldsymbol{\tilde{W}}),$$

$$\sigma_{ij}(\boldsymbol{W}) = c_{ijkl}(\varepsilon_{kl}(\boldsymbol{\tilde{W}}) - \delta E_{kl}^{\delta}(\theta; \boldsymbol{\tilde{W}}) + o(\delta)r_{kl}(\boldsymbol{\tilde{W}})).$$
(14)

Здесь r_{ij} — некоторые непрерывные формы, которые можно выписать в точном виде по аналогии с формулами (12), используя (13). В (14) использовано обозначение

$$E_{ij}^{\delta}(\theta; \mathbf{W}) = \frac{1}{2} \left(\theta_{,j}^{\delta} \frac{\partial u_i}{\partial y_1} + \theta_{,i}^{\delta} \frac{\partial u_j}{\partial y_1} + (\theta\varphi)_{,j}^{\delta} \frac{\partial u_i}{\partial y_2} + (\theta\varphi)_{,i}^{\delta} \frac{\partial u_j}{\partial y_2} \right)$$

где $\theta_{,i}^{\delta}(\boldsymbol{y}) = \theta_{,i}(\boldsymbol{x}(\delta, \boldsymbol{y})); \ (\theta\varphi)_{,i}^{\delta}(\boldsymbol{y}) = (\theta\varphi)_{,i}(\boldsymbol{x}(\delta, \boldsymbol{y})); \ i = 1, 2.$ При этом справедливы следующие сходимости при $\delta \to 0$:

$$\theta_{,i}^{\delta} \to \theta_{,i}$$
 сильно в $L_{\infty}(\Omega_0),$
 $(\theta \varphi)_{,i}^{\delta} \to (\theta \varphi)_{,i}$ сильно в $L_{\infty}(\Omega_0).$

Применим преобразование независимых переменных (8) к интегралам, входящим в $\Pi(\Omega_{\delta}; \boldsymbol{W})$, и воспользуемся формулами (14). Тогда выполнено равенство $\Pi(\Omega_{\delta}; \boldsymbol{W}) = \Pi_{\delta}(\Omega_{0}; \boldsymbol{\tilde{W}})$ с

$$\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}) = \frac{1}{2} \int_{\Omega_{0}} J_{\delta}^{-1} c_{ijkl}(\varepsilon_{kl}(\boldsymbol{W}) - \delta E_{kl}^{\delta}(\theta; \boldsymbol{W}) + o(\delta)r_{kl}(\boldsymbol{W})) \times \\ \times (\varepsilon_{ij}(\boldsymbol{W}) - \delta E_{ij}^{\delta}(\theta; \boldsymbol{W}) + o(\delta)r_{ij}(\boldsymbol{W})) - \int_{\Omega_{0}} J_{\delta}^{-1} \boldsymbol{f}^{\delta} \cdot \boldsymbol{W}, \quad (15)$$

где $f^{\delta}(\boldsymbol{y}) = f(\boldsymbol{x}(\delta, \boldsymbol{y}))$. Множество допустимых смещений $K_{\delta}(\Omega_{\delta})$ перейдет в множество $K_{\delta}(\Omega_0)$ взаимно однозначно:

$$K_{\delta}(\Omega_0) = \{ \boldsymbol{W} \in H(\Omega_0) \mid [\boldsymbol{W}] \cdot \boldsymbol{\nu}^{\delta} \ge 0$$
 п. в. на $\Gamma_l \}.$

Здесь $\boldsymbol{\nu}^{\delta}$ — преобразованный вектор нормали $\boldsymbol{\nu}$, т. е. $\boldsymbol{\nu}^{\delta}(\boldsymbol{y}) = \boldsymbol{\nu}(\boldsymbol{x}(\delta, \boldsymbol{y})), \boldsymbol{y} \in \Omega_0, \boldsymbol{x} \in \Omega_{\delta}$. Отметим, что вектор $\boldsymbol{\nu}^{\delta}$, вообще говоря, не совпадает с вектором нормали $\boldsymbol{\nu}$ к Γ_l . В случае прямолинейных трещин $\boldsymbol{\nu}^{\delta} = \boldsymbol{\nu} = \text{const}$ на Γ_l .

