УДК 550.388.2; 554.510.535

МЕТОД ВЫЧИСЛЕНИЯ ПОПЕРЕЧНЫХ СОСТАВЛЯЮЩИХ СКОРОСТИ ВЕТРА НА ВХОДНОЙ АПЕРТУРЕ АДАПТИВНОЙ СИСТЕМЫ ПО ИЗМЕРЕНИЯМ ДАТЧИКА ВОЛНОВОГО ФРОНТА ШЭКА — ГАРТМАНА*

Л. В. Антошкин¹, Н. В. Голенева^{1,2}, В. В. Лавринов¹, Л. Н. Лавринова¹

¹Институт оптики атмосферы им. В. Е. Зуева СО РАН, 634055, г. Томск, пл. Академика Зуева, 1 ²Томский государственный университет, 634050, г. Томск, просп. Ленина, 36 E-mail: lnl@iao.ru

Представлен метод, с помощью которого вычисляются поперечные составляющие скорости ветра на входной апертуре адаптивной системы по координатам энергетических центров тяжести фокальных пятен, измеренным датчиком волнового фронта Шэка — Гартмана. Определены границы применимости метода для данных, полученных в эксперименте на атмосферной трассе, в зависимости от интенсивности турбулентных искажений и от параметров оптической части датчика.

Ключевые слова: датчик волнового фронта Шэка — Гартмана, координаты центроида, турбулентные искажения, скорость ветра.

Введение. Случайные флуктуации показателя преломления, обусловленные атмосферной турбулентностью, приводят к искажениям светового поля, распространяющегося в земной атмосфере [1, 2]. Атмосферная турбулентность обычно компенсируется с помощью адаптивных оптических систем (AOC) [3]. Фазосопряжённые АОС включают в себя датчик волнового фронта (ДВФ), например датчик Шэка — Гартмана, который позволяет измерить фазовые искажения светового поля, флуктуирующие под влиянием ветра и конвекции [1, 2].

Важной проблемой в работе AOC является задержка в контуре обратной связи [4], обусловленная разрывом во времени момента регистрации искажений волнового фронта датчиком и момента коррекции их гибким зеркалом. Уменьшение влияния временной задержки может быть реализовано посредством опережающей адаптивной коррекции [5], суть которой — в подаче на зеркало управляющих воздействий, вычисленных относительно волнового фронта, измеряемого в текущий момент, т. е. волнового фронта, построенного по прогнозируемым измерениям датчика. Такой способ предполагает знание скорости ветра на входной апертуре системы [6].

Вычисление поперечных составляющих скорости ветра основано на использовании корреляционных свойств измерений, полученных датчиком, что впервые было продемонстрировано Родье в [7]. В работе [8] показано, что метод Родье можно применять во всех АОС, включающих в себя датчики гартмановского типа. По данным, полученным ДВФ Шэка — Гартмана, находится автокорреляционная функция для каждого слоя «замороженной» турбулентности [8], где используется гипотеза разложения изменения фазы в ряд Тейлора, что позволяет определить скорость ветра в слое атмосферы. В [9] вычисляется

^{*}Работа выполнена при поддержке Российского научного фонда (грант № 15-19-20013).

корреляция между центральной частью волнового фронта, измеренного в текущий момент времени, и всеми возможными участками волнового фронта в следующие моменты времени, при этом формируются корреляционные карты. Оцениванием векторов, образованных путём соединения центральной части и положения максимального значения корреляции на картах, определяются величина и направление скорости ветра.

Датчик волнового фронта в адаптивных системах осуществляет управление корректирующим устройством на основе информации об интенсивности оптического излучения, которая преобразуется датчиком в двумерное распределение фазы [10, 11]. Корреляционные свойства измерений, полученных ДВФ Шэка — Гартмана, позволяют также рассчитать параметры турбулентных искажений светового поля и скорость его поперечного ветрового переноса [12, 13]. Вычисляемые по измерениям датчика поперечные составляющие скорости ветра характеризуют эволюцию изменения турбулентности [4]. Вертикальная составляющая скорости ветра, как правило, невелика, а горизонтальная представляет собой скорость ветрового поперечного переноса турбулентных искажений в плоскости входной апертуры системы. Учёт параметров турбулентности и скорости ветра при вычислении управляющих воздействий на корректирующее зеркало [14] позволит отслеживать эволюцию фазовых флуктуаций во времени и тем самым повысить качество коррекции турбулентных искажений посредством АОС.

