СПЕКТРОСКОПИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 539.191

Расчеты уширения линий водяного пара, индуцированного давлением углекислого газа

Н.Н. Лаврентьева, Б.А. Воронин*

Институт оптики атмосферы им. В.Е. Зуева СО РАН 634021, г. Томск, пл. Академика Зуева, 1

Поступила в редакцию 24.06.2013 г.

С использованием полуэмпирического метода проведены расчеты полуширин линий H₂O–CO₂ для значений вращательного квантового числа *J* от 0 до 20. Исследовалась температурная зависимость уширения линий, для всех переходов рассчитаны коэффициенты температурной зависимости.

Ключевые слова: контур линии, полуширина, температурная зависимость; line contour, half-width, temperature dependence.

Коэффициенты уширения линий водяного пара, индуцированного давлением углекислого газа, необходимы для решения различных задач физики атмосферы, астрофизики и лазерной физики. Особенно важны коэффициенты уширения линий водяного пара, индуцированного давлением углекислого газа, для исследования атмосфер Марса и Венеры, которые состоят в основном из CO_2 (~96%). Содержание водяного пара незначительно, например в атмосфере Венеры менее 10 млн⁻¹, однако он является ключевым компонентом облаков, участвуя в фотохимических реакциях.

Несмотря на большую температуру у поверхности Венеры (~700 К), значительный интерес вызывает слой атмосферы выше сернистых облаков от 60 до 80 км, который по многим своим условиям, в частности по температуре, приближен к земным. Исследованию водяного пара в верхней атмосфере Венеры посвящены многочисленные статьи, связанные с обработкой данных, получаемых с Venus Express (например, [1]), что также подтверждает актуальность данной работы.

Для решения задач атмосферной спектроскопии и астрофизики необходима информация о параметрах сотен тысяч линий. Причем коэффициенты уширения линий нужно определить с точностью примерно 10%. Расчеты с применением полуклассического подхода Робера—Бонами [2], который исходит из точного моделирования межмолекулярного потенциала и учитывает тонкие детали столкновений и внутримолекулярной динамики, требуют много времени и оказываются весьма трудоемкими. В настоящей статье использована модификация ударной теории, осуществленная на основе более широкого применения эмпирических данных и названная полуэмпирическим методом [3]. Параметры модели определяются из подгонки к экспериментальным значениям полуширин. Данный подход хорошо зарекомендовал себя в расчетах параметров контура линии и их температурных зависимостей для систем сталкивающихся молекул $H_2O-N_2(O_2, H_2O)$, $O_3-N_2(O_2)$ и $CO_2-N_2(O_2, N_2O)$ [4–8]. Результаты этих расчетов помещены в информационную систему «W@DIS» [9], а также в банк данных GEISA [10].

Число работ, посвященных исследованию коэффициентов уширения линий водяного пара, индуцированного давлением углекислого газа, по сравнению со случаем уширения азотом и кислородом мало [11—16]. Более полные и точные наборы экспериментальных и расчетных данных получены в работах [14, 15]. Представленные в этих статьях расчеты полуширин линий проведены по методу, известному как комплексный формализм Робера— Бонами, включающий приближение параболической траектории.

Поскольку полуширины линий слабо зависят от колебательных квантовых чисел (различие в полуширинах различных полос составляет обычно несколько процентов), коэффициенты уширения можно рассчитать для одной полосы и затем перенести рассчитанные значения на другие колебательные полосы.

Использование среднего значения температурного показателя в спектроскопических расчетах является, очевидно, грубым приближением. Температурные экспоненты для полуширин линий водяного пара существенно меняются в зависимости от вращательного квантового числа J вследствие сильной зависимости заселенности нижнего уровня от температуры. Следовательно, показатели являются различными для малых и высоких значений J и различных K_a , K_c .

^{*} Нина Николаевна Лаврентьева (lnn@iao.ru); Борис Александрович Воронин (vba@iao.ru).