Таким образом, справедлива

j

Лемма 1. При достаточно малых δ решение \mathbf{W}^{δ} возмущенной задачи (7), отображенное на невозмущенную область Ω_0 с помощью преобразования (8), является единственным решением $\mathbf{W}_{\delta} \in K_{\delta}(\Omega_0)$ задачи минимизации функционала $\Pi_{\delta}(\Omega_0; \mathbf{W})$ на множестве $K_{\delta}(\Omega_0)$. При этом последняя эквивалентна вариационному неравенству

$$\int_{\Omega_0} J_{\delta}^{-1} c_{ijkl}(\varepsilon_{kl}(\boldsymbol{W}_{\delta}) - \delta E_{kl}^{\delta}(\theta; \boldsymbol{W}_{\delta}) + o(\delta)r_{kl}(\boldsymbol{W}_{\delta}))(\varepsilon_{ij}(\boldsymbol{W} - \boldsymbol{W}_{\delta}) - \delta E_{ij}^{\delta}(\theta; \boldsymbol{W} - \boldsymbol{W}_{\delta}) + o(\delta)r_{ij}(\boldsymbol{W} - \boldsymbol{W}_{\delta})) \ge \int_{\Omega_0} J_{\delta}^{-1} \boldsymbol{f}^{\delta} \cdot (\boldsymbol{W} - \boldsymbol{W}_{\delta}), \quad (16)$$

справедливому для всех функций W из множества $K_{\delta}(\Omega_0)$.

Подставляя W = 0 и $W = 2W_{\delta}$ в качестве пробных функций в (16), складывая полученные неравенства и применяя неравенства Корна и Гёльдера, будем иметь равномерную оценку

$$\|\boldsymbol{W}_{\delta}\|_{H(\Omega_0)} \leqslant c \tag{17}$$

при достаточно малых $\delta \ge 0$.

Сходимость решений. Используя гладкость функций ψ , f, можно разложить операторы в задаче (16) в ряд по δ . Действительно, имеем

$$J_{\delta}^{-1} = 1 + \delta \,\frac{\partial\theta}{\partial\tau} + o(\delta) \qquad \mathbf{B} \quad \Omega_0; \tag{18}$$

$$f_i^{\delta} = f_i + \delta\theta \,\frac{\partial f_i}{\partial \tau} + o(\delta) \quad \mathbf{B} \quad \Omega_0, \qquad i = 1, 2.$$
(19)

Тогда из (18) и (19) следует

$$J_{\delta}^{-1}f_{i}^{\delta} = f_{i} + \delta \frac{\partial}{\partial \tau}(\theta f_{i}) + o(\delta) \quad \mathbf{B} \quad \Omega_{0}, \qquad i = 1, 2.$$

$$(20)$$

Поэтому в силу (20) можно разложить в ряд по δ правую часть (16)

$$\int_{\Omega_0} J_{\delta}^{-1} \boldsymbol{f}^{\delta}(\boldsymbol{W} - \boldsymbol{W}_{\delta}) = \int_{\Omega_0} \left(\left(f_i + \delta \frac{\partial}{\partial \boldsymbol{\tau}} \left(\theta f_i \right) \right) (u_i - u_{i\delta}) + o(\delta) r_2(\boldsymbol{W}, \boldsymbol{W}_{\delta}) \right)$$
(21)

с некоторой непрерывной формой r_2 .

Левая часть неравенства (16) допускает разложение в ряд по δ

$$\int_{\Omega_0} J_{\delta}^{-1} c_{ijkl}(\varepsilon_{kl}(\boldsymbol{W}_{\delta}) - \delta E_{kl}^{\delta}(\boldsymbol{\theta}; \boldsymbol{W}_{\delta}) + o(\delta)r_{kl}(\boldsymbol{W}_{\delta})) \times \\ \times \left(\varepsilon_{ii}(\boldsymbol{W} - \boldsymbol{W}_{\delta}) - \delta E_{ii}^{\delta}(\boldsymbol{\theta}; \boldsymbol{W} - \boldsymbol{W}_{\delta}) + o(\delta)r_{ii}(\boldsymbol{W} - \boldsymbol{W}_{\delta})\right) =$$