Для вычисления скорости ветрового поперечного переноса турбулентных искажений лазерного излучения в представленной работе предложен метод, основанный на корреляционном анализе координат энергетических центров тяжести фокальных пятен (центроидов) в плоскости регистрации ДВФ Шэка — Гартмана [15]. Цель данной работы состоит в оценивании эффективности предлагаемого метода и определении границ его применимости в зависимости от интенсивности турбулентных искажений лазерного излучения и от параметров оптической части ДВФ Шэка — Гартмана на основе измерений, полученных в эксперименте на атмосферной трассе.

Описание метода. Оптическая часть ДВФ Шэка — Гартмана состоит из линзового растра и высокоразрешающей видеокамеры, установленной в плоскости регистрации изображения. На каждой субапертуре датчика волновой фронт характеризуется двумя углами наклона или углами прихода, пропорциональными смещениям центроидов в плоскости регистрации [13]:

$$\alpha_n = \frac{1}{f} (\xi_n - \xi_n^0), \quad \beta_n = \frac{1}{f} (\eta_n - \eta_n^0),$$

где α_n , β_n — углы прихода на *n*-й субапертуре; ξ_n , η_n и ξ_n^0 , η_n^0 — координаты центроидов измеряемого волнового фронта и опорного (например, усреднённого по выборке гартманограмм); $n = 1, 2, \ldots, N_{\text{lens}} N_{\text{lens}}$ — номер субапертуры; $N_{\text{lens}} N_{\text{lens}}$ — число субапертур в линзовом растре; f — фокусное расстояние микролинз. Координаты центроидов вычисляются по формулам

$$\xi_n = \sum_{i=1}^{n_i} iI_i / \sum_{i=1}^{n_i} \sum_{j=1}^{n_j} I_{ij}, \quad I_i = \sum_{j=1}^{n_j} I_{ij};$$

$$\eta_n = \sum_{j=1}^{n_j} jI_j / \sum_{i=1}^{n_i} \sum_{j=1}^{n_j} I_{ij}, \quad I_j = \sum_{i=1}^{n_i} I_{ij}.$$
(1)

Здесь I_{ij} — измеренное значение интенсивности сигнала элемента с координатами i, j; $i = 1, 2, \ldots, n_i; j = 1, 2, \ldots, n_j; n_i, n_j$ — размерности субалертур (число пикселей).

Эволюция турбулентных искажений является случайным процессом флуктуаций волнового фронта, оценить который можно только корреляционным способом. Изменение светового поля под действием поперечного ветрового переноса задаётся совокупностью $N_{\rm scr}$ коррелированных турбулентных экранов [16] на входной апертуре системы или $N_{\rm scr}$ гартманограмм в плоскости регистрации. При этом время переноса светового поля τ находится из отношения числа гартманограмм $N_{\rm scr}$ к частоте кадров видеокамеры ν , т. е. $\tau = N_{\rm scr}\Delta t$, где $\Delta t = 1/\nu$ — время между кадрами. Поперечная составляющая скорости ветра v_x в плоскости линзового растра определяется из анализа матрицы C_{ξ} размера $N_{\rm lens}(N_{\rm lens}N_{\rm scr}) = N_{\rm lens}N$, в столбцах которой последовательно размещаются разности координат $\Delta \xi_n = \xi_n - \xi_n^0$, вычисленных для фокальных пятен, находящихся в столбцах зарегистрированных гартманограмм.

Применение дифференциального подхода [13] к данным, полученным датчиком, позволяет исключить ошибку, возникающую из-за его вибрации. В результате анализируется матрица \tilde{C}_{ξ} размера $(N_{\text{lens}}-1)(N_{\text{lens}}N_{\text{scr}}) = (N_{\text{lens}}-1)N$. Элементами матрицы \tilde{C}_{ξ} являются разности элементов матрицы C_{ξ} , расположенных в соседних строках. Далее, например, между последним столбцом матрицы \tilde{C}_{ξ} и всеми предыдущими N-1 её столбцами рассчитываются коэффициенты линейной корреляции [17], образующие поле корреляции $R_{\xi}(x)$. В результате анализа $R_{\xi}(x), x \in [1, N]$, определяется номер столбца с максимальным значением коэффициента корреляции. Если $R_{\xi}(N) \approx 1$, то направление скорости ветра совпадает с направлением увеличения номера столбца в матрице \tilde{C}_{ξ} . Противоположное направление скорости ветра устанавливается при вычислении $R_{\xi}(x)$ между первым столбцом матрицы \tilde{C}_{ξ} и всеми последующими N-1 её столбцами. Поперечная составляющая скорости ветра v_x пропорциональна переносу светового поля на расстояние $S = h(k_{i+1}-k_i)$, где h — шаг по входной апертуре; k_i, k_{i+1} — номера столбцов с максимальным значением R_{ξ} , т. е. $v_x = h(k_{i+1}-k_i)/N_{\text{scr}}\Delta t$ ($k_{i+1}-k_i = N_{\text{corr}}$ — число субапертур между анализируемыми столбцами матрицы \tilde{C}_{ξ}).