[©] Лаврентьева Н.Н., Воронин Б.А., 2013

Ниже приводятся основные соотношения ударной теории и детали вычислений. При обычных для ударной полуклассической теории уширения линий предположениях полуширина γ_{if} , связанная с переходом $i \to f$, может быть представлена как

$$\gamma_{if} = \frac{n}{c} \sum_{k} \rho(k) \int_{0}^{\infty} vf(v) dv \int_{0}^{\infty} \operatorname{Re} \{ U(i, f, k, b, v) \} b db.$$
(1)

Здесь U(i, f, k, b, v) — функция эффективности, которая задается следующим выражением:

$$Re\{U(i, f, k, b, v)\} = 1 - \{1 - S_{2,fk,ik}^{(L)}\} \times \times \cos[S_{1,fk} - S_{1,ik} + Im\{S_{2,fk}\} - Im\{S_{2,ik}\}] \times \times \exp[-(Re\{S_{2,fk}\} + Re\{S_{2,ik}\} + S_{2,fk,ik}^{(C)})],$$
(2)

где n — плотность возмущающих молекул; $\rho(k)$ — заселенности уровня k, k — набор квантовых чисел возмущающей молекулы; v — относительная скорость сталкивающихся молекул; f(v) — функция распределения Больцмана; b — прицельный параметр; S_1 и S_2 — члены первого и второго порядков функции эффективности взаимодействий. Индексы (L) и (C) соответствуют и «связным», и «присоединенным» («linked» and «connected») диаграммам теории возмущения. Член первого порядка S_1 отвечает за адиабатический эффект и определяется только изотропной частью потенциала, а S_2 — его анизотропной частью. Эти две функции зависят от «классической» траектории относительного движения сталкивающихся молекул.

Уравнения (1) и (2) представляют общую формулировку полуклассической теории. Их применимость зависит от используемых приближений, накладываемых на: а) относительную траекторию сталкивающихся молекул, б) межмолекулярный потенциал как на коротких, так и длинных дистанциях, в) рассмотрение адиабатических и неадиабатических эффектов, связанных с функциями S_1 и S_2 .

В теории Андерсона относительное движение представляется прямолинейным, а межмолекулярный потенциал имеет вид суммы вкладов дальнодействующих электростатических сил. Для устранения расходимости при малых значениях ударного параметра используется «процедура прерывания». Robert и Bonamy [2] разработали полуклассическую теорию (РБ), которая использует более реалистический потенциал в виде суммы атом-атомного короткодействующего и электростатического дальнодействующего потенциалов и свободна от процедуры прерывания. Они использовали также эффективную параболическую траекторию вместо прямолинейной. Было показано, что особенности межмолекулярного взаимодействия на коротких дистанциях и искривление траекторий играют важную роль для близких столкновений и их рассмотрение приводит к значительному улучшению расчетов. Brown et al. [15] предложили модификацию теории РБ, известную как комплексный формализм Робера-Бонами, который учитывает одновременно реальную и мнимую части S_2 -функции. Они показали, что учет мнимой части вклада анизотропной части потенциала S_2 важен для расчета полуширин водяного пара. Быков и др. [16] предложили модель точных траекторий (*exact trajectories* — (ЕТ)) для полуклассического метода расчета параметров уширения. Эта модель была успешно применена Булдыревой и др. для вычисления полуширин линий методом Робера—Бонами [17, 18].

Полуэмпирический метод [3], отличающийся сравнительной простотой вычислений, специально разработан для описания процессов уширения линий молекул, характеризующихся так называемыми сильными взаимодействиями, когда расстояние наибольшего сближения сталкивающихся частиц параметра прерывания теории Андерсона $r_c < b_0$. Для слабых взаимодействий ($r_c > b_0$) этот подход не дает удовлетворительных результатов, и необходимо использовать различные варианты метода «cut-off-free», учитывающего более тонкие эффекты. Но для молекул типа HCl–DCl, H₂O–H₂O, H₂O–CO₂ полуэмпирический метод работает хорошо, и нет смысла прибегать к более сложным расчетным схемам.

Общие выражения (1) и (2) зависят от вероятностей переходов $D^2(ii'|l)$ и $D^2(ff'|l)$ различных каналов рассеяния $i \rightarrow i'$, $f \rightarrow f'$, связывающих нижний и верхний уровни перехода с близлежащими уровнями. Эти параметры являются квадратами редуцированных матричных элементов молекулярных операторов, таких как дипольный момент или компоненты квадрупольного тензора. Члены с l = 1 относятся к переходам дипольного типа, l = 2 соответствует квадрупольным переходам основной молекулы.