$$= \int_{\Omega_0} \left(\sigma_{ij}(\boldsymbol{W}_{\delta})\varepsilon_{ij}(\boldsymbol{W} - \boldsymbol{W}_{\delta}) - \delta \left(\sigma_{ij}(\boldsymbol{W}_{\delta})E_{ij}^{\delta}(\theta; \boldsymbol{W} - \boldsymbol{W}_{\delta}) + c(s)rij(\boldsymbol{W} - \boldsymbol{W}_{\delta}) \right) + c(s)rij(\boldsymbol{W} - \boldsymbol{W}_{\delta}) + c_{ijkl}E_{kl}^{\delta}(\theta; \boldsymbol{W}_{\delta})\varepsilon_{ij}(\boldsymbol{W} - \boldsymbol{W}_{\delta}) + \frac{\partial\theta}{\partial\tau}\sigma_{ij}(\boldsymbol{W}_{\delta})\varepsilon_{ij}(\boldsymbol{W} - \boldsymbol{W}_{\delta}) \right) + o(\delta)r_3(\boldsymbol{W}; \boldsymbol{W}_{\delta}) \right)$$
(22)

с непрерывной формой r₃.

Для доказательства теоремы о сходимости решений задач равновесия, определенных в возмущенных областях, понадобится вспомогательная лемма.

Лемма 2. Пусть $W_0 = (u_{10}, u_{20}) \in K_0(\Omega_0), W_{\delta} = (u_{1\delta}, u_{2\delta}) \in K_{\delta}(\Omega_0)$ — решения задач (4) и (16) соответственно. Тогда справедливы следующие включения:

$$\boldsymbol{W}_{\delta}^{1} = \boldsymbol{W}_{0} + \delta \boldsymbol{Q}_{\delta}^{1} \in K_{\delta}(\Omega_{0}), \qquad \boldsymbol{W}_{\delta}^{2} = \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^{2} \in K_{0}(\Omega_{0}),$$

где

$$\boldsymbol{Q}_{\delta}^{1} = (0, \theta^{\delta} \psi'' u_{10} + (R_{+}^{\delta} / \delta) u_{10}), \qquad \boldsymbol{Q}_{\delta}^{2} = (0, \theta^{\delta} \psi'' u_{1\delta} + (R_{+}^{\delta} / \delta) u_{1\delta}).$$

Доказательство. В силу гладкости функций ψ и θ , финитности θ и принадлежности u_{10} пространству $H^{1,0}(\Omega_0)$ очевидно, что функции W^1_{δ} и W^2_{δ} принадлежат пространству $H(\Omega_0)$. Покажем, что соответствующие условия на трещине Γ_l также выполняются.

Рассмотрим произвольную функцию $\boldsymbol{W} \in K_{\delta}(\Omega_0)$. Для нее выполнено условие

$$[\mathbf{W}] \cdot \boldsymbol{\nu}^{\delta} \ge 0$$
 п. в. на Γ_l . (23)

Так как преобразование координат (8) отображает область Ω_{δ} на область Ω_{0} , то $x_{1} = y_{1} + \delta \theta^{\delta}(\boldsymbol{y})$, где $\theta^{\delta}(\boldsymbol{y}) = \theta(\boldsymbol{x}(\delta, \boldsymbol{y})); \boldsymbol{y} \in \Omega_{0}; \boldsymbol{x} \in \Omega_{\delta}$. В силу (9) и того, что $\boldsymbol{\nu} = (-\psi_{,1}(x_{1}), 1)/\sqrt{1 + \psi_{,1}^{2}(x_{1})}$, условие (23) можно переписать в следующем эквивалентном виде:

$$-\psi'(y_1)[u_1] + [u_2] - \delta\theta^{\delta}\psi''(y_1)[u_1] - R^{\delta}_+(\delta, \boldsymbol{y})[u_1] \ge 0 \qquad \text{п. в. на} \quad \Gamma_l.$$
(24)