Тестирование корреляционного метода вычисления поперечных составляющих скорости ветра проведено на основе анализа информации, полученной на атмосферной трассе.

Анализ данных эксперимента. Схема эксперимента представлена на рис. 1: лазерный пучок 1 распространяется по атмосферной трассе 2 длиной L = 100 м; проходит через масштабирующую оптику 3, 4 с параметрами $D_1 = 72$ мм, $f_1 = 640$ мм, $D_2 = 7,2$ мм, $f_2 = 64$ мм и приходит на линзовый растр датчика 5; фокусируется в плоскости видеокамеры 6; вычисления выполняются на компьютере 7.

Данные ДВФ Шэка — Гартмана представляют собой файлы с координатами центроидов, зарегистрированных видеокамерой с частотой 200 кадр/с в течение заданного време-

Рис. 1. Схема эксперимента на атмосферной трассе

Рис. 2. Коэффициенты корреляции между столбцами матрицы \tilde{C}_{ξ} , образованной по результатам работы ДВФ Шэка — Гартмана, полученным в эксперименте на атмосферной трассе

ни. Размер линзового растра составляет 8 × 8 субапертур размером 640 × 640 мкм с фокусным расстоянием 0,64 мм; длина волны светового поля 0,633 мкм. Среднеквадратическое отклонение измерений датчика не превышает 0,15 пикселей [18].

На рис. 2 представлены значения коэффициентов корреляции для 200 гартманограмм, зарегистрированных видеокамерой с частотой 200 кадр/с. Максимальные значения коэффициента корреляции соответствуют 67-му и 177-му значениям из выборки коэффициентов R_{ξ} . Согласно схеме эксперимента (см. рис. 1), включающей в себя масштабирующую оптику, шаг на входной апертуре составляет h = 0.072/8 = 0.009 м. Перенос светового поля вдоль линзового растра выполнен на расстояние S = 0.009(167 - 67) = 0.9 м. Поскольку $\tau = 200/200 = 1$ с, средняя скорость поперечного ветрового переноса светового поля в эксперименте составляет $v_x = 0.9$ м/с и соответствует показаниям анемометра.

По измерениям ДВФ Шэка — Гартмана рассчитывается дисперсия флуктуаций разностей координат центроидов $\Delta \xi_n$, которая в рамках модели Колмогорова связана с радиусом Фрида r_0 соотношением [13, 19]

$$\sigma_{\xi}^2 = 0.022 \left(\frac{\lambda f}{D}\right)^2 \left(\frac{D}{r_0}\right)^{5/3}$$

В эксперименте на атмосферной трассе дисперсия составляет $\sigma_{\xi}^2 = 2,7766 \cdot 10^{-15} \text{ мм}^2$ и значение радиуса Фрида $r_0 = 5$ см, что соответствует средней интенсивности турбулентных искажений.

Проанализируем столбцы с номерами l, m из матрицы \tilde{C}_{ξ} . Центры их субапертур разнесены на расстояние d. Дисперсия флуктуаций разности $\Delta \xi_l - \Delta \xi_m$ имеет следующий вид [13]:

$$\sigma_{\xi}^2 = 0.194\lambda^2 f^2 r_0^{-5/3} (0.227D^{-1/3} - d^{-1/3}).$$

Так как $d = D(k_{i+1} - k_i) = DN_{\text{corr}}$, число субапертур между анализируемыми столбцами матрицы \tilde{C}_{ξ} определяется по формуле

$$N_{\rm corr} = \left(0,227 - 5,15\sigma_{\xi}^2 \left(\frac{\lambda f}{D}\right)^{-2} \left(\frac{D}{r_0}\right)^{-5/3}\right)^{-3},$$

т. е. $N_{\rm corr} = 680,33$. Таким образом, для данных эксперимента на атмосферной трассе число коррелированных турбулентных экранов составляет не менее $N_{\rm scr} = 85,04$.

Границы применимости метода. Число $N_{\rm scr}$ зависит от радиуса Фрида r_0 , характеризующего интенсивность турбулентных искажений, и от параметров оптической части датчика.