Полуширина в теории Андерсона может быть выражена в виде суммы, включающей эти параметры, и при пренебрежении членами более высоких порядков записана в виде

$$\begin{split} \gamma_{fi} &= A(f,i) + \sum_{l} \sum_{i'} D^2(ii'|l) P_l^A(\omega_{ii'}) + \\ &+ \sum_{l} \sum_{f'} D^2(ff'|l) P_l^A(\omega_{ff'}), \end{split} \tag{3}$$

где $A(f,i) = \frac{n}{c} \sum_{2} \rho(2) \int_{0}^{\infty} v dv b_{0}^{2}(v,2,i,f)$ — обычное

слагаемое теории Андерсона, обусловленное прерыванием ($b_0(v, 2, i, f)$ – параметр прерывания).

Суммы в выражении (3) включают переходы различного типа (дипольные, квадрупольные и т.д.) и содержат произведения двух величин — $D^2(ii'|l)$ и $P_l^A(\omega_{ii'}) [(P_l^A(\omega_{ii'}) - функция прерывания или функция эффективности]. Силы переходов <math>D^2(ii'|l)$ и $D^2(ff'|l)$, относящиеся к каналам рассеяния $i \rightarrow i', f \rightarrow f'$, зависят только от свойств поглощающей молекулы (дипольного или квадрупольного моментов, волновых функций) и включают только внутримолекулярные эффекты.

Коэффициенты разложения $P_l^A(\omega_{ii'})$ зависят от свойств поглощающей и возмущающей молекул:

$$P_{l}(\omega) = \frac{n}{c} \sum_{k} \rho(k) \sum_{l',k'} A_{ll'} D^{2}(kk'|l') \times F_{ll'} \left(\frac{2\pi c b_{0}(k,i,f)}{\upsilon} (\omega + \omega_{kk'}) \right).$$
(4)

Они зависят от межмолекулярного потенциала, траектории движения сталкивающихся молекул, структуры энергетических уровней и волновых функций возмущающей молекулы. Эти параметры могут рассматриваться как функции эффективности для данного канала рассеяния. Множители $D^2(ii'|l)$ и $D^2(ff'|l)$ достаточно хорошо известны, в то время как параметры межмолекулярного потенциала определяются с худшей точностью. Поэтому представляется логичным разделить члены в уравнении на хорошо и плохо определяемые и скорректировать последние введением полуэмпирического фактора.

 $P_l^A(\omega_{ii'})$ представляет собой плавную функцию, поэтому разумно ввести корректирующий множитель к этой функции, оставив без изменения член $D^2(ii'|l)$, описывающий динамику поглощающей молекулы, т.е. представить $P_l^A(\omega)$ так:

$$P_l(\omega) = C_l(\omega) P_l^A(\omega), \tag{5}$$

где $P_l^A(\omega)$ — функция эффективности в приближении Андерсона; $C_l(\omega)$ — поправочный множитель, определяемый из подгонки к экспериментальным значениям параметров контура линий. Использование $P_l^A(\omega)$ в качестве начального приближения в выражении (5) позволяет воспроизвести коррект-

ное поведение полуширин и сдвигов при больших значениях вращательных квантовых чисел или при высоких температурах.

В настоящей статье расчеты уширения линий были выполнены с использованием функций эффективности в следующем виде:

$$P_{l}(\omega_{ff'}) = P_{l}^{A}(\omega_{ff'}) \Big[c_{1} / (c_{2} \sqrt{j_{f}} + 1) \Big],$$
(6)

где *c*₁, *c*₂ – подгоночные параметры.

Таким образом, мы использовали корректирующий множитель к функции $P_l^A(\omega)$ в виде простого выражения, содержащего два параметра, определяемые из подгонки к экспериментальным данным.

В случае H_2O-CO_2 главный вклад в уширение и сдвиг обусловлен взаимодействием между дипольным моментом воды (1,8549 Д для основного состояния) и квадрупольным моментом углекислого газа. Кроме того, в расчет включены квадрупольквадрупольные взаимодействия ($Q_{bb}(H_2O) = -0,13$, $Q_{cc}(H_2O) = -2,50$, $Q_{aa}(H_2O) = 2,63 \ {\rm J} \cdot {\rm \AA}$, где *a*, *b* и *c* представляют собой оси инерции), а также индукционный и дисперсионный члены поляризационного потенциала. Вращательные и центробежные постоянные колебательного состояния (000) водяного пара были взяты из [19], а параметры оператора дипольного момента, необходимые для расчета интенсивностей переходов, индуцированных столкновениями, из работы [20].

