УДК 532.546:550.820.7

ЭЛЕКТРОМАГНИТНОЕ ЗОНДИРОВАНИЕ ПЛАСТОВ, СОДЕРЖАЩИХ НЕФТЬ И ГАЗ

Н. К. Корсакова, В. И. Пеньковский

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: penkov@hydro.nsc.ru

Предлагается математическая модель, описывающая изменение электрической проводимости прискважинной зоны при пробуривании коллекторов, содержащих три несмешивающиеся фазы: нефть, газ и относительно небольшое количество соленой природной воды. Предполагается, что проходка скважины осуществляется на основе водного глинистого раствора, процесс массообмена между подвижным фильтратом и неподвижной природной водой протекает бесконечно быстро, а вытеснение газовой фазы происходит в рамках поршневой схемы. Перераспределение несмешивающихся фаз описывается общепринятыми уравнениями Бакли — Леверетта. Интерпретация электромагнитного отклика среды основана на ранее предложенном методе вероятностных сверток.

Ключевые слова: трехфазная фильтрация, массообмен, электрическая проводимость, фильтрат бурового раствора, электромагнитное зондирование.

Введение. В работе [1] предложен принципиально новый метод интерпретации данных электромагнитного зондирования скважин, вскрывающих водоносные, нефте- или газосодержащие пласты. Основу метода составляет математическое моделирование процессов, протекающих при проникновении фильтрата бурового раствора в прискважинную зону: несмешивающейся фильтрации жидкостей, мгновенного солеобмена между подвижным водным фильтратом и связанной со скелетом породы природной минерализованной водой, а также использование фокусирующих свойств приборов зондирования типа ВИКИЗ или ВЭМКЗ.

Представление кажущихся сопротивлений \bar{R}_i в виде интегральных сверток

$$\bar{R}_i = \int_0^\infty R(r)\rho_i(r)r\,dr\tag{1}$$

истинных удельных электрических сопротивлений (УЭС) R(r) кольцевых участков прискважинной зоны пласта с плотностью вероятности пространственного распределения чувствительностей зондов

$$\rho_i = \frac{1}{2\sqrt{2\pi\sigma x_i}} \exp\left(-\frac{\sigma^2}{2}\right) \exp\left(-\frac{1}{2\sigma^2}\ln^2\frac{x}{x_i}\right)$$

дает функциональную связь между сопротивлениями \bar{R}_i и начальными физическими характеристиками исследуемых коллекторов. Здесь $x_i = r_i^2$; $x = r^2$; r_i — центры чувствительностей; σ — дисперсия прибора; r — радиальная координата. Более подробно метод

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 03-05-64210).

и примеры его применения изложены в работе [2], в которой приведены типичные конфигурации кривых зондирования для трех случаев проникновения: в водоносный, нефтяной и газоносный пласты.

В случае проникновения фильтрата в водоносный пласт распределение истинного сопротивления прискважинной зоны имеет вид кусочно-постоянной функции, график которой состоит из двух ступенек. В двух других случаях проникновения фильтрата при определенных упрощающих предположениях график сопротивлений можно представить в виде трех ступенек, одна из которых соответствует пониженному сопротивлению окаймляющей зоны. Поскольку динамическая вязкость газа мала по сравнению с вязкостями жидких флюидов, проникновение фильтрата в газоносный пласт происходит по схеме, близкой к поршневому вытеснению. Как отмечалось в [2], при таком проникновении возникающая в результате быстрого солеобмена между водными растворами окаймляющая зона достаточно узкая и, как правило, не фиксируется приборами ВИКИЗ: многочисленные обработки экспериментальных данных показали, что безразмерный параметр σ , характеризующий фокусирующие свойства зондов, равен примерно 0,7. Ниже рассматривается более сложный случай проникновения фильтрата бурового раствора в пласт, первоначально насыщенный тремя несмешивающимися фазами: нефтью, газом и связанной со скелетом породы природной минерализованной водой.