Для функции $oldsymbol{W}^1_\delta$ из (24) получим

$$-\psi'[u_{10}] + [u_{20}] + \delta\theta^{\delta}\psi''[u_{10}] + R^{\delta}_{+}[u_{10}] - \delta\theta^{\delta}\psi''[u_{10}] - R^{\delta}_{+}[u_{10}] = -\psi'[u_{10}] + [u_{20}].$$

Так как $W_0 \in K_0(\Omega_0)$, то

$$-\psi'[u_{10}] + [u_{20}] \ge 0$$
 п. в. на Γ_l . (25)

Так как $W_{\delta} \in K_{\delta}(\Omega_0)$, для функции W_{δ}^2 из (25) получим

$$\psi'[u_{1\delta}] + [u_{2\delta}] - \delta \theta^{\delta} \psi''[u_{1\delta}] - R^{\delta}_{+}[u_{1\delta}] \geqslant 0$$
 п. в. на Γ_l .

Лемма доказана.

Докажем теорему о сходимости решений задач равновесия, определенных в возмущенных областях.

Теорема 1. Пусть W_0 — решение невозмущенной задачи (3), W^{δ} — решение возмущенной задачи (7), $W_{\delta}(y) = W^{\delta}(x)$, $y \in \Omega_0$, $x \in \Omega_{\delta}$. Тогда справедлива следующая сходимость при $\delta \to 0$:

$$oldsymbol{W}_{\delta}
ightarrow oldsymbol{W}_{0}$$
 сильно в $H(\Omega_{0}).$

Доказательство. Функции W_0 и W_{δ} удовлетворяют вариационным неравенствам (4) и (16) соответственно. В силу леммы 2 в качестве пробной функции в (4) можно подставить $W = W_{\delta}^2$, а в качестве пробной функции в (16) — $W = W_{\delta}^1$. Применим формулы (21), (22) и сложим полученные неравенства. В результате имеем неравенство

$$\int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}_{\delta} - \boldsymbol{W}_{0})\varepsilon_{ij}(\boldsymbol{W}_{\delta} - \boldsymbol{W}_{0}) \leq \delta\left(\int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}_{\delta})\varepsilon_{ij}(\boldsymbol{Q}_{\delta}^{1}) - \int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}_{0})\varepsilon_{ij}(\boldsymbol{Q}_{\delta}^{2}) + \int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}_{\delta})E_{ij}^{\delta}(\theta; \boldsymbol{W}_{\delta} - \boldsymbol{W}_{0} - \delta\boldsymbol{Q}_{\delta}^{1}) - \int_{\Omega_{0}} c_{ijkl}E_{kl}^{\delta}(\theta; \boldsymbol{W}_{\delta})\varepsilon_{ij}(\boldsymbol{W}_{\delta} - \boldsymbol{W}_{0} - \delta\boldsymbol{Q}_{\delta}^{1}) + \int_{\Omega_{0}} \frac{\partial\theta}{\partial\tau}\sigma_{ij}(\boldsymbol{W}_{\delta})\varepsilon_{ij}(\boldsymbol{W}_{\delta} - \boldsymbol{W}_{0} - \delta\boldsymbol{Q}_{\delta}^{1}) + \int_{\Omega_{0}} \boldsymbol{f} \cdot (\boldsymbol{W}_{\delta} - \boldsymbol{W}_{0}) + \int_{\Omega_{0}} \boldsymbol{f} \cdot \boldsymbol{Q}_{\delta}^{2} - \int_{\Omega_{0}} \boldsymbol{f} \cdot \boldsymbol{Q}_{\delta}^{1} - \int_{\Omega_{0}} \left(\frac{\partial}{\partial\tau}(\theta f_{i})(u_{i\delta} - u_{i0} - \delta\boldsymbol{Q}_{\delta i}^{1})\right) + o(\delta)r_{4}(\boldsymbol{W}_{0} - \delta\boldsymbol{Q}_{\delta}^{1}, \boldsymbol{W}_{\delta})\right) \quad (26)$$

с некоторой ограниченной формой r_4 .