Результаты сравнения расчетных и экспериментальных данных [14, 15] приведены в табл. 1.

Таблица 1

Коэффициенты уширения линий водяного пара, индуцированного давлением углекислого газа. Наши расчетные и измеренные [14, 15] данные

Частота, см ⁻¹	Вращательные квантовые числа		γCO ₂ [14],	Ошибка эксперимента [14]		γCO ₂ [15], cm ⁻¹ · arm ⁻¹	Разность: [14]–[15]		γCO ₂ , наш расчет,	Разность: [14] — наш расчет		N
	J', K_a', K_c'	J'', K_a'', K_c''	$cm^{-1} \cdot am^{-1}$	$cm^{-1} \cdot atm^{-1}$	%	uni uni	$cm^{-1} \cdot atm^{-1}$	%	$CM^{-1} \cdot ATM^{-1}$	$\mathrm{cm}^{-1} \cdot \mathrm{atm}^{-1}$	%	
18,577	1 1 0	1 0 1	0,2156	0,0053	2,5	0,2094	0,0062	2,9	0,2136	0,0021	1,0	0,64
32,954	2 0 2	1 1 1	0,1937	0,0061	3,1	0,1961	-0,0025	$^{-1,3}$	0,2066	-0,0129	-6,7	0,61
25,085	2 1 1	$2 \ 0 \ 2$	0,2247	0,006	2,7	0,201	0,0237	10,5	0,2142	0,0105	4,7	0,65
55,702	2 1 2	1 0 1	0,1974	0,0007	0,4	0,1955	0,0019	1,0	0,1948	0,0025	1,3	0,55
40,988	2 2 0	2 1 1	0,1831	0,0033	1,8	0,1784	0,0047	2,6	0,1948	-0,0117	-6,4	0,64
55,405	2 2 1	2 1 2	0,1566	0,0012	0,8	0,1535	0,0031	2,0	0,1411	0,0155	9,9	0,35
57,265	3 0 3	2 1 2	0,164	0,0005	0,3	0,1732	-0,0092	-5,6	0,1609	0,0031	1,9	0,42
38,464	3 1 2	2 2 1	0,1731	0,0056	3,2	0,1598	0,0133	7,7	0,1826	-0,0095	-5,5	0,57
36,604	3 1 2	3 0 3	0,1812	0,001	0,6	0,1807	0,0005	0,3	0,1949	-0,0138	-7,6	0,56
72,188	3 1 3	$2 \ 0 \ 2$	0,1764	0,0014	0,8	0,1732	0,0032	1,8	0,1778	-0,0014	-0,8	0,59
38,791	3 2 1	3 1 2	0,1781	0,0009	0,5	0,1729	0,0052	2,9	0,1978	-0,0197	-11,1	0,58
64,023	3 2 2	3 1 3	0,1488	0,0013	0,9	—	_	-	0,1157	0,0331	22,3	0,33
73,262	3 3 0	3 2 1	0,1594	0,0015	0,9	0,1524	0,0070	4,4	0,1507	0,0087	5,5	0,56
78,918	3 3 1	3 2 2	0,1193	0,0037	3,1	0,1206	-0,0013	-1, 1	0,0991	0,0202	16,9	0,31
40,282	4 2 2	4 1 3	0,1917	0,0028	1,5	0,1682	0,0235	12,3	0,1852	0,0065	3,4	0,52
53,444	4 1 3	$4 \ 0 \ 4$	0,1449	0,0027	1,9	0,1384	0,0065	4,5	0,1603	-0,0154	-10,6	0,42
68,063	4 3 1	4 2 2	0,159	0,0031	1,9	0,1524	0,0066	4,2	0,158	0,0010	0,6	0,56
69,196	4 1 3	3 2 2	0,1402	0,0039	2,8	0,1362	0,0040	2,9	0,1576	-0,0174	-12,4	0,50
75,524	4 2 3	4 1 4	0,119	0,0007	0,6	0,1141	0,0049	4,1	0,1014	0,0177	14,8	0,41
79,774	$4 \ 0 \ 4$	3 1 3	0,1274	0,0011	0,9	0,1267	0,0007	0,5	0,1167	0,0107	8,4	0,33