1. Математическая модель проникновения фильтрата в пласт. При проходке скважин действие капиллярных сил мало́ по сравнению с действием гидродинамических сил. В этих условиях процесс осесимметричной трехфазной несмешивающейся фильтрации в прискважинной зоне можно описать системой Бакли — Леверетта [3]

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_i) + m\frac{\partial s_i}{\partial t} = 0,$$

$$v_i = -k_i f_i \frac{\partial h}{\partial r},$$
(2)

где i = 0, 1, 2; r — координата; t — время; m — пористость. Индекс 2 относится к нефтяной фазе, индексы 0 и 1 обозначают газовую и водную фазы соответственно. Первые три уравнения системы (2) являются законами сохранения масс движущихся фаз, следующие три — обобщенными законами Дарси, связывающими радиальные скорости движения v_i с градиентом напора h, одинаковым для всех фаз. Коэффициенты фильтрации k_i обратно пропорциональны динамическим вязкостям μ_i фаз и пропорциональны проницаемости коллектора, а относительные фазовые проницаемости f_i обычно выражаются в виде степенных функций s_i^n ($n \approx 3,5$) эффективных насыщенностей. Поскольку $\sum s_i = 1$, система (2) обладает первым интегралом

$$r(v_2 + v_0 + v_1) = r_w V(t), \tag{3}$$

где r_w — радиус скважины; V(t) — суммарная объемная скорость фаз.

Вводя обобщенные функции Леверетта $F_i(s_2, s_0) = \alpha_i f_i(s_i) / \sum_i \alpha_i f_i(s_i)$ ($\sum_i F_i = 1$, $\alpha_i = \mu_i / \mu_1$, $\alpha_1 = 1$, $\alpha_2 \leq 1$, $\alpha_0 \gg 1$), из законов движения фаз и формулы (3) для скоростей фильтрации фаз получаем выражения

$$rv_i = F_i(s_2, s_0)r_w V(t).$$
(4)

Система уравнений (2) преобразуется к простому виду

$$\frac{\partial s_0}{\partial \tau} + \frac{\partial F_0}{\partial s_2} \frac{\partial s_2}{\partial x} + \frac{\partial F_0}{\partial s_0} \frac{\partial s_0}{\partial x} = 0,$$

$$\frac{\partial s_2}{\partial \tau} + \frac{\partial F_2}{\partial s_2} \frac{\partial s_2}{\partial x} + \frac{\partial F_2}{\partial s_0} \frac{\partial s_0}{\partial x} = 0,$$
(5)

где $\tau = \frac{2}{mr_w} \int_0^t V(t) dt$ и $x = (r/r_w)^2$ — новые независимые переменные. Переменная τ свя-

зана с условным радиусом r_n объемного проникновения фильтрата в пласт зависимостью $r_n = r_w \sqrt{1 + \tau}$. Пусть $s_2^0, s_1^0, s_0^0 = 1 - (s_2^0 + s_1^0)$ — начальные насыщенности пласта нефтью, водой и газом соответственно. Подвижность каждой фазы зависит в основном от произведения $\alpha_i f_i$. Поскольку при прочих равных условиях самой подвижной является газовая фаза ($\alpha_0 \approx 50$), ее вытеснение жидкостями близко к поршневому. На фронтах вытеснения $r = r_{f_i}$ нефти или газа (i = 0) водой должны выполняться кинематические условия вида

$$v_i(r_{f_i} - 0, t) - v_i(r_{f_i} + 0, t) = m[s_i(r_{f_i} - 0) - s_i(r_{f_i} + 0)] \frac{\partial r_{f_i}}{\partial t},$$
(6)

которые следуют из интегральных законов сохранения масс [3].

В зависимости от соотношения между насыщенностями пласта нефтью s_2^0 и газом s_0^0 возможны два случая: 1) фронт вытеснения газа во все моменты времени опережает фронт вытеснения нефти $(r_{f_0} > r_f)$; 2) насыщенность пласта газом столь мала, что фронт его вытеснения отстает от фронта вытеснения нефти $(r_{f_0} < r_f)$. В первом случае из уравнения (6) и соотношения (4) при i = 0 с учетом начального условия $r_{f_0} = r_w$ получим

$$r_{f_0} = r_w \sqrt{1 + \tau F_0(s_2^0, s_0^0) / s_0^0}.$$
(7)

При поршневом вытеснении распределение газонасыщенности в прискважинной зоне пласта имеет вид кусочно-постоянной функции: $s_0 \equiv 0$ при $r_w < r < r_{f_0}(\tau)$, $s_0 \equiv s_0^0$ при $r > r_{f_0}(\tau)$, где r_{f_0} определяется формулой (7). Это распределение соответствует уравнению переноса вида

$$\frac{\partial s_0}{\partial \tau} + \frac{F(s_2^0, s_0^0)}{s_0^0} \frac{\partial s_0}{\partial x} = 0,$$

которое формально получается из первого уравнения системы (5), если в нем положить $\partial s_2/\partial x = \partial s_0/\partial x = 0$ и

$$\frac{\partial F_0}{\partial s_2} \approx \frac{\Delta F_0}{\Delta s_0} = \frac{[F_0(s_2^0, s_0^0) - F(s_2^0, 0)]}{s_0^0} = \frac{F_0(s_2^0, s_0^0)}{s_0^0}.$$