Согласно формуле Фрида $\tau_0 = 0.31 r_0 / v_x$ [5] для средней интенсивности турбулентных искажений ($r_0 = 0.05$ м) время замороженности турбулентности τ_0 варьируется от 0.031 до 0.0031 с при изменении мгновенного значения скорости v_x от 0.5 до 5.0 м/с. Поскольку время переноса светового поля вдоль входной апертуры АОС вычисляется как $\tau = N_{\rm scr} / \nu$, то по формуле $N_{\rm scr} = 0.31 r_0 \nu / v_x$ можно определить число турбулентных коррелированных экранов $N_{\rm scr}$, в результате регистрации которых наблюдается изменение фазы светового поля только под действием ветра. Число $N_{\rm scr}$ задаётся для различных значений r_0 (1–10 см). В таблице представлены значения числа $N_{\rm scr}$ для $r_0 = 0.05$ м.

Для видеокамеры с частотой 200 кадр/с и линзового растра 8×8 субапертур $N_{\rm scr}$ должно быть не меньше 85,04. Ни для одного r_0 из интервала 1–10 см число $N_{\rm scr}$ не является достаточным, чтобы измерить мгновенное значение скорости поперечного ветрового переноса турбулентных искажений, необходимое для прогнозируемого алгоритма управления АОС [20].

Возможные варианты увеличения $N_{\rm scr}$ до значения 85,04 связаны с изменением параметров оптической части ДВФ Шэка — Гартмана: частоты кадров видеокамеры, размерности линзового растра, размера субапертуры. Значение $N_{\rm scr}$ будет равно 85,04 для $r_0 = 0,05$ м при частоте кадров около 2,745 кГц. Если увеличить линзовый растр до размерности 16 × 16 субапертур, то $N_{\rm scr} = 42,52$ и требуемое значение частоты кадров снизится до 1,375 Гц. Для линзового растра размером 32 × 32 субапертуры значение частоты кадров уменьшится соответственно до 685,8 Гц. Чтобы рассчитать скорость поперечного ветрового переноса турбулентности с радиусом Фрида в диапазоне 0,01 $\leq r_0 \leq 0,1$ м, необходимо при частоте 200 кадр/с использовать линзовый растр с числом субапертур 8 × 8 диаметром 1125 мкм либо с числом субапертур 16 × 16 диаметром 560,2 мкм.

Алгоритм следящего окна [18] помещает окна анализа в центры наибольшей интенсивности изображений фокальных пятен гартманограммы, постоянно отслеживая их положение. Данный способ регистрации лазерного излучения даёт возможность не только наиболее точно определить координаты центроидов, но и обеспечить независимость их значений от размера субапертуры.

Таким образом, границы применимости метода вычисления поперечных составляющих скорости ветра на входной апертуре АОС по измерениям ДВФ Шэка — Гартмана полностью определяются числом субапертур в линзовом растре, частотой видеокамеры, интенсивностью турбулентных искажений.

Соотношения между временем замороженности турбулентности, скоростью поперечного ветрового её переноса и числом турбулентных коррелированных экранов

$ au_0$	v_x	$N_{ m scr}$	$ au_0$	v_x	$N_{ m scr}$
0,0310	0,5	6,2	0,00515	3,0	1,033
0,0152	1,0	$3,\!131$	0,00385	4,0	0,775
0,00760	2,0	1,55	0,00310	5,0	0,62

Заключение. В данной работе представлен корреляционный метод, который, опираясь на гипотезу замороженности турбулентности, анализирует измеренные датчиком координаты центроидов и позволяет рассчитать скорость эволюции турбулентных искажений на входной апертуре АОС. Преимуществом метода является то, что он даёт возможность найти границы применимости самого метода в зависимости от пространственных и временных характеристик атмосферной трассы и оптической системы. С этой целью для корректного расчёта скорости поперечного ветрового переноса турбулентных искажений лазерного излучения определены соотношения между радиусом Фрида, характеризующим интенсивность турбулентных искажений, и размером линзового растра. Также выведено соотношение между временем замороженности турбулентности, временем срабатывания адаптивной системы [16] и частотой кадров видеокамеры, регистрирующей гартманограммы.

В результате использования корреляционного алгоритма для анализа данных, полученных в эксперименте на атмосферной трассе, показано, что этот алгоритм вычисления скорости поперечного ветрового переноса по измерениям ДВФ Шэка — Гартмана в рамках модели Колмогорова [1, 2] достаточно точно определяет среднее значение скорости ветра на входной апертуре АОС.