В силу первого неравенства Корна левая часть неравенства (26) эквивалентна норме элемента $W_{\delta} - W_0$ в пространстве $H(\Omega_0)$. В правой части неравенства (26) интегралы при δ ограничены в силу (17). Таким образом, справедлива равномерная по δ оценка

$$\|\boldsymbol{W}_{\delta} - \boldsymbol{W}_{0}\|_{H(\Omega_{0})} \leq c\delta$$

Теорема доказана.

Из теоремы вытекает очевидное следствие.

Следствие. Справедливы следующие сходимости:

$$oldsymbol{Q}_{\delta}^{1}
ightarrow oldsymbol{Q}_{0}$$
 сильно в $H(\Omega_{0}),$
 $oldsymbol{Q}_{\delta}^{2}
ightarrow oldsymbol{Q}_{0}$ сильно в $H(\Omega_{0}),$
 $E_{ij}^{\delta}(heta; oldsymbol{W}_{0})
ightarrow E_{ij}(heta; oldsymbol{W}_{0})$ сильно в $L_{2}(\Omega_{0})$
 $E_{ij}^{\delta}(heta; oldsymbol{W}_{\delta})
ightarrow E_{ij}(heta; oldsymbol{W}_{0})$ сильно в $L_{2}(\Omega_{0})$

где

$$\boldsymbol{Q}_{0} = (0, \theta \psi'' u_{10}), \qquad E_{ij}(\theta; \boldsymbol{W}) = \frac{1}{2} \Big(\theta_{,j} \frac{\partial u_{i}}{\partial x_{1}} + \theta_{,i} \frac{\partial u_{j}}{\partial x_{1}} + (\theta \varphi)_{,j} \frac{\partial u_{i}}{\partial x_{2}} + (\theta \varphi)_{,i} \frac{\partial u_{j}}{\partial x_{2}} \Big). \tag{27}$$

Вывод формулы для производной функционала энергии по длине трещины. Для отыскания формулы производной функционала энергии по длине трещины будем использовать вариационные свойства решений задач равновесия в возмущенной и невозмущенной областях. Разложим функционал $\Pi_{\delta}(\Omega_0; \boldsymbol{W})$ в ряд по δ . Используя формулу (15) и учитывая (18), получаем

$$\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}) = \frac{1}{2} \int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}) \varepsilon_{ij}(\boldsymbol{W}) - \int_{\Omega_{0}} \boldsymbol{f} \cdot \boldsymbol{W} - \delta \int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}) E_{ij}^{\delta}(\theta; \boldsymbol{W}) + \frac{1}{2} \delta \int_{\Omega_{0}} \theta_{\tau}^{\delta} \sigma_{ij}(\boldsymbol{W}) \varepsilon_{ij}(\boldsymbol{W}) - \delta \int_{\Omega_{0}} \left(\frac{\partial}{\partial \tau} (\theta f_{i}) u_{i} + o(\delta) r_{5}(\boldsymbol{W}) \right), \quad (28)$$

где r_5 — некоторая непрерывная форма.

Воспользуемся методом, предложенным в [4]. В силу леммы 1 справедливо равенство

$$\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) = \Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{\delta})$$
(29)

для всех достаточно малых $\delta > 0$. Для того чтобы вычислить производную функционала энергии по длине трещины, необходимо найти предел

$$\lim_{\delta \to 0} \frac{\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta}.$$
(30)

Итак, в силу (29) и леммы 2 имеем

$$\frac{\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta} = \frac{\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta} \leqslant \frac{\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{0} + \delta \boldsymbol{Q}_{\delta}^{1}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta}$$

Отсюда следует, что выполнено неравенство

$$\limsup_{\delta \to 0} \frac{\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta} \leqslant \limsup_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{0} + \delta \boldsymbol{Q}_{\delta}^{1}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta}$$