Второе уравнение системы (5) принимает вид

$$\frac{\partial s_2}{\partial \tau} + \frac{\partial F_2}{\partial s_2}(s_2, 0) \frac{\partial s_2}{\partial x} = 0, \qquad 1 < x \leqslant x_f = \left(\frac{r_f}{r_w}\right)^2. \tag{8}$$

Функция $F(s_2,0)$ совпадает с обычной функцией Леверетта для двухфазной фильтрации, при этом сохраняются обнаруженные ранее в [1, 2] особенности поведения решений уравнения (8). В частности, важными являются следующие свойства. Если начальная нефтенасыщенность пласта s_2^0 больше точки максимума $s_2 = s_{\text{max}}$, в которой $\partial^2 F_2(s_2,0)/\partial s_2^2 = 0$, то решение $s_2 = s_2(x,\tau)$ разрывно, насыщенность на фронте вытеснения $s_f < s_2^0$ является корнем трансцендентного уравнения

$$s_f = s_2^0 + \frac{[F_2(s_f, 0) - F_2(s_2^0, 0)]}{\partial F_2(s_f, 0) / \partial s_2},$$
(9)

вытекающего из кинематического условия (6). При $s_2^0 \leq s_{\max}$ решение $s_2 = s_2(x, \tau)$ непрерывно и $s_f = s_2^0$. Положение фронта вытеснения нефти вычисляется по формуле

$$r_f = r_w \sqrt{1 + \tau \frac{\partial F_2}{\partial s_2}}(s_f, 0), \tag{10}$$

а средняя по площади зоны вытеснения нефтенасыщенность $\langle s_2 \rangle$ не зависит от времени и определяется в виде

$$\langle s_2 \rangle = s_f - \frac{F_2(s_f, 0)}{\partial F_2(s_f, 0)/\partial s_2}.$$
(11)

Рассмотрим второй случай (случай малых s_0^0), когда $r_{f_0} < r_f$. В соответствии с поршневой схемой вытеснения $s_0 = 0$ при $r < r_{f_0}$ и $s_0 = s_0^0$ при $r_{f_0} < r < r_f$. Для всех r, кроме точки $r = r_{f_0}$, $\partial s_0 / \partial r = 0$. Поэтому и в этом случае уравнение на искомую функцию $s_2(x,\tau)$ будет аналогичным уравнению (8). Отличие состоит в том, что обобщенная функция Леверетта $F_2(s_2, s_0)$ не при всех r совпадает с функцией $F_2(s_2, 0)$. На промежутке $r_{f_0} < r < r_f$ $F_2(s_2, s_0) = F_2(s_2, s_0^0)$. Однако, поскольку s_0^0 — малая относительно начальной нефтенасыщенности s_2^0 величина, в расчетах этим отличием можно пренебречь и пользоваться приближениями в виде (9)–(11). С достаточной точностью положение фронта вытеснения газа вычисляется по формуле

$$r_{f_0} = r_w \sqrt{1 + \tau F_0(\langle s_2 \rangle, s_0^0) / s_0^0},$$

которая получается из кинематического условия (6) в предположении, что нефтенасыщенность *s* можно заменить на не зависящую от положения фронта r_f среднеинтегральную величину $\langle s_2 \rangle$.

2. Влияние проникновения фильтрата на электропроводность прискважинной зоны. Электропроводность горных пород может зависеть от их минерального состава, степени насыщения порового пространства электролитами, концентрации солей (точнее, ионной силы электролитов), температуры и других факторов. Как следует из закона Арчи [4], при прочих равных условиях УЭС породы данного состава обратно пропорционально квадрату насыщенности ее порового пространства электролитом. Проникновение водного фильтрата бурового раствора с некоторой концентрацией солей c_p в коллектор, содержащий нефть, газ и относительно неподвижную природную минерализованную воду с заранее не известной концентрацией солей c_0 , сопровождается процессами быстрого солеобмена между этими растворами. В целях упрощения предположим, что в области $r \in (r_w, r_f)$ функцию $s_2(x, \tau)$ можно заменить на среднюю по площади нефтенасыщенность $\langle s_2 \rangle$, которая в соответствии с формулой (11) не зависит от положения фронта r_f и определяется только начальным значением s_2^0 . Схема взаимодействия растворов для случая $r_{f_0} > r_f$ приведена на рис. 1. На рис. 1, a представлены распределения водной фазы и содержание солей в прискважинной зоне без учета массообмена, на рис. 1, 6 — те же величины, получаемые в результате бесконечно быстрого обмена [2].

