УДК 662.7:536.74:662.61

ЗАВИСИМОСТЬ УДЕЛЬНОГО ИМПУЛЬСА И ТЕМПЕРАТУРЫ ГОРЕНИЯ ТВЕРДОГО РАКЕТНОГО ТОПЛИВА ОТ ЕГО ЭЛЕМЕНТНОГО СОСТАВА И ТЕПЛОСОДЕРЖАНИЯ

Д. Б. Лемперт, Е. М. Дорофеенко, С. И. Согласнова, Г. Н. Нечипоренко

Институт проблем химической физики РАН, 142432 Черноголовка, lempert@icp.ac.ru

Изучено влияние энтальпии образования суммарной композиции и элементного состава композиции ракетного топлива на базе элементов С, Н, N и О на температуру горения и удельный импульс с целью поиска пути создания композиций с температурой горения не выше допустимой, но с максимально высоким удельным импульсом. Найдены количественные зависимости, связывающие вышеуказанные параметры. Показано, что существует определенный коридор в области существования композиций, удовлетворяющих поставленным требованиям по температуре горения и удельному импульсу. Полученные данные позволяют определить возможность создания составов с максимальными значениями удельного импульса.

Ключевые слова: ракетные топлива, температура горения, удельный импульс.

ВВЕДЕНИЕ

При решении многих практических задач, связанных с созданием смесевых твердых ракетных топлив (СТРТ), ставится требование по ограничению температуры в камере сгорания (T_c) , так как определенные элементы конструкции (в зависимости от типа двигателя) выходят из строя при высоких температурах. В зависимости от задачи и типа двигателя ограничения по температуре в камере сгорания могут быть совершенно различными: 3 800, 2 300 и даже 1300 К. Как правило, при изменении композиции конкретного СТРТ снижение T_c сопровождается и падением величины удельного импульса (I_{sp}) . Поэтому, решая задачу ограничения T_c (для обычных топлив $T_c \geqslant 3\,000$ K), приходится жертвовать величиной удельного импульса, и чем ниже допустимый предел T_c , тем больше потеря I_{sp} .

Цель настоящей работы — найти связь между элементным составом ракетного топлива на базе C, H, N и O, суммарной энтальпией образования композиции (ΔH_f^0) и достигаемыми значениями I_{sp} и T_c , а затем на основании выявленных закономерностей показать основные пути создания топлив с максимально высоким удельным импульсом и температурой горения не выше заданной величины, выбранной из диапазона $T_c = 1\,300 \div 2\,400$ K.

Следует отметить, что I_{sp} и T_c отнюдь

не единственные параметры, определяющие эффективность ракетных топлив. Множество других характеристик, например плотность, термостабильность, совместимость компонентов, скорость горения, зависимость последней от давления и другие, также могут стать определяющими. В настоящей работе задачи по обеспечению требований к другим (кроме требований по I_{sp} и T_c) эксплуатационным параметрам не рассматриваются.

МЕТОДЫ РАСЧЕТА И ПОСТАНОВКА ЗАДАЧИ

Величины I_{sp} и T_c рассчитывали с помощью программы расчета высокотемпературных равновесий ТЕРРА [1] при давлении в камере сгорания 40 атм, на срезе сопла — 1 атм. Массив исходных данных, взятых для расчета, включал более 200 композиций, содержащих C, H, N и O в количестве: углерод — $0 \div 21.4$ %, водород — $1.0 \div 8.13$ %, кислород — $1.0 \div 1.4$ г-атомов на 1 г-атом углерода (т. е. $0 \div 1.87$ С, где С — содержание углерода, %), с суммарной энтальпией образования $\Delta H_f^0 =$ $0 \div 4400$ кДж/кг. Поскольку была поставлена задача найти пути снижения температуры горения с минимальными потерями удельного импульса, следовало изучить, как влияют основные характеристики композиции (суммарная энтальпия образования, элементный состав) на величины \hat{I}_{sp} и T_c . Повышение ΔH_f^0 исходной композиции однозначно увеличивает

[©] Лемперт Д. Б., Дорофеенко Е. М., Согласнова С. И., Нечипоренко Г. Н., 2012.