В силу следствия к теореме 1 и ограниченности формы r₅ из формулы (28) получаем

$$\limsup_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{0} + \delta \boldsymbol{Q}_{\delta}^{1}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{0} + \delta \boldsymbol{Q}_{\delta}^{1}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta} =$$
$$= \frac{1}{2} \int_{\Omega_{0}} \frac{\partial \theta}{\partial \boldsymbol{\tau}} \sigma_{ij}(\boldsymbol{W}_{0}) \varepsilon_{ij}(\boldsymbol{W}_{0}) - \int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}_{0}) E_{ij}(\theta; \boldsymbol{W}_{0}) - \int_{\Omega_{0}} \frac{\partial}{\partial \boldsymbol{\tau}} (\theta f_{i}) u_{i0} +$$
$$+ \int_{\Omega_{0}} \sigma_{ij}(\boldsymbol{W}_{0}) \varepsilon_{ij}(\boldsymbol{Q}_{0}) - \int_{\Omega_{0}} \boldsymbol{f} \cdot \boldsymbol{Q}_{0}$$

В то же время справедливо соотношение

$$\frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_0)}{\delta} \geqslant \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta},$$

и поэтому выполнено неравенство

$$\liminf_{\delta \to 0} \frac{\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0})}{\delta} \ge \liminf_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_{0}; \boldsymbol{W}_{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^{2})}{\delta}$$

Принимая во внимание теорему 1, следствие к ней и ограниченность формы r_5 из (28), находим

$$\liminf_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta}) - \Pi(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} = \lim_{\delta \to 0} \frac{\Pi_{\delta}(\Omega_0; \boldsymbol{W}_{\delta} - \delta \boldsymbol{Q}_{\delta}^2)}{\delta} =$$

$$= \frac{1}{2} \int_{\Omega_0} \frac{\partial \theta}{\partial \boldsymbol{\tau}} \,\sigma_{ij}(\boldsymbol{W}_0) \varepsilon_{ij}(\boldsymbol{W}_0) - \int_{\Omega_0} \sigma_{ij}(\boldsymbol{W}_0) E_{ij}(\theta; \boldsymbol{W}_0) - \int_{\Omega_0} \frac{\partial}{\partial \boldsymbol{\tau}} \,(\theta f_i) u_{i0} + \int_{\Omega_0} \sigma_{ij}(\boldsymbol{W}_0) \varepsilon_{ij}(\mathbf{Q}_0) - \int_{\Omega_0} \boldsymbol{f} \cdot \boldsymbol{Q}_0$$

Получили, что нижний предел последовательности $\{1/\delta(\Pi(\Omega_{\delta}; \boldsymbol{W}^{\delta}) - \Pi(\Omega_{0}; \boldsymbol{W}_{0}))\}$ оценивается снизу той же константой, которой оценивается верхний предел этой последовательности сверху. Следовательно, предел (30) существует и равен этой константе.

Таким образом, доказана

Теорема 2. Производная функционала энергии $\Pi(\Omega_{\delta}; W^{\delta})$ по длине проекции трещины Γ_l на ось x_1 существует и задается формулой

$$\Pi'(l) = \frac{d\Pi(\Omega_{\delta}; \mathbf{W}^{\delta})}{d\delta} \Big|_{\delta=0} = \frac{1}{2} \int_{\Omega_{0}} \frac{\partial \theta}{\partial \boldsymbol{\tau}} \sigma_{ij} (\mathbf{W}_{0}) \varepsilon_{ij} (\mathbf{W}_{0}) - \int_{\Omega_{0}} \sigma_{ij} (\mathbf{W}_{0}) E_{ij} (\theta; \mathbf{W}_{0}) - \int_{\Omega_{0}} \int_{\Omega_{0}} \frac{\partial \theta}{\partial \boldsymbol{\tau}} (\theta f_{i}) u_{i0} + \int_{\Omega_{0}} \sigma_{ij} (\mathbf{W}_{0}) \varepsilon_{ij} (\mathbf{Q}_{0}) - \int_{\Omega_{0}} \boldsymbol{f} \cdot \boldsymbol{Q}_{0}, \quad (31)$$

где Q_0 и $E_{ij}(\theta; W_0)$ определяются по формулам (27).

Замечание 1. Так как $\Pi(\Omega_{\delta}; \mathbf{W}^{\delta})$ и $\Pi(\Omega_{0}; \mathbf{W}_{0})$ не зависят от срезающей функции θ , то производная $d\Pi(\Omega_{\delta}; \mathbf{W}^{\delta})/d\delta|_{\delta=0}$ также не зависит от θ , несмотря на то, что θ входит в формулу (31). Это означает, что для двух различных функций θ_{1} и θ_{2} значения интегралов в (31) совпадают.