Расчеты уширения линий водяного пара, индуцированного давлением углекислого газа

921

Окончание табл. 1

Частота, см ⁻¹	Вращательные квантовые числа		γCO ₂ [14],	Ошибка эксперимента [14]		γCO ₂ [15], см ^{−1} · атм ^{−1}	Разность: [14]–[15]		γCO ₂ , наш расчет,	Разность: [14] — наш расчет		N
	J', K_a', K_c'	J'', K_a'', K_c''	см • атм •	$cm^{-1} \cdot am^{-1}$	%		$\mathrm{cm}^{-1} \cdot \mathrm{atm}^{-1}$	%	см • атм	$\mathrm{cm}^{-1} \cdot \mathrm{atm}^{-1}$	%	
82,155	4 3 2	4 2 3	0,1045	0,0009	0,9	0,1079	-0,0034	-3,3	0,0929	0,0116	11,1	0,35
74,11	5 1 4	5 0 5	0,1381	0,0012	0,9	0,1238	0,0143	10,4	0,1283	0,0098	7,1	0,44
47,053	523	5 1 4	0,1705	0,0011	0,6	0,1624	0,0081	4,8	0,1628	0,0077	4,5	0,42
89,583	524	5 1 5	0,1033	0,0078	7,6	0,1044	-0,0011	-1, 1	0,0888	0,0145	14,0	0,45
62,301	532	523	0,1471	0,001	0,7	0,1384	0,0087	5,9	0,153	-0,0059	-4,0	0,41
101,53	5 4 1	532	0,1147	0,0073	6,4	—	—	_	0,1047	0,0100	8,7	0,38
59,868	6 2 4	6 1 5	0,1168	0,0062	5,3	0,1295	-0,0127	-10,9	0,1337	-0,0169	-14,5	0,32
58,775	633	6 2 4	0,1489	0,0052	3,5	0,1117	0,0372	25,0	0,1417	0,0072	4,8	0,35
78,196	7 2 5	7 1 6	0,1073	0,0032	3	0,1069	0,0004	0,4	0,1109	-0,0036	-3,4	0,31
59,947	734	7 2 5	0,1549	0,0051	3,3	_	_	_	0,1289	0,0260	16,8	0,31
88,881	7 4 3	734	0,1041	0,0138	13,3	0,1265	-0,0224	-21,5	0,1099	-0,0058	-5,6	0,28

Видно, что наш расчет хорошо согласуется с обоими наборами экспериментальных коэффициентов уширения линий: среднеквадратическое отклонение расчета от эксперимента [14] равно 0,0134, от эксперимента [15] — 0,0145. Максимальные отклонения приведены в табл. 2.

Таблица 2

Характеристики сравнения расчета и экспериментов

Отклонение, %	[14]–[15]	[14] — наш расчет	[15] — наш расчет
Среднеквадратическое	5,6	7,9	7,3
Максимальное положительное	25,0	22,3	17,8
Максимальное отрицательное	-21,5	-14,5	-11,9

Более наглядно сравнение вышеописанных трех наборов данных по полуширинам линий H_2O-CO_2 показано на рис. 1, где представлены коэффициенты уширения в зависимости от номера линии (номер растет с возрастанием частоты линии), экспериментальные данные [14], полученные для вращательной полосы, эксперимент [15] для полосы v_2 и наши расчетные значения.

Рис. 1. Расчетные и измеренные [14, 15] коэффициенты уширения линий водяного пара, индуцированного давлением углекислого газа

Средняя ошибка измеренных полуширин $\gamma(H_2{}^{16}O-C{}^{16}O_2)$ из работы [14] равна 7,9%, из работы [15] — 7,3%, максимальная ошибка — 13,3%. Учитывая это, можно сделать вывод, что явная колебательная зависимость коэффициентов уширения линий не наблюдается.

На рис. 2 представлено сравнение коэффициентов уширения $\gamma(H_2^{16}O-C^{16}O_2)$ из [15] с двумя вариантами наших расчетных данных: с включением корректирующего фактора из выражения (5) (оптимизация) и без него.