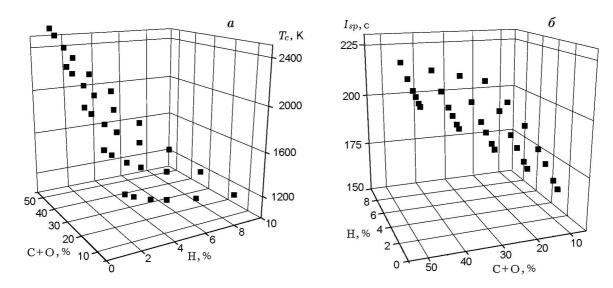


Рис. 1. Зависимость T_c (a) и I_{sp} (б) от содержания водорода и углерода с кислородом при O/C = 1 ($\Delta H_f^0 = 1\,100~{\rm kДж/kr}$)

 I_{sp} и T_c ; рост доли водорода при прочих равных условиях, как правило, снижает T_c и повышает I_{sp} .

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Были рассчитаны значения I_{sp} и T_c для широкого набора описанных выше композиций. Вначале рассчитывали композиции с соотношением атомов O/C = 1. При O/C < 1 значительная часть исходного углерода образует метан и сажу. Вместе с тем при O/C < 1 резко уменьшается тепловыделение, это должно существенно снижать удельный импульс.

На рис. 1 показаны зависимости I_{sp} и T_c от массовой доли водорода, углерода при C/O=1 ($\Delta H_f^0=1\,100\,$ кДж/кг).

Найдено, что для композиций, значения T_c которых лежат в интервале $1\,300 \div 2\,400$ K, величины T_c и I_{sp} можно описать эмпирическими формулами:

$$T_c \ [\mathrm{K}] = 930.8 - 147.8\mathrm{H} + 5.7\mathrm{H}^2 + 18.7(\mathrm{C} + \mathrm{O}) +$$
 $+ 0.029(\mathrm{C} + \mathrm{O})^2 + 0.63\Delta H_f^0 - 4.1 \cdot 10^{-5} (\Delta H_f^0)^2$ (среднее отклонение 40 K),

$$I_{sp}~[\mathrm{c}] = 124.1 + 5.31\mathrm{H} - 0.16\mathrm{H}^2 + 1.08(\mathrm{C} + \mathrm{O}) -$$

$$-0.0009(\mathrm{C} + \mathrm{O})^2 + 0.024\Delta H_f^0 - 2.7 \cdot 10^{-7} (\Delta H_f^0)^2$$
 (среднее отклонение 1.2 с),

где массовое содержание элементов дано в процентах.

Были построены поверхности, соответствующие постоянным значениям T_c (на рис. 2,a — T_c = $1\,500$ K) и I_{sp} (на рис. $2,\delta$ — $I_{sp} = 200 \text{ c}$) как функции вышеуказанных параметров. Условие $T_c < 1500 \text{ K}$ на рис. 2, a соблюдается для всех точек пространства, лежащих ниже поверхности, образуемой представленными точками, а на рис. 2, б условие $I_{sp} > 200$ с соблюдается для всех точек пространства, лежащих выше поверхности, образуемой представленными точками. Обработка всех расчетных данных позволила получить интересную зависимость (рис. 3). На рис. 3 кривые, ниспадающие по мере роста ΔH_f^0 , — это граничные условия по величине I_{sp} (при заданном содержании С + О (О/С = 1) в композиции весь набор точек по содержанию водорода и ΔH_f^0 , лежащий правее, например, кривой 1, удовлетворяет условию $I_{sp} > 180$ c), а кривые, восходящие по мере роста ΔH_f^0 , — это граничные условия по величине T_c (при заданном содержании С + О в композиции весь набор точек по содержанию водорода и ΔH_f^0 , находящийся левее, например, кривой 5, удовлетворяет условию $T_c < 1500$ K). Поэтому условие $T_c < 1\,500 \, {
m K}$ при $I_{sp} > 180 \, {
m c}$ может быть выполнено только для точек пространства, расположенных выше точки пересечения кривых 1 и 5 (точка A), т. е. в зоне, ограниченной отрезка-