Замечание 2. Так как формула (31) задает производную функционала энергии по длине проекции трещины Γ_l на ось x_1 , то производная функционала энергии по длине

криволинейной трещины
$$\Pi'(s) = \Pi'(l)((\psi'(l))^2 + 1)^{-1/2}$$
, где $s = \int_0^t \sqrt{(\psi'(t))^2 + 1}$ — длина

трещины Γ_l .

Анализ полученной формулы. Как отмечалось выше, в работе [10] получена формула для производной функционала энергии в задаче равновесия тела с криволинейной трещиной, находящейся на стыке двух тел. Если предположить, что упругие свойства этих тел одинаковы, то получится постановка задачи, принятая в настоящей работе, с той разницей, что в [10] исследован случай трещины со свободными от напряжений берегами. При этом формула (31) отличается от аналогичной формулы в [10] двумя последними членами, а именно:

$$\Delta(\boldsymbol{W}_0) = \int_{\Omega_0} \sigma_{ij}(\boldsymbol{W}_0) \varepsilon_{ij}(\boldsymbol{Q}_0) - \int_{\Omega_0} \boldsymbol{f} \cdot \boldsymbol{Q}_0.$$

Предположим, что внешняя нагрузка f подобрана таким образом, что на трещине Γ_l нет контакта, т. е. берега свободны от напряжений. Покажем, что в этом случае $\Delta(\mathbf{W}_0) = 0$.

Известно, что справедливо следующее утверждение (обобщенная формула Грина [11]).

Утверждение. Если функция $U \in H(\Omega_0)$, $\sigma_{ij,j}(U) \in L_2(\Omega_0)$, то существуют функционалы, определенные на Γ_l :

$$\sigma_{\nu}(\boldsymbol{U}), \sigma_{\tau i}(\boldsymbol{U}) \in (H_{00}^{1/2})^*, \qquad i = 1, 2,$$

и для любой функции $oldsymbol{V} = (v_1, v_2) \in [H^1(\Omega_0)]^2$ справедлива формула

$$\int_{\Omega_0} \sigma_{ij}(\boldsymbol{U}) \varepsilon_{ij}(\boldsymbol{V}) = -\int_{\Omega_0} \sigma_{ij,j}(\boldsymbol{U}) v_i + \langle \sigma_{\nu}(\boldsymbol{U}), v_{\nu} \rangle_{\Gamma_l} + \langle \sigma_{\tau i}(\boldsymbol{U}), v_{\tau i} \rangle_{\Gamma_l},$$
(32)

где $v_{\nu}, v_{\tau i}$ — следы функции V на трещине Γ_l по нормали ν и касательной τ соответственно. Скобки $\langle \cdot, \cdot \rangle_{\Gamma_l}$ обозначают двойственность между пространствами $H_{00}^{1/2}(\Gamma_l)$ и $(H_{00}^{1/2}(\Gamma_l))^*$.

Поскольку $\boldsymbol{f} \in [C^1(\overline{\Omega})]^2 \subset [L_2(\Omega_0)]^2$, в силу (5) можно заключить, что $\sigma_{ij,j}(\boldsymbol{W}_0) \in L_2(\Omega_0), i = 1, 2$. Поэтому воспользуемся формулой (32) с $\boldsymbol{V} = \boldsymbol{Q}_0 \in H(\Omega_0)$. В результате получим

$$\Delta(\boldsymbol{W}_0) = -\int_{\Omega_0} \theta \psi'' u_{01}(\sigma_{2j,j} + f_2) + \langle \sigma_{\nu}(\boldsymbol{W}_0), [Q_{0\nu}] \rangle_{\Gamma_l} + \langle \sigma_{\tau i}(\boldsymbol{W}_0), [Q_{0\tau i}] \rangle_{\Gamma_l}.$$

Так как берега трещины не контактируют, то $[W_0] \cdot \nu > 0$ на Γ_l , и поэтому в силу (6) имеем

$$\sigma_{\nu}(\boldsymbol{W}_0) = 0. \tag{33}$$

Учитывая уравнения равновесия (5), краевые условия на трещине (6) и равенство (33), получаем, что $\Delta(\mathbf{W}_0) = 0$.