СПИСОК ЛИТЕРАТУРЫ

- 1. Татарский В. И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 548 с.
- 2. Гурвич А. С., Кон А. И. Миронов В. Л., Хмелевцов С. С. Лазерное излучение в турбулентной атмосфере. М.: Наука, 1976. 277 с.
- 3. Воронцов М. А., Шмальгаузен В. И. Принципы адаптивной оптики. М.: Наука, 1985. 336 с.
- 4. **Лукин В. П.** Динамические характеристики адаптивных оптических систем // Оптика атмосферы и океана. 2010. **23**, № 11. С. 1027–1035.
- 5. Антошкин Л. В., Лавринов В. В., Лавринова Л. Н. и др. Особенности опережающей коррекции турбулентных искажений по измерениям датчика Шэка Гартмана // Оптика атмосферы и океана. 2010. 23, № 11. С. 1042–1047.
- Антошкин Л. В., Лавринов В. В., Лавринова Л. Н. Способы реализации опережающей адаптивной коррекции турбулентных искажений на основе измерений датчика волнового фронта Шэка — Гартмана // Автометрия. 2012. 48, № 2. С. 92–102.
- Vernin J., Roddier F. Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere // JOSA. 1973. 63, N 3. P. 270–273.
- Schock M., Spillar S. J. Measuring wind speeds and turbulence with a wave-front sensor // Opt. Lett. 1998. 23, N 3. P. 150–152.
- 9. Roopashree M. B., Akondi V., Raghavendra B. Prasad real-time wind speed measurement using wavefront sensor data // Proc. SPIE. 2010. 7588. P. 0A-2–0A-12.
- Лавринов В. В., Лавринова Л. Н., Туев М. В. Реконструкция волнового фронта по результатам преобразования светового поля датчиком Шэка — Гартмана // Автометрия. 2013. 49, № 3. С. 111–120.
- 11. Кудряшов А. В., Самаркин В. В., Шелдакова Ю. В., Александров А. Г. Анализ способа компенсации волнового фронта при использовании датчика Шэка Гартмана как элемента адаптивной оптической системы // Автометрия. 2012. 48, № 2. С. 52–58.
- 12. Антошкин Л. В., Лавринов В. В., Лавринова Л. Н., Лукин В. П. Измерение поперечного ветрового переноса атмосферной турбулентности на основе датчика Шэка — Гартмана // Горный информационно-аналитический журнал. 2009. 17, № 12. С. 129–133.

- 13. Антошкин Л. В., Лавринов В. В., Лавринова Л. Н., Лукин В. П. Дифференциальный метод в измерении параметров турбулентности и скорости ветра датчиком волнового фронта // Оптика атмосферы и океана. 2008. **21**, № 1. С. 75–80.
- 14. **Лавринов В. В., Лавринова Л. Н., Туев М. В.** Численное исследование алгоритма вычисления напряжений, выполняющих управление гибким зеркалом, в зависимости от представления информации о волновом фронте // Оптика атмосферы и океана. 2014. **27**, № 10. С. 925–931.
- 15. Антошкин Л. В., Лавринов В. В., Лавринова Л. Н., Лукин В. П. Особенности применения фотоприёмных устройств в датчиках волнового фронта Шэка Гартмана // Автометрия. 2012. 48, № 2. С. 44–51.
- Лавринова Л. Н., Лукин В. П. Адаптивная коррекция тепловых и турбулентных искажений лазерного излучения деформируемым зеркалом. Томск: Изд-во ИОА СО РАН, 2008. 152 с.
- Taylor J. R. An Introduction to Error Analysis. Mill Valley, USA: University Science Books, 1982. 272 p.
- Лукин В. П., Ботыгина Н. Н., Емалеев О. Н. и др. Датчик Шэка Гартмана на основе растра низкоапертурных внеосевых дифракционных линз // Автометрия. 2009. 45, № 2. С. 88–98.
- 19. Шанин О. И. Адаптивные оптические системы коррекции наклонов. Резонансная оптика. М.: Техносфера, 2013. 295 с.
- 20. Лавринов В. В., Копылов Е. А., Лукин В. П. Разработка эффективных алгоритмов управления адаптивными оптическими системами для астрономических приборов и лазерных оптоэлектронных систем // Сб. тр. V науч.-техн. конф. ОАО «ГСКБ "Алмаз-Антей"», М.: «Алмаз-Антей», 2014. С. 476–483.

Поступила в редакцию 8 декабря 2014 г.