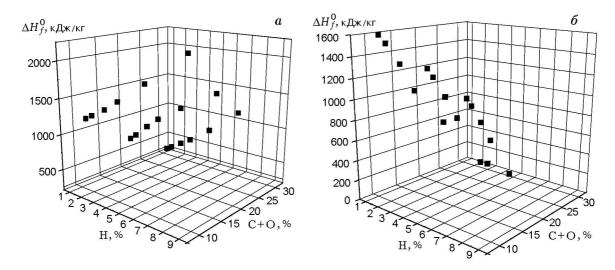


Рис. 2. Граничные условия для выполнения требований $T_c < 1\,500~{\rm K}$ (a) и $I_{sp} > 200~{\rm c}$ (б)

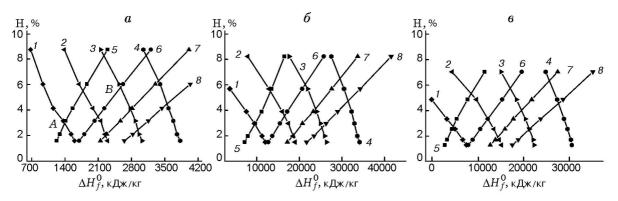


Рис. 3. Области существования решения « I_{sp} выше заданной величины при T_c ниже допустимой»: кривые $1\!-\!4$ — $I_{sp}=180$ (1), 200 (2), 220 (3), 240 с (4); кривые $5\!-\!8$ — $T_c=1\,500$ (5), 1800 (6), 2100 (7), 2400 K (8); C + O = 10 (a), 20 (б), 30 % (в)

ми 1A и A5, а условие $T_c < 1\,800$ К при $I_{sp} > 220$ с — для точек пространства, ограниченного отрезками 3B и B6. Видно, что достижение относительно высоких значений удельного импульса (>220 с) при существенном ограничении T_c , например при $T_c < 1\,500$ К, чрезвычайно трудно осуществить, так как при любых содержаниях углерода и любых значениях ΔH_f^0 массовая доля водорода должна быть не ниже $8\,\%$, при этом энтальпия образования должна находиться в очень узком диапазоне, в противном случае одно из требований (I_{sp} выше требуемой величины или T_c ниже предельно допустимой) не будет удовлетворено.

Очень интересную картину можно наблюдать, если все точки из диапазона $T_c=1\,300\div2\,400\,$ К нанести на график в координатах $I_{sp},$ T_c (рис. 4). Видно, что существует коридор возможных значений I_{sp} при заданной темпе-

ратуре T_c . Самые верхние точки соответствуют высокому содержанию водорода — ≈ 8 %, которое практически недостижимо в твердотопливной самогорящей композиции. Ширина коридора сужается при снижении максимального содержания водорода, на рис. 4 приведено несколько таких прямых, ограничивающих коридор сверху. Таким образом, данные на рис. 4 позволяют сразу отрицательно ответить на вопрос о возможности создания композиций с определенными требованиями, например, $I_{sp} \geqslant 240$ с при $T_c \leqslant 1600$ K.

Показано, что в среднем снижение T_c на 100 K уменьшает I_{sp} на 4.8 с, т. е. $dI_{sp}/dT_c \approx 0.048$ с/K. Зависимость максимально достижимого значения I_{sp} от доли водорода в композиции можно приближенно оценить по выражению

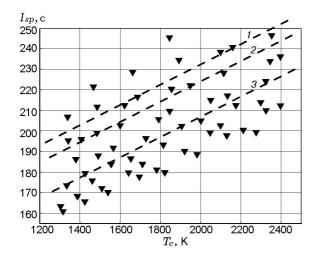


Рис. 4. Зависимость $I_{sp}(T_c)$ для составов, содержащих водород $1\div 8.7$ %, углерод $4.3\div 21.4$ %, кислород в количестве, равном содержанию углерода, остальное — азот, при $\Delta H_f^0=0\div 4\,400$ кДж/кг:

штриховыми прямыми показаны границы для составов с содержанием водорода не выше 6.0~%~(1), не выше 4.9~%~(2), не выше 2.8~%~(3)

$$I_{sp,\text{max}} = 87.6 + 8.1\text{H} + 0.048T_c,$$
 (1)

где массовое содержание H дано в процентах. Формула (1) выведена для составов с $T_c=1400\div2400$ K. Таким образом, если композиция содержит, например, 2.7 % водорода, а $T_c\leqslant 3\,100$ K, то величина I_{sp} может достигать значений $\approx\!255\div257$ с. Но если T_c ограничить значением $2\,100$ K, то даже при содержании водорода $5\,\%$ максимально достижимой величиной удельного импульса станет $I_{sp,\max}\approx 229$ с; при $T_c=1\,800$ K — $I_{sp,\max}\approx 214$; при $T_c<1\,500$ K — $I_{sp,\max}\approx 210$ с. При содержании водорода ниже $5\,\%$ каждое из вышеприведенных значений $I_{sp,\max}$ уменьшится на 8.1 с на каждый $1\,\%$ (абс.) снижения содержания водорода.