Рис. 2. Сравнение коэффициентов уширения γ (H₂¹⁶O–C¹⁶O₂) из [15] с двумя вариантами наших расчетных данных: с включением корректирующего фактора (×) и без него (▲)

Для сравнения из [15] взято 937 значений коэффициента уширения $\gamma(H_2^{16}O-C^{16}O_2)$. Для всех этих переходов имеются полные наборы квантовой идентификации, что позволило сопоставить данные. По горизонтальной оси отложены номера от 1 до 937 – соответствующие данным из [15], по вертикальной оси – отсортированная по величине разность наших расчетных данных с данными [15]. Из рис. 2 видно, что использование корректирующего фактора в расчетной схеме существенно улучшает результаты расчетов. Представленные на рис. 3 коэффициенты уширения линий водяного пара, индуцированного давлением углекислого газа, в зависимости от вращательного квантового числа J, показывают, в основном, хорошее согласие наших расчетных данных с наиболее полным набором полуширин линий из работы [15]. Расхождение коэффициентов уширения линий при номерах, которые больше 850, имеет место для определенных подпоследовательностей типа $J J 1 \leftarrow J 1 J - 1$. Причина, очевидно, кроется в различном представлении уровней энергии и матричных элементов дипольного момента молекулы типа асимметричного волчка.

Кроме того, в работе исследовалась температурная зависимость коэффициентов уширения линий водяного пара, индуцированного давлением углекислого газа. Показатели температурной зависимости полуширин линий определялись согласно эмпирической формуле

$$\gamma = \gamma_0 \left(T_0 \ / \ T_k \right)^N. \tag{7}$$

Здесь γ_0 — полуширина линии при некоторой опорной температуре T_0 ; N — коэффициент температурной зависимости. Рассчитаны полуширины линий при температурах $T_k = 230$, 260, 296, 320 и 350 К. В качестве опорной температуры была взята $T_0 = 296$ К. Значения коэффициентов температурной зависимости N приведены в табл. 1 (в последнем столбце), их значения варьируются от 0,65 до 0,28. Важно отметить, что определение показателя N очень чувствительно к точности определения полуширин, особенно для узких линий. Даже небольшая ошибка в определении величины γ для узкой линии приводит к большим погрешностям в полученном значении N.

На основании изложенного материала можно сделать следующие основные выводы. Полуэмпирический метод расчета коэффициентов уширения и сдвига линий был применен для вычисления уширения линий водяного пара, индуцированного давлением углекислого газа. Расчеты проведены для значений вращательного квантового числа J от 0 до 20 и для всех вариантов K_a , K_c . Кроме того, вычислены температурные показатели для каждой упомянутой линии. Хотя коэффициенты температурной зависимости определены в диапазоне темпе

ратур от 230 до 350 К, они, очевидно, могут быть использованы в более широком температурном интервале. Все рассчитанные данные, как полуширины линий, так и коэффициенты температурной зависимости, помещены в информационную систему ("W@DIS" – http://saga.wadis.iao.ru).

Сравнение наших расчетов с экспериментальными данными и рассчитанными по методу Робера—Бонами позволяет заключить, что полуэмпирический метод дает возможность достаточно точно рассчитать коэффициенты уширения линий H_2O — CO_2 , а также исследовать их температурную зависимость.

Авторы выражают благодарность Ф.А. Лаврентьеву за техническую помощь в работе.

Работа выполнена при частичной поддержке РФФИ (грант № 11-02-93112-НЦНИЛ_а), программы Президиума РАН 22.2 «Фундаментальные проблемы исследований и освоения Солнечной системы» и Программы РАН 3.9 «Фундаментальная оптическая спектроскопия и ее приложения».