Уравнение баланса массы солей в растворе с концентрацией ср имеет вид

$$(r_f^2 - r_w^2)(s_2^0 - \langle s_2 \rangle) + (r_{f0}^2 - r_w^2)s_0^0 = (r_{0z}^2 - r_w^2)(1 - \langle s_2 \rangle).$$

Из этого уравнения для положения границы $(r = r_{0z})$, разделяющей эти два раствора, следует формула

$$r_{0z} = \sqrt{[s_0^0 r_{f_0}^2 + (s_2^0 - \langle s_2 \rangle) r_f^2 + s_1^0 r_w^2] / (1 - \langle s_2 \rangle)}.$$
(12)

Такой же результат получается из уравнения баланса массы солей, растворенных в пластовой воде с концентрацией c_0 .

Учитывая распределение насыщенности порового пространства пласта водными растворами с концентрациями c_p или c_0 , из закона Арчи для каждой из показанных на рис. 1, δ

зоны получим четыре значения УЭС:

$$R = \begin{cases} R_n = R_n^0 / (1 - \langle s_2 \rangle)^2, & r \in (r_w, r_{0z}), \\ R_{0z} = R_0 [(1 - s_2^0 - s_0^0) / (1 - \langle s_2 \rangle)]^2, & r \in (r_{0z}, r_f), \\ R_f = R_0 [(1 - s_2^0 - s_0^0) / (1 - s_2^0)]^2, & r \in (r_f, r_{f0}), \\ R_0 = R^0 / (1 - s_2^0 - s_0^0)^2, & r \in (r_{f0}, \infty). \end{cases}$$
(13)

Здесь R^0 — УЭС пласта, полностью насыщенного природной водой; R_n^0 — УЭС того же пласта, полностью насыщенного фильтратом бурового раствора.

С уменьшением начального содержания газа s_0^0 в пласте фронт его вытеснения r_{f_0} сближается с фронтом вытеснения нефти r_f . Длина интервала (r_f, r_{f_0}) стремится к нулю, и влияние удельного сопротивления R_f на результат вычисления кажущихся сопротивленияний \bar{R}_i по формуле (1) становится незначительным. В случае малых s_0^0 , когда $r_{f_0} < r_f$, можно убедиться, что уравнение баланса массы солей в растворе с концентрацией солей c_p имеет вид

$$(r_f^2 - r_w^2)(s_2^0 - \langle s_2 \rangle) + (r_{f0}^2 - r_w^2)s_0^0 = (r_{0z}^2 - r_w^2)(1 - \langle s_2 \rangle) - (r_{0z}^2 - r_{f0}^2)s_0^0$$

Отсюда получаем формулу для определения радиуса r_{0z} окаймляющей зоны

$$r_{0z} = \sqrt{[(s_2^0 - \langle s_2 \rangle)r_f^2 + s_1^0 r_w^2]/(1 - \langle s_2 \rangle - s_0^0)}.$$
(14)

Распределение УЭС в пласте может быть представлено кусочно-постоянной функцией, состоящей из четырех ступенек:

$$R = \begin{cases} R_n = R_n^0 / (1 - \langle s_2 \rangle)^2, & r \in (r_w, r_{f0}), \\ R_{f0} = R_n [(1 - \langle s_2 \rangle) / (1 - \langle s_2 \rangle - s_0^0)]^2, & r \in (r_{f0}, r_{0z}), \\ R_{0z} = R_0 [(1 - s_2^0 - s_0^0) / (1 - \langle s_2 \rangle - s_0^0)]^2, & r \in (r_{0z}, r_f), \\ R_0 = R^0 / (1 - s_2^0 - s_0^0)^2, & r \in (r_f, \infty). \end{cases}$$
(15)

При $s_0^0 = 0$ формулы (12) и (14) совпадают друг с другом и с полученным в [2] выражением для вычисления радиуса окаймляющей зоны r_{0z} в нефтяном пласте. Считая центры r_i чувствительностей зондов текущей координатой, из представления (1) можно найти значения кажущихся сопротивлений для любого числа зондов с одинаковыми изопараметрами [5].