Приведенные выше данные относились к системам, где O/C=1. Изменятся ли приведенные закономерности, если допустить, что кислород входит в композицию в ином количестве? Очевидно, что в большинстве систем увеличение доли кислорода выше O/C=1 до определенного предела приводит к росту как T_c , так и I_{sp} . Чтобы выяснить, прирост какой из этих величин будет превалировать, были проведены расчеты I_{sp} и T_c для композиций, близких к вышеописанным, но в которых соотношение O/C изменялось в пределах $0.66 \div 1.43$. Часть полученных данных представлена на рис. 5. Видно,

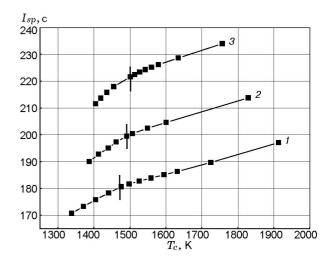


Рис. 5. Зависимость $I_{sp}(T_c)$ для составов с различным содержанием водорода и разными значениями соотношения O/C:

слева направо на каждой кривой величина O/C растет от 0.66 до 1.43, точки, пересеченные вертикальной чертой, соответствуют O/C = 1; содержание углерода везде 8.57 %; 1-2.83 % H, $\Delta H_f^0=951$ кДж/кг, 2-5.14 % H, $\Delta H_f^0=1311$ кДж/кг, 3-8.13 % H, $\Delta H_f^0=1694$ кДж/кг

что при ${\rm O/C}>1$ зависимость $I_{sp}(T_c)$ практически линейная $(dI_{sp}/dT_c\approx 0.042~{\rm c/K})$. По мере роста соотношения ${\rm O/C}$ величина dI_{sp}/dT_c несколько падает, но незначительно, причем падение тем больше, чем ниже доля углерода в композиции. В целом все составы с атомным соотношением ${\rm O/C}>1$ (по крайней мере, до 1.4) также попадают в вышеописанный коридор для составов с ${\rm O/C}=1$ (ср. рис. 4 и 5).

Однако при O/C < 1 (левые части кривых на рис. 5 до точки, соответствующей O/C = 1) производная dI_{sp}/dT_c резко (практически в два раза) растет, т. е. потеря каждого градуса в величине T_c обходится уже потерей ≈ 0.09 с в величине I_{sp} . Причиной этого, естественно, является то, что при O/C < 1 часть углерода в продуктах сгорания образует сажу и, что самое нежелательное, часть водорода связывается с избыточным углеродом в метан — газ хотя и легкий, но пятиатомный, а это резко снижает тепловой КПД.

ЗАКЛЮЧЕНИЕ

Для создания композиций с максимальным значением I_{sp} при ограничении T_c необязательно удерживать соотношение атомов O/C около единицы (оно может быть и выше) — основным

условием является повышение доли водорода. С другой стороны, снижение содержания кислорода путем создания композиций с соотношением $\mathrm{O/C} < 1$ существенно усложняет задачу снижения T_c с минимумом потерь в величине I_{sp} .

Полученные количественные зависимости между элементным составом композиции, ее теплосодержанием, величинами I_{sp} и T_c могут стать базой для дальнейшего конструирования составов смесевых твердых ракетных топлив с

максимально высокой величиной I_{sp} при условии, что T_c не превысит допустимое значение.

ЛИТЕРАТУРА

Trusov B.G. Program system TERRA for simulation phase and thermal chemical equilibrium // Proc. of the XIV Intern. Symp. on Chemical Thermodynamics. — St-Petersburg, Russia, 2002. — P. 483–484.

Поступила в редакцию 22/V 2011 г.