- Fedorova A., Korablev O., Vandaele A.-C., Bertaux J.-L., Belyaev D., Mahieux A., Neefs E., Wilquet W.V., Drummond R., Montmessin F., Villard E. HDO and H₂O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express // J. Geophys. Res. 2008. V. 113. E00B22, doi:10.1029/2008JE003146. P. 1–16.
- Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. de Physique. 1979. V. 40, N 10. P. 923–943.
- Bykov A., Lavrentieva N., Sinitsa L. Semi-empiric approach to the calculation of H₂O and CO₂ line broadening and shifting // Mol. Phys. 2004. V. 102, iss. 14–15. P. 1653–1658.
- Lavrentieva N., Osipova A., Sinitsa L., Claveau Ch., Valentin A. Shifting temperature dependence of nitrogen-broadened lines in the v₂ band of H₂O // Mol. Phys. 2008. V. 106, iss. 9–10. P. 1261–1266.
- Buldyreva J., Lavrentieva N. Nitrogen and oxygen broadening of ozone infrared lines in the region of 5 μm: theoretical predictions by semiempirical and semiclassical methods // Mol. Phys. 2009. V. 107, iss. 15. P. 1527–1536.
- 6. Лаврентьева Н.Н., Мишина Т.П., Синица Л.Н., Теннисон Дж. Расчеты самоуширения и самосдвига спектральных линий водяного пара с использованием точных колебательно-вращательных волновых функций // Оптика атмосф. и океана. 2008. Т. 21, № 12. Р. 1096–1100.
- Petrova T.M., Solodov A.M., Solodov A.A., Dudaryonok A.S., Lavrentieva N.N. Measurements of O₂-broadening and -shifting parameters of the water vapor spectral lines in the second hexad region // J. Quant. Spectrosc. and Radiat. Transfer. 2011. V. 112, iss. 18. P. 2741-2749.
- 8. Дударенок А.С., Лаврентьева Н.Н., Аршинов К.И., Невдах В.В. Столкновительное уширение линий СО₂ давлением N₂O // Оптика атмосф. и океана. 2011. Т. 24, № 10. С. 858–863.
- 9. URL: http://wadiss.saga.iao.ru
- 10. URL: http://ara.lmd.polytechnique.fr
- 11. Izatt J.R., Sakai H., Benedict W.S. Positions intensities and width of water-vapor lines between 475 and

 $692\ \text{cm}^{-1}$ // J. Opt. Soc. Amer. 1969. V. 59, N 1. P. 19–26.

- 12. Varanasi P., Prasad C.R. Line widths and intensities in H₂O-CO₂ mixtures. I. An experimental study on the 6.3μ band of water vapor // J. Quant. Spectrosc. and Radiat. Transfer. 1970. V. 10, iss.1. P. 65–69.
- Varanasi P. Line widths and intensities in H₂O-CO₂ mixtures. II. High-resolution measurements on the v₂fundamental of water vapor // J. Quant. Spectrosc. and Radiat. Transfer. 1971. V. 11, iss. 3. P. 223–230.
- 14. Sagawa H., Mendrok J., Seta T., Hoshina H., Baron Ph., Suzuki K., Hosako I., Otani C., Hartogh P., Kasai Y. Pressure broadening coefficients of H₂O induced by CO₂ for Venus atmosphere // J. Quant. Spectrosc. and Radiat. Transfer. 2009. V. 110, iss. 18. P. 2027–2036.
- Brown L.R., Humphrey C.M., Gamache R.R. CO₂broadened water in the pure rotation and v₂ fundamental regions // J. Mol. Spectrosc. 2007. V. 246, iss. 1. P. 1–21.
- 16. Быков А.Д., Лаврентьева Н.Н., Синица Л.Н. Влияние искривления траектории столкновением на сдвиги

линий молекул в видимой области спектра // Оптика атмосф. и океана. 1992. Т. 5, № 9. С. 907–914.

- 17. Buldyreva J., Robert D., Bonamy J.J. Semiclassical calculations with exact trajectory for N_2 rovibrational Raman linewidths at temperatures below 300 K // J. Quant. Spectrosc. and Radiat. Transfer. 1999. V. 62, iss. 3. P. 321–343.
- Buldyreva J., Benec'h S., Chrysos M. Infrared nitrogen-perturbed NO linewidths in a temperature range of atmospheric interest: An extension of the exact trajectory model // Phys. Rev. A. 2000. V. 63, N 12. P. 708-722 [012708 - 0127808-14].
- Flaud J.-M., Camy-Peyret C., Maillard J.-P. Higher ro-vibrational levels of H₂O deduced from high resolution oxygen-hydrogen flame spectra between 2800 and 6200 cm⁻¹// Mol. Phys. 1976. V. 32, iss. 2. P. 499– 521.
- 20. Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94, iss. 9. P. 5883-5890.

N.N.Lavrentieva, B.A.Voronin. Calculation of H₂O-CO₂ line broadening.

Water vapor line broadening coefficients induced by carbon dioxide are important for different problems of atmospheric physics, astrophysics, and laser physics. Line widths of H_2O-CO_2 were computed by a semiempirical method for rotational quantum numbers J from 0 till 20. The temperature dependence was investigated and the temperature exponents for every transition were calculated.