В заключение сделаем ряд замечаний. Во-первых, если трещина Γ_l является прямолинейной, т. е. $\psi'' = 0$, то формула (31) совпадает с полученными ранее результатами для прямолинейных трещин с условием непроникания берегов [4–6].

Во-вторых, все результаты работы сохраняют силу для случая криволинейной трещины, представляющей собой разрез вдоль простой кусочно-гладкой разомкнутой кривой без точек самопересечений, которую можно продолжить до пересечения с границей области Ω под ненулевым углом. При этом в окрестности конца трещины $x_1 = l$, где происходит ее возмущение, форма трещины определяется уравнением $x_2 = \psi(x_1)$ ($x_1 \in [l - \delta_0, l + \delta_0]$, $\delta_0 > 0$), а параметр возмущения $\delta \in [0, \delta_0)$. Так как исследуется поведение функционала энергии при $\delta \to 0$, то параметр δ_0 может быть весьма малым.

ЛИТЕРАТУРА

- 1. Sokolowski J., Zolesio J. P. Introduction to shape optimization. Shape sensitivity analysis. Berlin etc.: Springer-Verlag, 1992.
- Ohtsuka K. Mathematics of brittle fracture // Theoretical studies on fracture mechanics in Japan. Hiroshima: Hiroshima-Denki Inst. of Technol., 1997. P. 99–172.
- 3. Мазья В. Г., Назаров С. А. Асимптотика интегралов энергии при малых возмущениях вблизи угловых и конических точек // Тр. Моск. мат. о-ва. 1987. Т. 50. С. 79–129.
- Khludnev A. M., Sokolowski J. The Griffith formula and the Rice Cherepanov integral for crack problems with uniteral conditions in nonsmooth domains // Europ. J. Appl. Math. 1999.
 V. 10, N 4. P. 379–394.
- 5. Ковтуненко В. А. Инвариантные интегралы энергии для нелинейной задачи о трещине с возможным контактом берегов // Прикл. математика и механика. 2003. Т. 67, вып. 1. С. 109–123.
- 6. Соколовский Я., Хлуднев А. М. О дифференцировании функционалов энергии в теории трещин с возможным контактом берегов // Докл. РАН. 2000. Т. 374, № 6. С. 776–779.

- 7. **Рудой Е. М.** Формула Гриффитса для пластины с трещиной // Сиб. журн. индустр. математики. 2002. Т. 5. С. 155–161.
- Khludnev A. M., Ohtsuka K., Sokolowski J. On derivative of energy functional for elastic bodies with cracks and unilateral conditions // Quart. Appl. Math. 2002. V. 60. P. 99–109.
- 9. Рудой Е. М. Асимптотика интеграла энергии при возмущении границы // Динамика сплошных сред / РАН. Сиб. отд-ние. Ин-т гидродинамики. 2000. Вып. 116. С. 97–103.
- Kovtunenko V. A. Shape sensitivity of curvilinear cracks on interface to non-linear perturbations // Z. angew. Math. Phys. 2003. V. 54. P. 410–423.
- 11. Khludnev A. M., Kovtunenko V. A. Analysis of cracks in solids. Southampton; Boston: WIT-Press, 2000.
- 12. Назаров С. А., Полякова О. Р. Весовые функции и инвариантные интегралы высших порядков // Изв. РАН. Механика твердого тела. 1995. № 1. С. 104–119.
- 13. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974.
- 14. Партон В. З., Морозов Е. М. Механика упругопластического разрушения. М.: Наука, 1974.
- 15. Михайлов В. П. Дифференциальные уравнения в частных производных. М.: Наука, 1976.
- Фихтенгольц Γ. М. Курс дифференциального и интегрального исчисления. М.: Наука, 1966. Т. 1.

Поступила в редакцию 12/I 2004 г., в окончательном варианте — 9/III 2004 г.