Рис. 2

В соответствии с вычисля
емыми по формулам (13), (15) УЭС для кажущихся сопротивлений получаем выражения для
 $r_{f_0} < r_f$

$$\begin{split} \bar{R}(r_i) &= \frac{R_n - R_{f0}}{2} \Big[1 + \operatorname{erf} \Big(\frac{1}{\sqrt{2}\sigma} \ln \frac{x_{f0}}{x_i} - \frac{\sigma}{\sqrt{2}} \Big) \Big] + \frac{R_{f0} - R_{0z}}{2} \Big[1 + \operatorname{erf} \Big(\frac{1}{\sqrt{2}\sigma} \ln \frac{x_{0z}}{x_i} - \frac{\sigma}{\sqrt{2}} \Big) \Big] + \frac{R_{0z} - R_0}{2} \Big[1 + \operatorname{erf} \Big(\frac{1}{\sqrt{2}\sigma} \ln \frac{x_f}{x_i} - \frac{\sigma}{\sqrt{2}} \Big) \Big] + R_0 \end{split}$$
 и для $r_{f0} > r_f$

$$\bar{R}(r_i) = \frac{R_n - R_{0z}}{2} \left[1 + \operatorname{erf}\left(\frac{1}{\sqrt{2}\sigma} \ln \frac{x_{0z}}{x_i} - \frac{\sigma}{\sqrt{2}}\right) \right] + \frac{R_{0z} - R_f}{2} \left[1 + \operatorname{erf}\left(\frac{1}{\sqrt{2}\sigma} \ln \frac{x_f}{x_i} - \frac{\sigma}{\sqrt{2}}\right) \right] + \frac{R_f - R_0}{2} \left[1 + \operatorname{erf}\left(\frac{1}{\sqrt{2}\sigma} \ln \frac{x_{f0}}{x_i} - \frac{\sigma}{\sqrt{2}}\right) \right] + R_0$$
$$(x_i = (r_i/r_w)^2, \quad x_f = (r_f/r_w)^2, \quad x_{0z} = (r_{0z}/r_w)^2, \quad x_{f0} = (r_{f0}/r_w)^2, \quad i = 1, 2, \ldots).$$

На рис. 2 представлены графики функции $\bar{R}(r_i)$ для случая $r_{f_0} < r_f$, построенные при фиксированных значениях $s_2^0 = 0.7$, $r_n = 0.5$ м, $\alpha_2 = 0.16$, $\alpha_0 = 50$, $r_w = 0.1$ м, $R_n^0 = 4$ Ом · м, $R^0 = 1$ Ом · м и различных значениях s_0^0 . Графики иллюстрируют влияние содержания газа в пласте на форму кривых электромагнитного зондирования.

В качестве примера практического применения предложенного подхода на рис. 3 приведены результаты интерпретации данных полевых измерений (на графике отмечены точками) пятизондовым прибором ВИКИЗ. Скважина пробурена на Северо-Юрьевском месторождении Сургутнефтегаза. Данные соответствуют глубине 2948,7 м. При этом получены следующие характеристики пласта: содержание нефти $s_2^0 = 0,843$, газа $s_0^0 = 0,09$, радиус фронта вытеснения нефти $r_f = 1,02$ м, радиус фронта вытеснения газа $r_{f0} = 0,7$ м, радиус объемного проникновения $r_n = 0,74$ м. Среднеквадратичное отклонение показаний от теоретической кривой 1,35 %.

Заключение. Показано, что в результате проходки вертикальными скважинами продуктивных пластов, содержащих три несмешивающиеся фазы: нефть, газ и некоторое количество минерализованной природной воды, УЭС прискважинной зоны можно представить в виде кусочно-постоянной функции радиальной координаты. Эта функция в общем

случае состоит из четырех ступенек, нижняя из которых фиксируется приборами зондирования как окаймляющая зона, т. е. зона с пониженным кажущимся сопротивлением. Как показывают расчеты, даже малое количество газа в пласте существенно влияет на форму кривой электромагнитного каротажа. В частности, при малых s_0^0 кривые кажущихся сопротивлений наряду с минимумом, характерным для нефтеносных пластов, обладают локальным максимумом, достигаемым в окрестности центров чувствительностей первых двух зондов в приборах типа ВИКИЗ.

ЛИТЕРАТУРА

- 1. Пеньковский В. И., Эпов М. И. К теории обработки данных электромагнитных зондирований в скважинах // Докл. РАН. 2003. Т. 390, № 5. С. 685–687.
- Эпов М. И., Пеньковский В. И., Корсакова Н. К., Ельцов И. Н. Метод вероятностных сверток интерпретации данных электромагнитного зондирования пластов // ПМТФ. 2003. Т. 44, № 6. С. 56–63.
- 3. Чарный И. А. Подземная гидрогазодинамика. М.: Гостехтеоретиздат, 1963.
- 4. Коллинз Р. Течение жидкостей через пористые материалы. М.: Мир, 1964.
- 5. Антонов Ю. Н. Изопараметрическое каротажное зондирование // Геология и геофизика. 1980. № 6. С. 81–91.

Поступила в редакцию 30/III 2004 г., в окончательном варианте — 28/IV 2004 г.